2025-02-27 18:46:32 +01:00
|
|
|
|
using System;
|
2024-09-10 22:04:44 +02:00
|
|
|
|
#if WPF
|
|
|
|
|
|
using System.Windows;
|
2025-08-19 19:43:02 +02:00
|
|
|
|
#elif AVALONIA
|
|
|
|
|
|
using Avalonia;
|
2024-09-10 22:04:44 +02:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
namespace MapControl
|
|
|
|
|
|
{
|
|
|
|
|
|
/// <summary>
|
2026-01-23 16:22:26 +01:00
|
|
|
|
/// Transverse Mercator Projection.
|
|
|
|
|
|
/// See https://en.wikipedia.org/wiki/Transverse_Mercator_projection
|
|
|
|
|
|
/// and https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.
|
2024-09-10 22:04:44 +02:00
|
|
|
|
/// </summary>
|
|
|
|
|
|
public class TransverseMercatorProjection : MapProjection
|
|
|
|
|
|
{
|
2026-01-23 16:22:26 +01:00
|
|
|
|
private double a1; // α1
|
|
|
|
|
|
private double a2; // α2
|
|
|
|
|
|
private double a3; // α3
|
|
|
|
|
|
private double b1; // β1
|
|
|
|
|
|
private double b2; // β2
|
|
|
|
|
|
private double b3; // β3
|
|
|
|
|
|
private double d1; // δ1
|
|
|
|
|
|
private double d2; // δ2
|
|
|
|
|
|
private double d3; // δ3
|
|
|
|
|
|
private double f1; // A/a
|
|
|
|
|
|
private double f2; // 2*sqrt(n)/(1+n)
|
2026-01-11 09:40:08 +01:00
|
|
|
|
|
|
|
|
|
|
public double Flattening
|
|
|
|
|
|
{
|
|
|
|
|
|
get;
|
|
|
|
|
|
set
|
|
|
|
|
|
{
|
|
|
|
|
|
field = value;
|
2026-01-23 16:22:26 +01:00
|
|
|
|
var n = field / (2d - field);
|
|
|
|
|
|
var n2 = n * n;
|
|
|
|
|
|
var n3 = n * n2;
|
|
|
|
|
|
a1 = n / 2d - n2 * 2d / 3d + n3 * 5d / 16d;
|
|
|
|
|
|
a2 = n2 * 13d / 48d - n3 * 3d / 5d;
|
|
|
|
|
|
a3 = n3 * 61d / 240d;
|
|
|
|
|
|
b1 = n / 2d - n2 * 2d / 3d + n3 * 37d / 96d;
|
|
|
|
|
|
b2 = n2 / 48d + n3 / 15d;
|
|
|
|
|
|
b3 = n3 * 17d / 480d;
|
|
|
|
|
|
d1 = n * 2d - n2 * 2d / 3d - n3 * 2d;
|
|
|
|
|
|
d2 = n2 * 7d / 3d - n3 * 8d / 5d;
|
|
|
|
|
|
d3 = n3 * 56d / 15d;
|
|
|
|
|
|
f1 = (1d + n2 / 4d + n2 * n2 / 64d) / (1d + n);
|
|
|
|
|
|
f2 = 2d * Math.Sqrt(n) / (1d + n);
|
2026-01-11 09:40:08 +01:00
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2026-01-23 16:22:26 +01:00
|
|
|
|
public double ScaleFactor { get; set; } = 0.9996;
|
|
|
|
|
|
public double CentralMeridian { get; set; }
|
|
|
|
|
|
public double FalseEasting { get; set; }
|
|
|
|
|
|
public double FalseNorthing { get; set; }
|
2026-01-23 10:43:31 +01:00
|
|
|
|
|
2026-01-23 16:22:26 +01:00
|
|
|
|
public TransverseMercatorProjection()
|
2024-09-10 22:04:44 +02:00
|
|
|
|
{
|
2026-01-23 16:22:26 +01:00
|
|
|
|
