rpcsx/rpcs3/Crypto/aesni.cpp

687 lines
24 KiB
C++
Raw Permalink Normal View History

#if defined(__SSE2__) || defined(_M_X64)
/*
* AES-NI support functions
*
* Copyright (C) 2013, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
* [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/
*/
#include "aesni.h"
#if defined(_MSC_VER) && defined(_M_X64)
#define POLARSSL_HAVE_MSVC_X64_INTRINSICS
#include <intrin.h>
#endif
/*
* AES-NI support detection routine
*/
int aesni_supports(unsigned int what)
{
static int done = 0;
static unsigned int c = 0;
if (!done)
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
int regs[4]; // eax, ebx, ecx, edx
__cpuid(regs, 1);
c = regs[2];
#else
asm("movl $1, %%eax \n"
"cpuid \n"
: "=c"(c)
:
: "eax", "ebx", "edx");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
done = 1;
}
return ((c & what) != 0);
}
/*
* AES-NI AES-ECB block en(de)cryption
*/
int aesni_crypt_ecb(aes_context* ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
__m128i *rk, a;
int i;
rk = (__m128i*)ctx->rk;
a = _mm_xor_si128(_mm_loadu_si128((__m128i*)input), _mm_loadu_si128(rk++));
if (mode == AES_ENCRYPT)
{
for (i = ctx->nr - 1; i; --i)
a = _mm_aesenc_si128(a, _mm_loadu_si128(rk++));
a = _mm_aesenclast_si128(a, _mm_loadu_si128(rk));
}
else
{
for (i = ctx->nr - 1; i; --i)
a = _mm_aesdec_si128(a, _mm_loadu_si128(rk++));
a = _mm_aesdeclast_si128(a, _mm_loadu_si128(rk));
}
_mm_storeu_si128((__m128i*)output, a);
#else
asm("movdqu (%3), %%xmm0 \n" // load input
"movdqu (%1), %%xmm1 \n" // load round key 0
"pxor %%xmm1, %%xmm0 \n" // round 0
"addq $16, %1 \n" // point to next round key
"subl $1, %0 \n" // normal rounds = nr - 1
"test %2, %2 \n" // mode?
"jz 2f \n" // 0 = decrypt
"1: \n" // encryption loop
"movdqu (%1), %%xmm1 \n" // load round key
"aesenc %%xmm1, %%xmm0 \n" // do round
"addq $16, %1 \n" // point to next round key
"subl $1, %0 \n" // loop
"jnz 1b \n"
"movdqu (%1), %%xmm1 \n" // load round key
"aesenclast %%xmm1, %%xmm0 \n" // last round
"jmp 3f \n"
"2: \n" // decryption loop
"movdqu (%1), %%xmm1 \n"
"aesdec %%xmm1, %%xmm0 \n"
"addq $16, %1 \n"
"subl $1, %0 \n"
"jnz 2b \n"
"movdqu (%1), %%xmm1 \n" // load round key
"aesdeclast %%xmm1, %%xmm0 \n" // last round
"3: \n"
"movdqu %%xmm0, (%4) \n" // export output
:
: "r"(ctx->nr), "r"(ctx->rk), "r"(mode), "r"(input), "r"(output)
: "memory", "cc", "xmm0", "xmm1");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
return (0);
}
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
static inline void clmul256(__m128i a, __m128i b, __m128i* r0, __m128i* r1)
{
__m128i c, d, e, f, ef;
c = _mm_clmulepi64_si128(a, b, 0x00);
d = _mm_clmulepi64_si128(a, b, 0x11);
e = _mm_clmulepi64_si128(a, b, 0x10);
f = _mm_clmulepi64_si128(a, b, 0x01);
// r0 = f0^e0^c1:c0 = c1:c0 ^ f0^e0:0
// r1 = d1:f1^e1^d0 = d1:d0 ^ 0:f1^e1
ef = _mm_xor_si128(e, f);
*r0 = _mm_xor_si128(c, _mm_slli_si128(ef, 8));
*r1 = _mm_xor_si128(d, _mm_srli_si128(ef, 8));
}
static inline void sll256(__m128i a0, __m128i a1, __m128i* s0, __m128i* s1)
{
__m128i l0, l1, r0, r1;
l0 = _mm_slli_epi64(a0, 1);
l1 = _mm_slli_epi64(a1, 1);
r0 = _mm_srli_epi64(a0, 63);
r1 = _mm_srli_epi64(a1, 63);
*s0 = _mm_or_si128(l0, _mm_slli_si128(r0, 8));
*s1 = _mm_or_si128(_mm_or_si128(l1, _mm_srli_si128(r0, 8)), _mm_slli_si128(r1, 8));
}
static inline __m128i reducemod128(__m128i x10, __m128i x32)
{
__m128i a, b, c, dx0, e, f, g, h;
// (1) left shift x0 by 63, 62 and 57
a = _mm_slli_epi64(x10, 63);
b = _mm_slli_epi64(x10, 62);
