rpcsx/rpcs3/Emu/RSX/VK/VKTextureCache.h
kd-11 1da732bbf5 rsx/gl/vk: Invalidate texture regions when memory is unmapped
- Free GPU resources immediately if mappings change to avoid leaking VRAM
2017-08-16 23:58:30 +03:00

1013 lines
29 KiB
C++

#pragma once
#include "stdafx.h"
#include "VKRenderTargets.h"
#include "VKGSRender.h"
#include "Emu/System.h"
#include "../Common/TextureUtils.h"
#include "../rsx_utils.h"
#include "Utilities/mutex.h"
namespace vk
{
class cached_texture_section : public rsx::buffered_section
{
u16 pitch;
u16 width;
u16 height;
u16 depth;
u16 mipmaps;
std::unique_ptr<vk::image_view> uploaded_image_view;
std::unique_ptr<vk::image> managed_texture = nullptr;
//DMA relevant data
u16 native_pitch;
VkFence dma_fence = VK_NULL_HANDLE;
bool synchronized = false;
vk::render_device* m_device = nullptr;
vk::image *vram_texture = nullptr;
std::unique_ptr<vk::buffer> dma_buffer;
public:
cached_texture_section() {}
void reset(u32 base, u32 length)
{
if (length > cpu_address_range)
release_dma_resources();
rsx::protection_policy policy = g_cfg.video.strict_rendering_mode ? rsx::protection_policy::protect_policy_full_range : rsx::protection_policy::protect_policy_one_page;
rsx::buffered_section::reset(base, length, policy);
}
void create(const u16 w, const u16 h, const u16 depth, const u16 mipmaps, vk::image_view *view, vk::image *image, const u32 native_pitch = 0, bool managed=true)
{
width = w;
height = h;
this->depth = depth;
this->mipmaps = mipmaps;
uploaded_image_view.reset(view);
vram_texture = image;
if (managed) managed_texture.reset(image);
//TODO: Properly compute these values
this->native_pitch = native_pitch;
pitch = cpu_address_range / height;
//Even if we are managing the same vram section, we cannot guarantee contents are static
//The create method is only invoked when a new mangaged session is required
synchronized = false;
}
void release_dma_resources()
{
if (dma_buffer.get() != nullptr)
{
dma_buffer.reset();
if (dma_fence != nullptr)
{
vkDestroyFence(*m_device, dma_fence, nullptr);
dma_fence = VK_NULL_HANDLE;
}
}
}
bool matches(u32 rsx_address, u32 rsx_size) const
{
return rsx::buffered_section::matches(rsx_address, rsx_size);
}
bool matches(u32 rsx_address, u32 width, u32 height, u32 mipmaps) const
{
if (rsx_address == cpu_address_base)
{
if (!width && !height && !mipmaps)
return true;
return (width == this->width && height == this->height && mipmaps == this->mipmaps);
}
return false;
}
bool exists() const
{
return (vram_texture != nullptr);
}
u16 get_width() const
{
return width;
}
u16 get_height() const
{
return height;
}
std::unique_ptr<vk::image_view>& get_view()
{
return uploaded_image_view;
}
std::unique_ptr<vk::image>& get_texture()
{
return managed_texture;
}
VkFormat get_format()
{
return vram_texture->info.format;
}
bool is_flushable() const
{
//This section is active and can be flushed to cpu
return (protection == utils::protection::no);
}
bool is_flushed() const
{
//This memory section was flushable, but a flush has already removed protection
return (protection == utils::protection::rw && uploaded_image_view.get() == nullptr && managed_texture.get() == nullptr);
}
void copy_texture(vk::command_buffer& cmd, u32 heap_index, VkQueue submit_queue, bool manage_cb_lifetime = false)
{
if (m_device == nullptr)
{
m_device = &cmd.get_command_pool().get_owner();
}
if (dma_fence == VK_NULL_HANDLE)
{
VkFenceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
vkCreateFence(*m_device, &createInfo, nullptr, &dma_fence);
}
if (dma_buffer.get() == nullptr)
{
dma_buffer.reset(new vk::buffer(*m_device, align(cpu_address_range, 256), heap_index, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0));
