mirror of
https://github.com/ClemensFischer/XAML-Map-Control.git
synced 2026-01-31 04:44:14 +01:00
Updated TransverseMercatorProjection
This commit is contained in:
parent
90cb418a41
commit
043b48d1d6
|
|
@ -212,30 +212,19 @@ namespace MapControl
|
|||
var latPoints = latSegments * interpolationCount;
|
||||
|
||||
var centerLon = Math.Round(ParentMap.Center.Longitude / lineDistance) * lineDistance;
|
||||
var westLimit = centerLon - 180d;
|
||||
var eastLimit = centerLon + 180d;
|
||||
|
||||
if (ParentMap.MapProjection.Type == MapProjectionType.TransverseCylindrical)
|
||||
{
|
||||
westLimit = ParentMap.MapProjection.Center.Longitude - 15d;
|
||||
eastLimit = ParentMap.MapProjection.Center.Longitude + 15d;
|
||||
westLimit = Math.Floor(westLimit / lineDistance) * lineDistance;
|
||||
eastLimit = Math.Ceiling(eastLimit / lineDistance) * lineDistance;
|
||||
}
|
||||
|
||||
var minLon = centerLon - lineDistance;
|
||||
var maxLon = centerLon + lineDistance;
|
||||
|
||||
if (DrawMeridian(figures, centerLon, minLat, interpolationDistance, latPoints))
|
||||
{
|
||||
while (DrawMeridian(figures, minLon, minLat, interpolationDistance, latPoints) &&
|
||||
minLon > westLimit)
|
||||
minLon > centerLon - 180d)
|
||||
{
|
||||
minLon -= lineDistance;
|
||||
}
|
||||
|
||||
while (DrawMeridian(figures, maxLon, minLat, interpolationDistance, latPoints) &&
|
||||
maxLon < eastLimit)
|
||||
maxLon < centerLon + 180d)
|
||||
{
|
||||
maxLon += lineDistance;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
using System;
|
||||
#if WPF
|
||||
using System.Windows;
|
||||
using System.Windows.Media;
|
||||
#elif AVALONIA
|
||||
using Avalonia;
|
||||
#endif
|
||||
|
|
@ -8,23 +9,32 @@ using Avalonia;
|
|||
namespace MapControl
|
||||
{
|
||||
/// <summary>
|
||||
/// Transverse Mercator Projection.
|
||||
/// See https://en.wikipedia.org/wiki/Transverse_Mercator_projection
|
||||
/// and https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.
|
||||
/// Elliptical Transverse Mercator Projection.
|
||||
/// See "Map Projections - A Working Manual" (https://pubs.usgs.gov/publication/pp1395), p.60-64.
|
||||
/// </summary>
|
||||
public class TransverseMercatorProjection : MapProjection
|
||||
{
|
||||
private double a1; // α1
|
||||
private double a2; // α2
|
||||
private double a3; // α3
|
||||
private double b1; // β1
|
||||
private double b2; // β2
|
||||
private double b3; // β3
|
||||
private double d1; // δ1
|
||||
private double d2; // δ2
|
||||
private double d3; // δ3
|
||||
private double f1; // A/a
|
||||
private double f2; // 2*sqrt(n)/(1+n)
|
||||
private double M0;
|
||||
|
||||
public TransverseMercatorProjection()
|
||||
{
|
||||
Type = MapProjectionType.TransverseCylindrical;
|
||||
}
|
||||
|
||||
public double ScaleFactor { get; set; } = 0.9996;
