rpcsx/rpcs3/Emu/RSX/GL/GLRenderTargets.h

476 lines
14 KiB
C++

#pragma once
#include "../Common/surface_store.h"
#include "GLHelpers.h"
#include "stdafx.h"
#include "../RSXThread.h"
struct color_swizzle
{
gl::texture::channel a = gl::texture::channel::a;
gl::texture::channel r = gl::texture::channel::r;
gl::texture::channel g = gl::texture::channel::g;
gl::texture::channel b = gl::texture::channel::b;
color_swizzle() = default;
color_swizzle(gl::texture::channel a, gl::texture::channel r, gl::texture::channel g, gl::texture::channel b)
: a(a), r(r), g(g), b(b)
{
}
};
struct color_format
{
gl::texture::type type;
gl::texture::format format;
bool swap_bytes;
int channel_count;
int channel_size;
color_swizzle swizzle;
};
struct depth_format
{
gl::texture::type type;
gl::texture::format format;
gl::texture::internal_format internal_format;
};
namespace rsx
{
namespace internals
{
::gl::texture::internal_format sized_internal_format(rsx::surface_color_format color_format);
color_format surface_color_format_to_gl(rsx::surface_color_format color_format);
depth_format surface_depth_format_to_gl(rsx::surface_depth_format depth_format);
u8 get_pixel_size(rsx::surface_depth_format format);
}
}
namespace gl
{
class render_target : public texture
{
bool is_cleared = false;
u32 rsx_pitch = 0;
u16 native_pitch = 0;
u16 surface_height = 0;
u16 surface_width = 0;
u16 surface_pixel_size = 0;
texture::internal_format compatible_internal_format = texture::internal_format::rgba8;
public:
render_target *old_contents = nullptr;
render_target() {}
void set_cleared(bool clear=true)
{
is_cleared = clear;
}
bool cleared() const
{
return is_cleared;
}
// Internal pitch is the actual row length in bytes of the openGL texture
void set_native_pitch(u16 pitch)
{
native_pitch = pitch;
}
u16 get_native_pitch() const
{
return native_pitch;
}
// Rsx pitch
void set_rsx_pitch(u16 pitch)
{
rsx_pitch = pitch;
}
u16 get_rsx_pitch() const
{
return rsx_pitch;
}
std::pair<u16, u16> get_dimensions()
{
if (!surface_height) surface_height = height();
if (!surface_width) surface_width = width();
return std::make_pair(surface_width, surface_height);
}
void set_compatible_format(texture::internal_format format)
{
compatible_internal_format = format;
}
texture::internal_format get_compatible_internal_format()
{
return compatible_internal_format;
}
// For an address within the texture, extract this sub-section's rect origin
// Checks whether we need to scale the subresource if it is not handled in shader
// NOTE1: When surface->real_pitch < rsx_pitch, the surface is assumed to have been scaled to fill the rsx_region
std::tuple<bool, u16, u16> get_texture_subresource(u32 offset, bool scale_to_fit)
{
if (!offset)
{
return std::make_tuple(true, 0, 0);
}
if (!surface_height) surface_height = height();
if (!surface_width) surface_width = width();
u32 range = rsx_pitch * surface_height;
if (offset < range)
{
if (!surface_pixel_size)
surface_pixel_size = native_pitch / surface_width;
const u32 y = (offset / rsx_pitch);
u32 x = (offset % rsx_pitch) / surface_pixel_size;
if (scale_to_fit)
{
const f32 x_scale = (f32)rsx_pitch / native_pitch;
x = (u32)((f32)x / x_scale);
}
return std::make_tuple(true, (u16)x, (u16)y);
}
else
return std::make_tuple(false, 0, 0);
}
};
}
struct gl_render_target_traits
{
using surface_storage_type = std::unique_ptr<gl::render_target>;
using surface_type = gl::render_target*;
using command_list_type = void*;
using download_buffer_object = std::vector<u8>;
static
std::unique_ptr<gl::render_target> create_new_surface(
u32 /*address*/,
rsx::surface_color_format surface_color_format,
size_t width,
size_t height,
gl::render_target* old_surface
)
{
std::unique_ptr<gl::render_target> result(new gl::render_target());
auto format = rsx::internals::surface_color_format_to_gl(surface_color_format);
auto internal_fmt = rsx::internals::sized_internal_format(surface_color_format);
result->recreate(gl::texture::target::texture2D);
result->set_native_pitch((u16)width * format.channel_count * format.channel_size);
result->set_compatible_format(internal_fmt);
__glcheck result->config()
.size({ (int)width, (int)height })
.type(format.type)
.format(format.format)
.internal_format(internal_fmt)
.swizzle(format.swizzle.r, format.swizzle.g, format.swizzle.b, format.swizzle.a)
.wrap(gl::texture::wrap::clamp_to_border, gl::texture::wrap::clamp_to_border, gl::texture::wrap::clamp_to_border)