}
if (manage_cb_lifetime)
{
//cb has to be guaranteed to be in a closed state
//This function can be called asynchronously
VkCommandBufferInheritanceInfo inheritance_info = {};
inheritance_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
VkCommandBufferBeginInfo begin_infos = {};
begin_infos.pInheritanceInfo = &inheritance_info;
begin_infos.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_infos.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
CHECK_RESULT(vkBeginCommandBuffer(cmd, &begin_infos));
}
VkBufferImageCopy copyRegion = {};
copyRegion.bufferOffset = 0;
copyRegion.bufferRowLength = width;
copyRegion.bufferImageHeight = height;
copyRegion.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copyRegion.imageOffset = {};
copyRegion.imageExtent = {width, height, 1};
VkImageSubresourceRange subresource_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
VkImageLayout layout = vram_texture->current_layout;
change_image_layout(cmd, vram_texture, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresource_range);
vkCmdCopyImageToBuffer(cmd, vram_texture->value, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dma_buffer->value, 1, &copyRegion);
change_image_layout(cmd, vram_texture, layout, subresource_range);
if (manage_cb_lifetime)
{
CHECK_RESULT(vkEndCommandBuffer(cmd));
VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkCommandBuffer command_buffer = cmd;
VkSubmitInfo infos = {};
infos.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
infos.commandBufferCount = 1;
infos.pCommandBuffers = &command_buffer;
infos.pWaitDstStageMask = &pipe_stage_flags;
infos.pWaitSemaphores = nullptr;
infos.waitSemaphoreCount = 0;
CHECK_RESULT(vkQueueSubmit(submit_queue, 1, &infos, dma_fence));
//Now we need to restart the command-buffer to restore it to the way it was before...
CHECK_RESULT(vkWaitForFences(*m_device, 1, &dma_fence, VK_TRUE, UINT64_MAX));
CHECK_RESULT(vkResetCommandBuffer(cmd, 0));
CHECK_RESULT(vkResetFences(*m_device, 1, &dma_fence));
}
synchronized = true;
}
template<typename T>
void do_memory_transfer(void *pixels_dst, const void *pixels_src)
{
if (sizeof(T) == 1)
memcpy(pixels_dst, pixels_src, cpu_address_range);
else
{
const u32 block_size = width * height;
auto typed_dst = (be_t<T> *)pixels_dst;
auto typed_src = (T *)pixels_src;
for (u32 px = 0; px < block_size; ++px)
typed_dst[px] = typed_src[px];
}
}
bool flush(vk::render_device& dev, vk::command_buffer& cmd, u32 heap_index, VkQueue submit_queue)
{
if (m_device == nullptr)
m_device = &dev;
// Return false if a flush occured 'late', i.e we had a miss
bool result = true;
if (!synchronized)
{
LOG_WARNING(RSX, "Cache miss at address 0x%X. This is gonna hurt...", cpu_address_base);
copy_texture(cmd, heap_index, submit_queue, true);
result = false;
}
protect(utils::protection::rw);
void* pixels_src = dma_buffer->map(0, cpu_address_range);
void* pixels_dst = vm::base(cpu_address_base);
const u8 bpp = native_pitch / width;
if (pitch == native_pitch)
{
//We have to do our own byte swapping since the driver doesnt do it for us
switch (bpp)
{
default:
LOG_ERROR(RSX, "Invalid bpp %d", bpp);
case 1:
do_memory_transfer<u8>(pixels_dst, pixels_src);
break;
case 2:
do_memory_transfer<u16>(pixels_dst, pixels_src);
break;
case 4:
do_memory_transfer<u32>(pixels_dst, pixels_src);
break;
case 8:
do_memory_transfer<u64>(pixels_dst, pixels_src);
break;
}
}
else
{
//Scale image to fit
//usually we can just get away with nearest filtering
const u8 samples = pitch / native_pitch;