|
||||
public double CentralMeridian { get; set; }
|
||||
public double FalseEasting { get; set; }
|
||||
public double FalseNorthing { get; set; }
|
||||
|
||||
public double EquatorialRadius
|
||||
{
|
||||
get;
|
||||
set
|
||||
{
|
||||
field = value;
|
||||
M0 = MeridianDistance(LatitudeOfOrigin * Math.PI / 180d);
|
||||
}
|
||||
} = Wgs84EquatorialRadius;
|
||||
|
||||
public double Flattening
|
||||
{
|
||||
|
|
@ -32,98 +42,139 @@ namespace MapControl
|
|||
set
|
||||
{
|
||||
field = value;
|
||||
var n = field / (2d - field);
|
||||
var n2 = n * n;
|
||||
var n3 = n * n2;
|
||||
a1 = n / 2d - n2 * 2d / 3d + n3 * 5d / 16d;
|
||||
a2 = n2 * 13d / 48d - n3 * 3d / 5d;
|
||||
a3 = n3 * 61d / 240d;
|
||||
b1 = n / 2d - n2 * 2d / 3d + n3 * 37d / 96d;
|
||||
b2 = n2 / 48d + n3 / 15d;
|
||||
b3 = n3 * 17d / 480d;
|
||||
d1 = n * 2d - n2 * 2d / 3d - n3 * 2d;
|
||||
d2 = n2 * 7d / 3d - n3 * 8d / 5d;
|
||||
d3 = n3 * 56d / 15d;
|
||||
f1 = (1d + n2 / 4d + n2 * n2 / 64d) / (1d + n);
|
||||
f2 = 2d * Math.Sqrt(n) / (1d + n);
|
||||
M0 = MeridianDistance(LatitudeOfOrigin * Math.PI / 180d);
|
||||
}
|
||||
} = Wgs84Flattening;
|
||||
|
||||
public double LatitudeOfOrigin
|
||||
{
|
||||
get;
|
||||
set
|
||||
{
|
||||
field = value;
|
||||
M0 = MeridianDistance(value * Math.PI / 180d);
|
||||
}
|
||||
}
|
||||
|
||||
public double EquatorialRadius { get; set; } = Wgs84EquatorialRadius;
|
||||
public double ScaleFactor { get; set; } = 0.9996;
|
||||
public double CentralMeridian { get; set; }
|
||||
public double FalseEasting { get; set; }
|
||||
public double FalseNorthing { get; set; }
|
||||
|
||||
public TransverseMercatorProjection()
|
||||
private double MeridianDistance(double phi) // (3-21)
|
||||
{
|
||||
Type = MapProjectionType.TransverseCylindrical;
|
||||
Flattening = Wgs84Flattening;
|
||||
var e2 = (2d - Flattening) * Flattening;
|
||||
var e4 = e2 * e2;
|
||||
var e6 = e2 * e4;
|
||||
|
||||
return EquatorialRadius *
|
||||
((1d - e2 / 4d - 3d * e4 / 64d - 5d * e6 / 256d) * phi -
|
||||
(3d * e2 / 8d + 3d * e4 / 32d + 45d * e6 / 1024d) * Math.Sin(2d * phi) +
|
||||
(15d * e4 / 256d + 45d * e6 / 1024d) * Math.Sin(4d * phi) -
|
||||
35d * e6 / 3072d * Math.Sin(6d * phi));
|
||||
}
|
||||
|
||||
public override Matrix RelativeScale(double latitude, double longitude)
|
||||
{
|
||||
var k = ScaleFactor;
|
||||
|
||||
if (latitude > -90d && latitude < 90d)
|
||||
{
|
||||
var phi = latitude * Math.PI / 180d;
|
||||
var cosPhi = Math.Cos(phi);
|
||||
var tanPhi = Math.Tan(phi);
|
||||
|
||||
var e2 = (2d - Flattening) * Flattening;
|
||||
var e_2 = e2 / (1d - e2); // (8-12)
|
||||
var T = tanPhi * tanPhi; // (8-13)
|
||||
var C = e_2 * cosPhi * cosPhi; // (8-14)
|
||||
var A = (longitude - CentralMeridian) * Math.PI / 180d * cosPhi; // (8-15)