c = _mm_slli_epi64(x10, 57);
// (2) compute D xor'ing a, b, c and x1
// d:x0 = x1:x0 ^ [a^b^c:0]
dx0 = _mm_xor_si128(x10, _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(a, b), c), 8));
// (3) right shift [d:x0] by 1, 2, 7
e = _mm_or_si128(_mm_srli_epi64(dx0, 1), _mm_srli_si128(_mm_slli_epi64(dx0, 63), 8));
f = _mm_or_si128(_mm_srli_epi64(dx0, 2), _mm_srli_si128(_mm_slli_epi64(dx0, 62), 8));
g = _mm_or_si128(_mm_srli_epi64(dx0, 7), _mm_srli_si128(_mm_slli_epi64(dx0, 57), 8));
// (4) compute h = d^e1^f1^g1 : x0^e0^f0^g0
h = _mm_xor_si128(dx0, _mm_xor_si128(e, _mm_xor_si128(f, g)));
// result is x3^h1:x2^h0
return _mm_xor_si128(x32, h);
}
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
void aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
__m128i xa, xb, m0, m1, x10, x32, r;
xa.m128i_u64[1] = _byteswap_uint64(*((unsigned __int64*)a + 0));
xa.m128i_u64[0] = _byteswap_uint64(*((unsigned __int64*)a + 1));
xb.m128i_u64[1] = _byteswap_uint64(*((unsigned __int64*)b + 0));
xb.m128i_u64[0] = _byteswap_uint64(*((unsigned __int64*)b + 1));
clmul256(xa, xb, &m0, &m1);
sll256(m0, m1, &x10, &x32);
r = reducemod128(x10, x32);
*((unsigned __int64*)c + 0) = _byteswap_uint64(r.m128i_u64[1]);
*((unsigned __int64*)c + 1) = _byteswap_uint64(r.m128i_u64[0]);
#else
unsigned char aa[16], bb[16], cc[16];
size_t i;
/* The inputs are in big-endian order, so byte-reverse them */
for (i = 0; i < 16; i++)
{
aa[i] = a[15 - i];
bb[i] = b[15 - i];
}
asm("movdqu (%0), %%xmm0 \n" // a1:a0
"movdqu (%1), %%xmm1 \n" // b1:b0
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 13).
*/
"movdqa %%xmm1, %%xmm2 \n" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n" // same
"movdqa %%xmm1, %%xmm4 \n" // same
"pclmulqdq $0x00, %%xmm0, %%xmm1 \n" // a0*b0 = c1:c0
"pclmulqdq $0x11, %%xmm0, %%xmm2 \n" // a1*b1 = d1:d0
"pclmulqdq $0x10, %%xmm0, %%xmm3 \n" // a0*b1 = e1:e0
"pclmulqdq $0x01, %%xmm0, %%xmm4 \n" // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n" // same
"psrldq $8, %%xmm4 \n" // 0:e1+f1
"pslldq $8, %%xmm3 \n" // e0+f0:0
"pxor %%xmm4, %%xmm2 \n" // d1:d0+e1+f1
"pxor %%xmm3, %%xmm1 \n" // c1+e0+f1:c0
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 20)
*/
"movdqa %%xmm1, %%xmm3 \n" // r1:r0
"movdqa %%xmm2, %%xmm4 \n" // r3:r2
"psllq $1, %%xmm1 \n" // r1<<1:r0<<1
"psllq $1, %%xmm2 \n" // r3<<1:r2<<1
"psrlq $63, %%xmm3 \n" // r1>>63:r0>>63
"psrlq $63, %%xmm4 \n" // r3>>63:r2>>63
"movdqa %%xmm3, %%xmm5 \n" // r1>>63:r0>>63
"pslldq $8, %%xmm3 \n" // r0>>63:0
"pslldq $8, %%xmm4 \n" // r2>>63:0
"psrldq $8, %%xmm5 \n" // 0:r1>>63
"por %%xmm3, %%xmm1 \n" // r1<<1|r0>>63:r0<<1
"por %%xmm4, %%xmm2 \n" // r3<<1|r2>>62:r2<<1
"por %%xmm5, %%xmm2 \n" // r3<<1|r2>>62:r2<<1|r1>>63
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 20).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
"movdqa %%xmm1, %%xmm3 \n" // x1:x0
"movdqa %%xmm1, %%xmm4 \n" // same
"movdqa %%xmm1, %%xmm5 \n" // same
"psllq $63, %%xmm3 \n" // x1<<63:x0<<63 = stuff:a
"psllq $62, %%xmm4 \n" // x1<<62:x0<<62 = stuff:b
"psllq $57, %%xmm5 \n" // x1<<57:x0<<57 = stuff:c
/* Step 2 (2) */
"pxor %%xmm4, %%xmm3 \n" // stuff:a+b
"pxor %%xmm5, %%xmm3 \n" // stuff:a+b+c
"pslldq $8, %%xmm3 \n" // a+b+c:0
"pxor %%xmm3, %%xmm1 \n" // x1+a+b+c:x0 = d:x0
/* Steps 3 and 4 */
"movdqa %%xmm1,%%xmm0 \n" // d:x0
"movdqa %%xmm1,%%xmm4 \n" // same
"movdqa %%xmm1,%%xmm5 \n" // same
"psrlq $1, %%xmm0 \n" // e1:x0>>1 = e1:e0'
"psrlq $2, %%xmm4 \n" // f1:x0>>2 = f1:f0'