rsx::scale_image_nearest(pixels_dst, pixels_src, width, height, pitch, native_pitch, bpp, samples, true);
}
dma_buffer->unmap();
//Its highly likely that this surface will be reused, so we just leave resources in place
return result;
}
bool is_synchronized() const
{
return synchronized;
}
};
class texture_cache
{
struct ranged_storage
{
std::vector<cached_texture_section> data; //Stored data
std::atomic_int valid_count = { 0 }; //Number of usable (non-dirty) blocks
u32 max_range = 0; //Largest stored block
void notify(u32 data_size)
{
max_range = std::max(data_size, max_range);
valid_count++;
}
void add(cached_texture_section& section, u32 data_size)
{
max_range = std::max(data_size, max_range);
valid_count++;
data.push_back(std::move(section));
}
};
private:
std::atomic_bool in_access_violation_handler = { false };
shared_mutex m_cache_mutex;
std::unordered_map<u32, ranged_storage> m_cache;
std::pair<u32, u32> read_only_range = std::make_pair(0xFFFFFFFF, 0);
std::pair<u32, u32> no_access_range = std::make_pair(0xFFFFFFFF, 0);
//Stuff that has been dereferenced goes into these
std::vector<std::unique_ptr<vk::image_view> > m_temporary_image_view;
std::vector<std::unique_ptr<vk::image>> m_dirty_textures;
//Stuff that has been dereferenced twice goes here. Contents are evicted before new ones are added
std::vector<std::unique_ptr<vk::image_view>> m_image_views_to_purge;
std::vector<std::unique_ptr<vk::image>> m_images_to_purge;
// Keep track of cache misses to pre-emptively flush some addresses
struct framebuffer_memory_characteristics
{
u32 misses;
u32 block_size;
VkFormat format;
};
std::unordered_map<u32, framebuffer_memory_characteristics> m_cache_miss_statistics_table;
cached_texture_section& find_cached_texture(u32 rsx_address, u32 rsx_size, bool confirm_dimensions = false, u16 width = 0, u16 height = 0, u16 mipmaps = 0)
{
{
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(rsx_address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.matches(rsx_address, rsx_size) && !tex.is_dirty())
{
if (!confirm_dimensions) return tex;
if (tex.matches(rsx_address, width, height, mipmaps))
return tex;
else
{
LOG_ERROR(RSX, "Cached object for address 0x%X was found, but it does not match stored parameters.", rsx_address);
LOG_ERROR(RSX, "%d x %d vs %d x %d", width, height, tex.get_width(), tex.get_height());
}
}
}
for (auto &tex : range_data.data)
{
if (tex.is_dirty())
{
if (tex.exists())
{
m_dirty_textures.push_back(std::move(tex.get_texture()));
m_temporary_image_view.push_back(std::move(tex.get_view()));
}
tex.release_dma_resources();
range_data.notify(rsx_size);
return tex;
}
}
}
}
writer_lock lock(m_cache_mutex);
cached_texture_section tmp;
m_cache[rsx_address].add(tmp, rsx_size);
return m_cache[rsx_address].data.back();
}
cached_texture_section* find_flushable_section(const u32 address, const u32 range)
{
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable() && !tex.is_flushed()) continue;
if (tex.matches(address, range))
return &tex;
}
}
return nullptr;
}
void purge_cache()
{
for (auto &address_range : m_cache)
{
auto &range_data = address_range.second;
for (auto &tex : range_data.data)
{
if (tex.exists())
{
m_dirty_textures.push_back(std::move(tex.get_texture()));
m_temporary_image_view.push_back(std::move(tex.get_view()));
}
if (tex.is_locked())
tex.unprotect();
tex.release_dma_resources();
}
range_data.data.resize(0);
}
m_temporary_image_view.clear();
m_dirty_textures.clear();
m_image_views_to_purge.clear();
m_images_to_purge.clear();
}
//Helpers
VkComponentMapping get_component_map(rsx::fragment_texture &tex, u32 gcm_format)
{
//Decoded remap returns 2 arrays; a redirection table and a lookup reference