|
||||
var A2 = A * A;
|
||||
var A4 = A2 * A2;
|
||||
var A6 = A2 * A4;
|
||||
|
||||
k *= 1d + (1d + C) * A2 / 2d +
|
||||
(5d - 4d * T + 42d * C + 13d * C * C - 28d * e_2) * A4 / 24d +
|
||||
(61d - 148d * T + 16 * T * T) * A6 / 720d; // (8-11)
|
||||
}
|
||||
|
||||
return new Matrix(k, 0d, 0d, k, 0d, 0d);
|
||||
}
|
||||
|
||||
public override Point? LocationToMap(double latitude, double longitude)
|
||||
{
|
||||
#if NETFRAMEWORK
|
||||
static double Atanh(double x) => Math.Log((1d + x) / (1d - x)) / 2d;
|
||||
#else
|
||||
static double Atanh(double x) => Math.Atanh(x);
|
||||
#endif
|
||||
// k0 * A
|
||||
var k0A = ScaleFactor * EquatorialRadius * f1;
|
||||
// φ
|
||||
var phi = latitude * Math.PI / 180d;
|
||||
var sinPhi = Math.Sin(phi);
|
||||
// t
|
||||
var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi));
|
||||
// λ - λ0
|
||||
var dLambda = (longitude - CentralMeridian) * Math.PI / 180d;
|
||||
// ξ'
|
||||
var xi_ = Math.Atan2(t, Math.Cos(dLambda));
|
||||
// η'
|
||||
var eta_ = Atanh(Math.Sin(dLambda) / Math.Sqrt(1d + t * t));
|
||||
// ξ
|
||||
var xi = xi_ +
|
||||
a1 * Math.Sin(2d * xi_) * Math.Cosh(2d * eta_) +
|
||||
a2 * Math.Sin(4d * xi_) * Math.Cosh(4d * eta_) +
|
||||
a3 * Math.Sin(6d * xi_) * Math.Cosh(6d * eta_);
|
||||
// η
|
||||
var eta = eta_ +
|
||||
a1 * Math.Cos(2d * xi_) * Math.Sinh(2d * eta_) +
|
||||
a2 * Math.Cos(4d * xi_) * Math.Sinh(4d * eta_) +
|
||||
a3 * Math.Cos(6d * xi_) * Math.Sinh(6d * eta_);
|
||||
var M = MeridianDistance(phi);
|
||||
double x, y;
|
||||
|
||||
return new Point(
|
||||
k0A * eta + FalseEasting,
|
||||
k0A * xi + FalseNorthing);
|
||||
if (latitude > -90d && latitude < 90d)
|
||||
{
|
||||
var sinPhi = Math.Sin(phi);
|
||||
var cosPhi = Math.Cos(phi);
|
||||
var tanPhi = sinPhi / cosPhi;
|
||||
|
||||
var e2 = (2d - Flattening) * Flattening;
|
||||
var e_2 = e2 / (1d - e2); // (8-12)
|
||||
var N = EquatorialRadius / Math.Sqrt(1d - e2 * sinPhi * sinPhi); // (4-20)
|
||||
var T = tanPhi * tanPhi; // (8-13)
|
||||
var C = e_2 * cosPhi * cosPhi; // (8-14)
|
||||
var A = (longitude - CentralMeridian) * Math.PI / 180d * cosPhi; // (8-15)
|
||||
var A2 = A * A;
|
||||
var A3 = A * A2;
|
||||
var A4 = A * A3;
|
||||
var A5 = A * A4;
|
||||
var A6 = A * A5;
|
||||
|
||||
x = ScaleFactor * N *
|
||||
(A + (1d - T + C) * A3 / 6d + (5d - 18d * T + T * T + 72d * C - 58d * e_2) * A5 / 120d); // (8-9)
|
||||
y = ScaleFactor * (M - M0 + N * tanPhi * (A2 / 2d + (5d - T + 9d * C + 4d * C * C) * A4 / 24d +
|
||||
(61d - 58d * T + T * T + 600d * C - 330d * e_2) * A6 / 720d)); // (8-10)
|
||||
}
|
||||
else
|
||||
{
|
||||
x = 0d;
|
||||
y = ScaleFactor * (M - M0);
|
||||
}
|
||||
|
||||
return new Point(x + FalseEasting, y + FalseNorthing);
|
||||
}
|