.apply();
__glcheck result->pixel_pack_settings().swap_bytes(format.swap_bytes).aligment(1);
__glcheck result->pixel_unpack_settings().swap_bytes(format.swap_bytes).aligment(1);
if (old_surface != nullptr && old_surface->get_compatible_internal_format() == internal_fmt)
result->old_contents = old_surface;
result->set_cleared();
return result;
}
static
std::unique_ptr<gl::render_target> create_new_surface(
u32 /*address*/,
rsx::surface_depth_format surface_depth_format,
size_t width,
size_t height,
gl::render_target* old_surface
)
{
std::unique_ptr<gl::render_target> result(new gl::render_target());
auto format = rsx::internals::surface_depth_format_to_gl(surface_depth_format);
result->recreate(gl::texture::target::texture2D);
__glcheck result->config()
.size({ (int)width, (int)height })
.type(format.type)
.format(format.format)
.internal_format(format.internal_format)
.swizzle(gl::texture::channel::r, gl::texture::channel::r, gl::texture::channel::r, gl::texture::channel::r)
.wrap(gl::texture::wrap::clamp_to_border, gl::texture::wrap::clamp_to_border, gl::texture::wrap::clamp_to_border)
.apply();
__glcheck result->pixel_pack_settings().aligment(1);
__glcheck result->pixel_unpack_settings().aligment(1);
u16 native_pitch = (u16)width * 2;
if (surface_depth_format == rsx::surface_depth_format::z24s8)
native_pitch *= 2;
result->set_native_pitch(native_pitch);
result->set_compatible_format(format.internal_format);
if (old_surface != nullptr && old_surface->get_compatible_internal_format() == format.internal_format)
result->old_contents = old_surface;
return result;
}
static void prepare_rtt_for_drawing(void *, gl::render_target*) {}
static void prepare_rtt_for_sampling(void *, gl::render_target*) {}
static void prepare_ds_for_drawing(void *, gl::render_target*) {}
static void prepare_ds_for_sampling(void *, gl::render_target*) {}
static void invalidate_rtt_surface_contents(void *, gl::render_target *rtt, gl::render_target* /*old*/, bool forced) { if (forced) rtt->set_cleared(false); }
static void invalidate_depth_surface_contents(void *, gl::render_target *ds, gl::render_target* /*old*/, bool) { ds->set_cleared(false); }
static
bool rtt_has_format_width_height(const std::unique_ptr<gl::render_target> &rtt, rsx::surface_color_format format, size_t width, size_t height, bool check_refs=false)
{
if (check_refs) //TODO
return false;
auto internal_fmt = rsx::internals::sized_internal_format(format);
return rtt->get_compatible_internal_format() == internal_fmt && rtt->width() == width && rtt->height() == height;
}
static
bool ds_has_format_width_height(const std::unique_ptr<gl::render_target> &rtt, rsx::surface_depth_format, size_t width, size_t height, bool check_refs=false)
{
if (check_refs) //TODO
return false;
// TODO: check format
return rtt->width() == width && rtt->height() == height;
}
// Note : pbo breaks fbo here so use classic texture copy
static std::vector<u8> issue_download_command(gl::render_target* color_buffer, rsx::surface_color_format color_format, size_t width, size_t height)
{
auto pixel_format = rsx::internals::surface_color_format_to_gl(color_format);
std::vector<u8> result(width * height * pixel_format.channel_count * pixel_format.channel_size);
color_buffer->bind();
glGetTexImage(GL_TEXTURE_2D, 0, (GLenum)pixel_format.format, (GLenum)pixel_format.type, result.data());
return result;
}
static std::vector<u8> issue_depth_download_command(gl::render_target* depth_stencil_buffer, rsx::surface_depth_format depth_format, size_t width, size_t height)
{
std::vector<u8> result(width * height * 4);
auto pixel_format = rsx::internals::surface_depth_format_to_gl(depth_format);
depth_stencil_buffer->bind();
glGetTexImage(GL_TEXTURE_2D, 0, (GLenum)pixel_format.format, (GLenum)pixel_format.type, result.data());
return result;
}
static std::vector<u8> issue_stencil_download_command(gl::render_target*, size_t width, size_t height)
{
std::vector<u8> result(width * height * 4);
return result;
}
static
gsl::span<const gsl::byte> map_downloaded_buffer(const std::vector<u8> &buffer)
{
return{ reinterpret_cast<const gsl::byte*>(buffer.data()), ::narrow<int>(buffer.size()) };
}
static
void unmap_downloaded_buffer(const std::vector<u8> &)
{
}
static gl::render_target* get(const std::unique_ptr<gl::render_target> &in)
{
return in.get();
}
};
struct surface_subresource
{