auto decoded_remap = tex.decoded_remap();
//NOTE: Returns mapping in A-R-G-B
auto native_mapping = vk::get_component_mapping(gcm_format);
VkComponentSwizzle final_mapping[4] = {};
for (u8 channel = 0; channel < 4; ++channel)
{
switch (decoded_remap.second[channel])
{
case CELL_GCM_TEXTURE_REMAP_ONE:
final_mapping[channel] = VK_COMPONENT_SWIZZLE_ONE;
break;
case CELL_GCM_TEXTURE_REMAP_ZERO:
final_mapping[channel] = VK_COMPONENT_SWIZZLE_ZERO;
break;
default:
LOG_ERROR(RSX, "Unknown remap lookup value %d", decoded_remap.second[channel]);
case CELL_GCM_TEXTURE_REMAP_REMAP:
final_mapping[channel] = native_mapping[decoded_remap.first[channel]];
break;
}
}
return { final_mapping[1], final_mapping[2], final_mapping[3], final_mapping[0] };
}
VkComponentMapping get_component_map(rsx::vertex_texture&, u32 gcm_format)
{
auto mapping = vk::get_component_mapping(gcm_format);
return { mapping[1], mapping[2], mapping[3], mapping[0] };
}
vk::image_view* create_temporary_subresource(vk::command_buffer& cmd, vk::image* source, u32 x, u32 y, u32 w, u32 h, const vk::memory_type_mapping &memory_type_mapping)
{
VkImageAspectFlags aspect = VK_IMAGE_ASPECT_COLOR_BIT;
switch (source->info.format)
{
case VK_FORMAT_D16_UNORM:
aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
break;
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
break;
}
VkImageSubresourceRange subresource_range = { aspect, 0, 1, 0, 1 };
std::unique_ptr<vk::image> image;
std::unique_ptr<vk::image_view> view;
image.reset(new vk::image(*vk::get_current_renderer(), memory_type_mapping.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
source->info.imageType,
source->info.format,
source->width(), source->height(), source->depth(), 1, 1, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, source->info.flags));
VkImageSubresourceRange view_range = { aspect & ~(VK_IMAGE_ASPECT_STENCIL_BIT), 0, 1, 0, 1 };
view.reset(new vk::image_view(*vk::get_current_renderer(), image->value, VK_IMAGE_VIEW_TYPE_2D, source->info.format, source->native_component_map, view_range));
VkImageLayout old_src_layout = source->current_layout;
vk::change_image_layout(cmd, image.get(), VK_IMAGE_LAYOUT_GENERAL, subresource_range);
vk::change_image_layout(cmd, source, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresource_range);
VkImageCopy copy_rgn;
copy_rgn.srcOffset = { (s32)x, (s32)y, 0 };
copy_rgn.dstOffset = { (s32)x, (s32)y, 0 };
copy_rgn.dstSubresource = { aspect, 0, 0, 1 };
copy_rgn.srcSubresource = { aspect, 0, 0, 1 };
copy_rgn.extent = { w, h, 1 };
vkCmdCopyImage(cmd, source->value, source->current_layout, image->value, image->current_layout, 1, &copy_rgn);
vk::change_image_layout(cmd, image.get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresource_range);
vk::change_image_layout(cmd, source, old_src_layout, subresource_range);
m_dirty_textures.push_back(std::move(image));
m_temporary_image_view.push_back(std::move(view));
return m_temporary_image_view.back().get();
}
public:
texture_cache() {}
~texture_cache() {}
void destroy()
{
purge_cache();
}
template <typename RsxTextureType>
vk::image_view* upload_texture(command_buffer cmd, RsxTextureType &tex, rsx::vk_render_targets &m_rtts, const vk::memory_type_mapping &memory_type_mapping, vk_data_heap& upload_heap, vk::buffer* upload_buffer)
{
const u32 texaddr = rsx::get_address(tex.offset(), tex.location());
const u32 range = (u32)get_texture_size(tex);
if (!texaddr || !range)
{
LOG_ERROR(RSX, "Texture upload requested but texture not found, (address=0x%X, size=0x%X)", texaddr, range);
return nullptr;
}
//First check if it exists as an rtt...