||||
|
||||
public override Location MapToLocation(double x, double y)
|
||||
{
|
||||
// k0 * A
|
||||
var k0A = ScaleFactor * EquatorialRadius * f1;
|
||||
// ξ
|
||||
var xi = (y - FalseNorthing) / k0A;
|
||||
// η
|
||||
var eta = (x - FalseEasting) / k0A;
|
||||
// ξ'
|
||||
var xi_ = xi -
|
||||
b1 * Math.Sin(2d * xi) * Math.Cosh(2d * eta) -
|
||||
b2 * Math.Sin(4d * xi) * Math.Cosh(4d * eta) -
|
||||
b3 * Math.Sin(6d * xi) * Math.Cosh(6d * eta);
|
||||
// η'
|
||||
var eta_ = eta -
|
||||
b1 * Math.Cos(2d * xi) * Math.Sinh(2d * eta) -
|
||||
b2 * Math.Cos(4d * xi) * Math.Sinh(4d * eta) -
|
||||
b3 * Math.Cos(6d * xi) * Math.Sinh(6d * eta);
|
||||
// χ
|
||||
var chi = Math.Asin(Math.Sin(xi_) / Math.Cosh(eta_));
|
||||
// φ
|
||||
var phi = chi +
|
||||
d1 * Math.Sin(2d * chi) +
|
||||
d2 * Math.Sin(4d * chi) +
|
||||
d3 * Math.Sin(6d * chi);
|
||||
// λ - λ0
|
||||
var dLambda = Math.Atan2(Math.Sinh(eta_), Math.Cos(xi_));
|
||||
var e2 = (2d - Flattening) * Flattening;
|
||||
var e4 = e2 * e2;
|
||||
var e6 = e2 * e4;
|
||||
var s = Math.Sqrt(1d - e2);
|
||||
var e1 = (1d - s) / (1d + s); // (3-24)
|
||||
var e12 = e1 * e1;
|
||||
var e13 = e1 * e12;
|
||||
var e14 = e1 * e13;
|
||||
|
||||
var M = M0 + (y - FalseNorthing) / ScaleFactor; // (8-20)
|
||||
var mu = M / (EquatorialRadius * (1d - e2 / 4d - 3d * e4 / 64d - 5d * e6 / 256d)); // (7-19)
|
||||
var phi1 = mu +
|
||||
(3d * e1 / 2d - 27d * e13 / 32d) * Math.Sin(2d * mu) +
|
||||
(21d * e12 / 16d - 55d * e14 / 32d) * Math.Sin(4d * mu) +
|
||||
151d * e13 / 96d * Math.Sin(6d * mu) +
|
||||
1097d * e14 / 512d * Math.Sin(8d * mu); // (3-26)
|
||||
|
||||
var sinPhi1 = Math.Sin(phi1);
|
||||
var cosPhi1 = Math.Cos(phi1);
|
||||
var tanPhi1 = sinPhi1 / cosPhi1;
|
||||
|
||||
var e_2 = e2 / (1d - e2); // (8-12)
|
||||
var C1 = e_2 * cosPhi1 * cosPhi1; // (8-21)
|
||||
var T1 = sinPhi1 * sinPhi1 / (cosPhi1 * cosPhi1); // (8-22)
|
||||
s = Math.Sqrt(1d - e2 * sinPhi1 * sinPhi1);
|
||||
var N1 = EquatorialRadius / s; // (8-23)
|
||||
var R1 = EquatorialRadius * (1d - e2) / (s * s * s); // (8-24)
|
||||
var D = (x - FalseEasting) / (N1 * ScaleFactor); // (8-25)
|
||||
var D2 = D * D;
|
||||
var D3 = D * D2;
|
||||
var D4 = D * D3;
|
||||
var D5 = D * D4;
|
||||
var D6 = D * D5;
|
||||
|
||||
var phi = phi1 - N1 * tanPhi1 / R1 * (D2 / 2d - (5d + 3d * T1 + 10d * C1 - 4d * C1 * C1 - 9d * e_2) * D4 / 24d +
|
||||
(61d + 90d * T1 + 45d * T1 * T1 + 298 * C1 - 3d * C1 * C1 - 252d * e_2) * D6 / 720d); // (8-17)
|
||||
|
||||
var dLambda = (D - (1d + 2d * T1 + C1) * D3 / 6d +
|
||||
(5d - 2d * C1 - 3d * C1 * C1 + 28d * T1 + 24d * T1 * T1 + 8d * e_2) * D5 / 120d) / cosPhi1; // (8-18)
|
||||
|
||||
return new Location(
|
||||
phi * 180d / Math.PI,
|
||||
|
|
|
|||
Loading…
Reference in a new issue