gl::render_target *surface = nullptr;
u16 x = 0;
u16 y = 0;
u16 w = 0;
u16 h = 0;
bool is_bound = false;
bool is_depth_surface = false;
bool is_clipped = false;
surface_subresource() {}
surface_subresource(gl::render_target *src, u16 X, u16 Y, u16 W, u16 H, bool _Bound, bool _Depth, bool _Clipped = false)
: surface(src), x(X), y(Y), w(W), h(H), is_bound(_Bound), is_depth_surface(_Depth), is_clipped(_Clipped)
{}
};
class gl_render_targets : public rsx::surface_store<gl_render_target_traits>
{
private:
bool surface_overlaps(gl::render_target *surface, u32 surface_address, u32 texaddr, u16 *x, u16 *y, bool scale_to_fit)
{
bool is_subslice = false;
u16 x_offset = 0;
u16 y_offset = 0;
if (surface_address > texaddr)
return false;
u32 offset = texaddr - surface_address;
if (texaddr >= surface_address)
{
std::tie(is_subslice, x_offset, y_offset) = surface->get_texture_subresource(offset, scale_to_fit);
if (is_subslice)
{
*x = x_offset;
*y = y_offset;
return true;
}
}
return false;
}
bool is_bound(u32 address, bool is_depth)
{
if (is_depth)
{
const u32 bound_depth_address = std::get<0>(m_bound_depth_stencil);
return (bound_depth_address == address);
}
for (auto &surface: m_bound_render_targets)
{
const u32 bound_address = std::get<0>(surface);
if (bound_address == address)
return true;
}
return false;
}
bool fits(gl::render_target*, std::pair<u16, u16> &dims, u16 x_offset, u16 y_offset, u16 width, u16 height) const
{
if ((x_offset + width) > dims.first) return false;
if ((y_offset + height) > dims.second) return false;
return true;
}
public:
surface_subresource get_surface_subresource_if_applicable(u32 texaddr, u16 requested_width, u16 requested_height, u16 requested_pitch, bool scale_to_fit=false, bool crop=false, bool ignore_depth_formats=false)
{
gl::render_target *surface = nullptr;
u16 x_offset = 0;
u16 y_offset = 0;
for (auto &tex_info : m_render_targets_storage)
{
u32 this_address = std::get<0>(tex_info);
surface = std::get<1>(tex_info).get();
if (surface_overlaps(surface, this_address, texaddr, &x_offset, &y_offset, scale_to_fit))
{
if (surface->get_rsx_pitch() != requested_pitch)
continue;
auto dims = surface->get_dimensions();
if (scale_to_fit)
{
f32 pitch_scaling = (f32)requested_pitch / surface->get_native_pitch();
requested_width = (u16)((f32)requested_width / pitch_scaling);
}
if (fits(surface, dims, x_offset, y_offset, requested_width, requested_height))
return{ surface, x_offset, y_offset, requested_width, requested_height, is_bound(this_address, false), false };
else
{
if (crop) //Forcefully fit the requested region by clipping and scaling
{
u16 remaining_width = dims.first - x_offset;
u16 remaining_height = dims.second - y_offset;
return{ surface, x_offset, y_offset, remaining_width, remaining_height, is_bound(this_address, false), false, true };
}
if (dims.first >= requested_width && dims.second >= requested_height)
{
LOG_WARNING(RSX, "Overlapping surface exceeds bounds; returning full surface region");
return{ surface, 0, 0, requested_width, requested_height, is_bound(this_address, false), false, true };
}
}
}
}
if (ignore_depth_formats)
return{};
//Check depth surfaces for overlap
for (auto &tex_info : m_depth_stencil_storage)
{
u32 this_address = std::get<0>(tex_info);
surface = std::get<1>(tex_info).get();
if (surface_overlaps(surface, this_address, texaddr, &x_offset, &y_offset, scale_to_fit))
{
if (surface->get_rsx_pitch() != requested_pitch)
continue;
auto dims = surface->get_dimensions();
if (scale_to_fit)
{
f32 pitch_scaling = (f32)requested_pitch / surface->get_native_pitch();
requested_width = (u16)((f32)requested_width / pitch_scaling);
}
if (fits(surface, dims, x_offset, y_offset, requested_width, requested_height))
return{ surface, x_offset, y_offset, requested_width, requested_height, is_bound(this_address, true), true };
else
{
if (crop) //Forcefully fit the requested region by clipping and scaling
{
u16 remaining_width = dims.first - x_offset;
u16 remaining_height = dims.second - y_offset;
return{ surface, x_offset, y_offset, remaining_width, remaining_height, is_bound(this_address, true), true, true };
}
if (dims.first >= requested_width && dims.second >= requested_height)
{
LOG_WARNING(RSX, "Overlapping depth surface exceeds bounds; returning full surface region");
return{ surface, 0, 0, requested_width, requested_height, is_bound(this_address, true), true, true };
}
}
}
}
return {};
}
};