vk::render_target *rtt_texture = nullptr;
if (rtt_texture = m_rtts.get_texture_from_render_target_if_applicable(texaddr))
{
if (g_cfg.video.strict_rendering_mode)
{
for (const auto& tex : m_rtts.m_bound_render_targets)
{
if (std::get<0>(tex) == texaddr)
{
LOG_WARNING(RSX, "Attempting to sample a currently bound render target @ 0x%x", texaddr);
return create_temporary_subresource(cmd, rtt_texture, 0, 0, rtt_texture->width(), rtt_texture->height(), memory_type_mapping);
}
}
}
return rtt_texture->get_view();
}
if (rtt_texture = m_rtts.get_texture_from_depth_stencil_if_applicable(texaddr))
{
if (g_cfg.video.strict_rendering_mode)
{
if (std::get<0>(m_rtts.m_bound_depth_stencil) == texaddr)
{
LOG_WARNING(RSX, "Attempting to sample a currently bound depth surface @ 0x%x", texaddr);
return create_temporary_subresource(cmd, rtt_texture, 0, 0, rtt_texture->width(), rtt_texture->height(), memory_type_mapping);
}
}
return rtt_texture->get_view();
}
u32 raw_format = tex.format();
u32 format = raw_format & ~(CELL_GCM_TEXTURE_LN | CELL_GCM_TEXTURE_UN);
VkComponentMapping mapping = get_component_map(tex, format);
VkFormat vk_format = get_compatible_sampler_format(format);
VkImageType image_type;
VkImageViewType image_view_type;
u16 height = 0;
u16 depth = 0;
u8 layer = 0;
switch (tex.get_extended_texture_dimension())
{
case rsx::texture_dimension_extended::texture_dimension_1d:
image_type = VK_IMAGE_TYPE_1D;
image_view_type = VK_IMAGE_VIEW_TYPE_1D;
height = 1;
depth = 1;
layer = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_2d:
image_type = VK_IMAGE_TYPE_2D;
image_view_type = VK_IMAGE_VIEW_TYPE_2D;
height = tex.height();
depth = 1;
layer = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_cubemap:
image_type = VK_IMAGE_TYPE_2D;
image_view_type = VK_IMAGE_VIEW_TYPE_CUBE;
height = tex.height();
depth = 1;
layer = 6;
break;
case rsx::texture_dimension_extended::texture_dimension_3d:
image_type = VK_IMAGE_TYPE_3D;
image_view_type = VK_IMAGE_VIEW_TYPE_3D;
height = tex.height();
depth = tex.depth();
layer = 1;
break;
}
cached_texture_section& region = find_cached_texture(texaddr, range, true, tex.width(), height, tex.get_exact_mipmap_count());
if (region.exists() && !region.is_dirty())
{
return region.get_view().get();
}
bool is_cubemap = tex.get_extended_texture_dimension() == rsx::texture_dimension_extended::texture_dimension_cubemap;
VkImageSubresourceRange subresource_range = vk::get_image_subresource_range(0, 0, is_cubemap ? 6 : 1, tex.get_exact_mipmap_count(), VK_IMAGE_ASPECT_COLOR_BIT);
//If for some reason invalid dimensions are requested, fail
if (!height || !depth || !layer || !tex.width())
{
LOG_ERROR(RSX, "Texture upload requested but invalid texture dimensions passed");
return nullptr;
}
vk::image *image = new vk::image(*vk::get_current_renderer(), memory_type_mapping.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
image_type,
vk_format,
tex.width(), height, depth, tex.get_exact_mipmap_count(), layer, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, is_cubemap ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0);
change_image_layout(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresource_range);
vk::image_view *view = new vk::image_view(*vk::get_current_renderer(), image->value, image_view_type, vk_format,
mapping,
subresource_range);
//We cannot split mipmap uploads across multiple command buffers (must explicitly open and close operations on the same cb)
vk::enter_uninterruptible();
copy_mipmaped_image_using_buffer(cmd, image->value, get_subresources_layout(tex), format, !(tex.format() & CELL_GCM_TEXTURE_LN), tex.get_exact_mipmap_count(),
upload_heap, upload_buffer);
change_image_layout(cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresource_range);
vk::leave_uninterruptible();
writer_lock lock(m_cache_mutex);
region.reset(texaddr, range);