Flattening = Wgs84Flattening;
|
2024-09-10 22:04:44 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-12-12 21:28:45 +01:00
|
|
|
|
public override Point? LocationToMap(double latitude, double longitude)
|
2024-09-10 22:04:44 +02:00
|
|
|
|
{
|
2026-01-23 16:22:26 +01:00
|
|
|
|
// φ
|
2025-12-12 21:28:45 +01:00
|
|
|
|
var phi = latitude * Math.PI / 180d;
|
2026-01-23 16:22:26 +01:00
|
|
|
|
var sinPhi = Math.Sin(phi);
|
|
|
|
|
|
// t
|
|
|
|
|
|
var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi));
|
|
|
|
|
|
// λ - λ0
|
|
|
|
|
|
var dLambda = (longitude - CentralMeridian) * Math.PI / 180d;
|
|
|
|
|
|
// ξ'
|
|
|
|
|
|
var xi_ = Math.Atan2(t, Math.Cos(dLambda));
|
|
|
|
|
|
// η'
|
|
|
|
|
|
var eta_ = Atanh(Math.Sin(dLambda) / Math.Sqrt(1d + t * t));
|
2026-01-23 20:37:17 +01:00
|
|
|
|
// k0 * A
|
|
|
|
|
|
var k0A = ScaleFactor * EquatorialRadius * f1;
|
2026-01-23 22:00:50 +01:00
|
|
|
|
|
2026-01-23 20:37:17 +01:00
|
|
|
|
var x = FalseEasting + k0A * (eta_ +
|
2026-01-23 16:22:26 +01:00
|
|
|
|
a1 * Math.Cos(2d * xi_) * Math.Sinh(2d * eta_) +
|
|
|
|
|
|
a2 * Math.Cos(4d * xi_) * Math.Sinh(4d * eta_) +
|
2026-01-23 20:37:17 +01:00
|
|
|
|
a3 * Math.Cos(6d * xi_) * Math.Sinh(6d * eta_));
|
2026-01-23 22:00:50 +01:00
|
|
|
|
|
2026-01-23 20:37:17 +01:00
|
|
|
|
var y = FalseNorthing + k0A * (xi_ +
|
|
|
|
|
|
a1 * Math.Sin(2d * xi_) * Math.Cosh(2d * eta_) +
|
|
|
|
|
|
a2 * Math.Sin(4d * xi_) * Math.Cosh(4d * eta_) +
|
|
|
|
|
|
a3 * Math.Sin(6d * xi_) * Math.Cosh(6d * eta_));
|
2026-01-23 16:22:26 +01:00
|
|
|
|
|
2026-01-23 20:37:17 +01:00
|
|
|
|
return new Point(x, y);
|
2024-09-10 22:04:44 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-12-12 21:28:45 +01:00
|
|
|
|
public override Location MapToLocation(double x, double y)
|
2024-09-10 22:04:44 +02:00
|
|
|
|
{
|
2026-01-23 16:22:26 +01:00
|
|
|
|
// k0 * A
|
|
|
|
|
|
var k0A = ScaleFactor * EquatorialRadius * f1;
|
|
|
|
|
|
// ξ
|
|
|
|
|
|
var xi = (y - FalseNorthing) / k0A;
|
|
|
|
|
|
// η
|
|
|
|
|
|
var eta = (x - FalseEasting) / k0A;
|
|
|
|
|
|
// ξ'
|
|
|
|
|
|
var xi_ = xi -
|
|
|
|
|
|
b1 * Math.Sin(2d * xi) * Math.Cosh(2d * eta) -
|
|
|
|
|
|
b2 * Math.Sin(4d * xi) * Math.Cosh(4d * eta) -
|
|
|
|
|
|
b3 * Math.Sin(6d * xi) * Math.Cosh(6d * eta);
|
|
|
|
|
|
// η'
|
|
|
|
|
|
var eta_ = eta -
|
|
|
|
|
|
b1 * Math.Cos(2d * xi) * Math.Sinh(2d * eta) -
|
|
|
|
|
|
b2 * Math.Cos(4d * xi) * Math.Sinh(4d * eta) -
|
|
|
|
|
|