region.create(tex.width(), height, depth, tex.get_exact_mipmap_count(), view, image);
region.protect(utils::protection::ro);
region.set_dirty(false);
read_only_range = region.get_min_max(read_only_range);
return view;
}
void lock_memory_region(vk::render_target* image, const u32 memory_address, const u32 memory_size, const u32 width, const u32 height)
{
cached_texture_section& region = find_cached_texture(memory_address, memory_size, true, width, height, 1);
writer_lock lock(m_cache_mutex);
if (!region.is_locked())
{
region.reset(memory_address, memory_size);
region.set_dirty(false);
no_access_range = region.get_min_max(no_access_range);
}
region.protect(utils::protection::no);
region.create(width, height, 1, 1, nullptr, image, image->native_pitch, false);
}
bool flush_memory_to_cache(const u32 memory_address, const u32 memory_size, vk::command_buffer&cmd, vk::memory_type_mapping& memory_types, VkQueue submit_queue, bool skip_synchronized = false)
{
cached_texture_section* region = find_flushable_section(memory_address, memory_size);
//TODO: Make this an assertion
if (region == nullptr)
{
LOG_ERROR(RSX, "Failed to find section for render target 0x%X + 0x%X", memory_address, memory_size);
return false;
}
if (skip_synchronized && region->is_synchronized())
return false;
region->copy_texture(cmd, memory_types.host_visible_coherent, submit_queue);
return true;
}
std::tuple<bool, bool> address_is_flushable(u32 address)
{
if (address < no_access_range.first ||
address > no_access_range.second)
return std::make_tuple(false, false);
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
if (tex.overlaps(address))
return std::make_tuple(true, tex.is_synchronized());
}
}
for (auto &address_range : m_cache)
{
if (address_range.first == address)
continue;
auto &range_data = address_range.second;
//Quickly discard range
const u32 lock_base = address_range.first & ~0xfff;
const u32 lock_limit = align(range_data.max_range + address_range.first, 4096);
if (address < lock_base || address >= lock_limit)
continue;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
if (tex.overlaps(address))
return std::make_tuple(true, tex.is_synchronized());
}
}
return std::make_tuple(false, false);
}
bool flush_address(u32 address, vk::render_device& dev, vk::command_buffer& cmd, vk::memory_type_mapping& memory_types, VkQueue submit_queue)
{
if (address < no_access_range.first ||
address > no_access_range.second)
return false;
bool response = false;
std::pair<u32, u32> trampled_range = std::make_pair(0xffffffff, 0x0);
std::unordered_map<u32, bool> processed_ranges;
rsx::conditional_lock<shared_mutex> lock(in_access_violation_handler, m_cache_mutex);
for (auto It = m_cache.begin(); It != m_cache.end(); It++)
{
auto &range_data = It->second;
const u32 base = It->first;
bool range_reset = false;
if (processed_ranges[base] || range_data.valid_count == 0)
continue;
//Quickly discard range
const u32 lock_base = base & ~0xfff;
const u32 lock_limit = align(range_data.max_range + base, 4096);
if ((trampled_range.first >= lock_limit || lock_base >= trampled_range.second) &&
(lock_base > address || lock_limit <= address))
{
processed_ranges[base] = true;
continue;
}
for (int i = 0; i < range_data.data.size(); i++)
{
auto &tex = range_data.data[i];
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
auto overlapped = tex.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
i = 0;
trampled_range = new_range;
range_reset = true;
}
//TODO: Map basic host_visible memory without coherent constraint
if (!tex.flush(dev, cmd, memory_types.host_visible_coherent, submit_queue))
{
//Missed address, note this
//TODO: Lower severity when successful to keep the cache from overworking
record_cache_miss(tex);
}
response = true;
}
}
if (range_reset)
{
processed_ranges.clear();
It = m_cache.begin();
}
processed_ranges[base] = true;
}
return response;
}
bool invalidate_address(u32 address)
{
return invalidate_range(address, 4096 - (address & 4095));
}
bool invalidate_range(u32 address, u32 range, bool unprotect=true)
{
std::pair<u32, u32> trampled_range = std::make_pair(address, address + range);
if (trampled_range.second < read_only_range.first ||
trampled_range.first > read_only_range.second)
{
//Doesnt fall in the read_only textures range; check render targets
if (trampled_range.second < no_access_range.first ||
trampled_range.first > no_access_range.second)
return false;
}
bool response = false;
std::unordered_map<u32, bool> processed_ranges;
rsx::conditional_lock<shared_mutex> lock(in_access_violation_handler, m_cache_mutex);
for (auto It = m_cache.begin(); It != m_cache.end(); It++)
{
auto &range_data = It->second;
const u32 base = It->first;
bool range_reset = false;
if (processed_ranges[base] || range_data.valid_count == 0)
continue;
//Quickly discard range
const u32 lock_base = base & ~0xfff;
const u32 lock_limit = align(range_data.max_range + base, 4096);
if (trampled_range.first >= lock_limit || lock_base >= trampled_range.second)
{
processed_ranges[base] = true;
continue;
}
for (int i = 0; i < range_data.data.size(); i++)
{
auto &tex = range_data.data[i];
if (tex.is_dirty()) continue;
if (!tex.is_locked()) continue; //flushable sections can be 'clean' but unlocked. TODO: Handle this better
auto overlapped = tex.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
i = 0;
trampled_range = new_range;
range_reset = true;
}
if (unprotect)
{
tex.set_dirty(true);
tex.unprotect();
}
else
{
tex.discard();
}
range_data.valid_count--;
response = true;
}
}
if (range_reset)
{
processed_ranges.clear();
It = m_cache.begin();
}
processed_ranges[base] = true;
}
return response;
}
void flush(bool purge_dirty=false)
{
if (purge_dirty)
{
//Reclaims all graphics memory consumed by dirty textures
for (auto &address_range : m_cache)
{
auto &range_data = address_range.second;
for (auto &tex : range_data.data)
{
if (!tex.is_dirty())
continue;
if (tex.exists())
{
m_dirty_textures.push_back(std::move(tex.get_texture()));
m_temporary_image_view.push_back(std::move(tex.get_view()));
}
tex.release_dma_resources();
}
}
}
m_image_views_to_purge.clear();
m_images_to_purge.clear();
m_image_views_to_purge = std::move(m_temporary_image_view);
m_images_to_purge = std::move(m_dirty_textures);
}
void record_cache_miss(cached_texture_section &tex)
{
const u32 memory_address = tex.get_section_base();
const u32 memory_size = tex.get_section_size();
const VkFormat fmt = tex.get_format();
auto It = m_cache_miss_statistics_table.find(memory_address);
if (It == m_cache_miss_statistics_table.end())
{
m_cache_miss_statistics_table[memory_address] = { 1, memory_size, fmt };
return;
}
auto &value = It->second;
if (value.format != fmt || value.block_size != memory_size)
{
m_cache_miss_statistics_table[memory_address] = { 1, memory_size, fmt };
return;
}
value.misses++;
}
void flush_if_cache_miss_likely(const VkFormat fmt, const u32 memory_address, const u32 memory_size, vk::command_buffer& cmd, vk::memory_type_mapping& memory_types, VkQueue submit_queue)
{
auto It = m_cache_miss_statistics_table.find(memory_address);
if (It == m_cache_miss_statistics_table.end())
{
m_cache_miss_statistics_table[memory_address] = { 0, memory_size, fmt };
return;
}
auto &value = It->second;
if (value.format != fmt || value.block_size != memory_size)
{
//Reset since the data has changed
//TODO: Keep track of all this information together
m_cache_miss_statistics_table[memory_address] = { 0, memory_size, fmt };
return;
}
//Properly synchronized - no miss
if (!value.misses) return;
//Auto flush if this address keeps missing (not properly synchronized)
if (value.misses > 16)
{
//TODO: Determine better way of setting threshold
if (!flush_memory_to_cache(memory_address, memory_size, cmd, memory_types, submit_queue, true))
value.misses --;
}
}
};
}