b3 * Math.Cos(6d * xi) * Math.Sinh(6d * eta);
|
|
|
|
|
|
// χ
|
|
|
|
|
|
var chi = Math.Asin(Math.Sin(xi_) / Math.Cosh(eta_));
|
|
|
|
|
|
// φ
|
|
|
|
|
|
var phi = chi +
|
|
|
|
|
|
d1 * Math.Sin(2d * chi) +
|
|
|
|
|
|
d2 * Math.Sin(4d * chi) +
|
|
|
|
|
|
d3 * Math.Sin(6d * chi);
|
|
|
|
|
|
// λ - λ0
|
|
|
|
|
|
var dLambda = Math.Atan2(Math.Sinh(eta_), Math.Cos(xi_));
|
2024-09-10 22:04:44 +02:00
|
|
|
|
|
2024-09-11 00:00:23 +02:00
|
|
|
|
return new Location(
|
|
|
|
|
|
phi * 180d / Math.PI,
|
2026-01-14 09:30:01 +01:00
|
|
|
|
dLambda * 180d / Math.PI + CentralMeridian);
|
2024-09-10 22:04:44 +02:00
|
|
|
|
}
|
2026-01-23 20:37:17 +01:00
|
|
|
|
|
|
|
|
|
|
#if NETFRAMEWORK
|
|
|
|
|
|
private static double Atanh(double x) => Math.Log((1d + x) / (1d - x)) / 2d;
|
|
|
|
|
|
#else
|
|
|
|
|
|
private static double Atanh(double x) => Math.Atanh(x);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
|
|
|
|
* Relative scale is usually < 1.001 and hence neglectable.
|
|
|
|
|
|
*
|
|
|
|
|
|
public override Matrix RelativeScale(double latitude, double longitude)
|
|
|
|
|
|
{
|
|
|
|
|
|
// φ
|
|
|
|
|
|
var phi = latitude * Math.PI / 180d;
|
|
|
|
|
|
var sinPhi = Math.Sin(phi);
|
|
|
|
|
|
// t
|
|
|
|
|
|
var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi));
|
|
|
|
|
|
// λ - λ0
|
|
|
|
|
|
var dLambda = (longitude - CentralMeridian) * Math.PI / 180d;
|
|
|
|
|
|
var cosLambda = Math.Cos(dLambda);
|
|
|
|
|
|
// ξ'
|
|
|
|
|
|
var xi_ = Math.Atan2(t, cosLambda);
|
|
|
|
|
|
// η'
|
|
|
|
|
|
var eta_ = Atanh(Math.Sin(dLambda) / Math.Sqrt(1d + t * t));
|
|
|
|
|
|
// σ
|
|
|
|
|
|
var sigma = 1 +
|
|
|
|
|
|
2d * a1 * Math.Cos(2d * xi_) * Math.Cosh(2d * eta_) +
|
|
|
|
|
|
4d * a2 * Math.Cos(4d * xi_) * Math.Cosh(4d * eta_) +
|
|
|
|
|
|
6d * a3 * Math.Cos(6d * xi_) * Math.Cosh(6d * eta_);
|
|
|
|
|
|
// τ
|
|
|
|
|
|
var tau =
|
|
|
|
|
|
2d * a1 * Math.Sin(2d * xi_) * Math.Sinh(2d * eta_) +
|
|
|
|
|
|
4d * a2 * Math.Sin(4d * xi_) * Math.Sinh(4d * eta_) +
|
|
|
|
|
|
6d * a3 * Math.Sin(6d * xi_) * Math.Sinh(6d * eta_);
|
|
|
|
|
|
|
|
|
|
|
|
// h = k/k0 for relative scale
|
|
|
|
|
|
var n = Flattening / (2d - Flattening);
|
|
|
|
|
|
var u = (1d - n) / (1d + n) * Math.Tan(phi);
|
|
|
|
|
|
var h = f1 * Math.Sqrt((1d + u * u) * (sigma * sigma + tau * tau) / (t * t + cosLambda * cosLambda));
|
|
|
|
|
|
|
|
|
|
|
|
return new Matrix(h, 0d, 0d, h, 0d, 0d);
|
|
|
|
|
|
}*/
|
2024-09-10 22:04:44 +02:00
|
|
|
|
}
|
|
|
|
|
|
}
|