"psrlq $7, %%xmm5 \n" // g1:x0>>7 = g1:g0'
"pxor %%xmm4, %%xmm0 \n" // e1+f1:e0'+f0'
"pxor %%xmm5, %%xmm0 \n" // e1+f1+g1:e0'+f0'+g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
"movdqa %%xmm1,%%xmm3 \n" // d:x0
"movdqa %%xmm1,%%xmm4 \n" // same
"movdqa %%xmm1,%%xmm5 \n" // same
"psllq $63, %%xmm3 \n" // d<<63:stuff
"psllq $62, %%xmm4 \n" // d<<62:stuff
"psllq $57, %%xmm5 \n" // d<<57:stuff
"pxor %%xmm4, %%xmm3 \n" // d<<63+d<<62:stuff
"pxor %%xmm5, %%xmm3 \n" // missing bits of d:stuff
"psrldq $8, %%xmm3 \n" // 0:missing bits of d
"pxor %%xmm3, %%xmm0 \n" // e1+f1+g1:e0+f0+g0
"pxor %%xmm1, %%xmm0 \n" // h1:h0
"pxor %%xmm2, %%xmm0 \n" // x3+h1:x2+h0
"movdqu %%xmm0, (%2) \n" // done
:
: "r"(aa), "r"(bb), "r"(cc)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
/* Now byte-reverse the outputs */
for (i = 0; i < 16; i++)
c[i] = cc[15 - i];
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
void aesni_inverse_key(unsigned char* invkey,
const unsigned char* fwdkey, int nr)
{
unsigned char* ik = invkey;
const unsigned char* fk = fwdkey + 16 * nr;
memcpy(ik, fk, 16);
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16)
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
_mm_storeu_si128((__m128i*)ik, _mm_aesimc_si128(_mm_loadu_si128((__m128i*)fk)));
#else
asm("movdqu (%0), %%xmm0 \n"
"aesimc %%xmm0, %%xmm0 \n"
"movdqu %%xmm0, (%1) \n"
:
: "r"(fk), "r"(ik)
: "memory", "xmm0");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
memcpy(ik, fk, 16);
}
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
inline static __m128i aes_key_128_assist(__m128i key, __m128i kg)
{
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
kg = _mm_shuffle_epi32(kg, _MM_SHUFFLE(3, 3, 3, 3));
return _mm_xor_si128(key, kg);
}
// [AES-WP] Part of Fig. 25 page 32
inline static void aes_key_192_assist(__m128i* temp1, __m128i* temp3, __m128i kg)
{
__m128i temp4;
kg = _mm_shuffle_epi32(kg, 0x55);
temp4 = _mm_slli_si128(*temp1, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
*temp1 = _mm_xor_si128(*temp1, kg);
kg = _mm_shuffle_epi32(*temp1, 0xff);
temp4 = _mm_slli_si128(*temp3, 0x4);
*temp3 = _mm_xor_si128(*temp3, temp4);
*temp3 = _mm_xor_si128(*temp3, kg);
}
// [AES-WP] Part of Fig. 26 page 34
inline static void aes_key_256_assist_1(__m128i* temp1, __m128i kg)
{
__m128i temp4;
kg = _mm_shuffle_epi32(kg, 0xff);
temp4 = _mm_slli_si128(*temp1, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp1 = _mm_xor_si128(*temp1, temp4);
*temp1 = _mm_xor_si128(*temp1, kg);
}
inline static void aes_key_256_assist_2(__m128i* temp1, __m128i* temp3)
{
__m128i temp2, temp4;
temp4 = _mm_aeskeygenassist_si128(*temp1, 0x0);
temp2 = _mm_shuffle_epi32(temp4, 0xaa);
temp4 = _mm_slli_si128(*temp3, 0x4);
*temp3 = _mm_xor_si128(*temp3, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp3 = _mm_xor_si128(*temp3, temp4);
temp4 = _mm_slli_si128(temp4, 0x4);
*temp3 = _mm_xor_si128(*temp3, temp4);
*temp3 = _mm_xor_si128(*temp3, temp2);
}
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
/*
* Key expansion, 128-bit case
*/
static void aesni_setkey_enc_128(unsigned char* rk,
const unsigned char* key)
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
__m128i *xrk, k;
xrk = (__m128i*)rk;
#define EXPAND_ROUND(k, rcon) \
_mm_storeu_si128(xrk++, k); \
k = aes_key_128_assist(k, _mm_aeskeygenassist_si128(k, rcon))
k = _mm_loadu_si128((__m128i*)key);
EXPAND_ROUND(k, 0x01);
EXPAND_ROUND(k, 0x02);
EXPAND_ROUND(k, 0x04);
EXPAND_ROUND(k, 0x08);
EXPAND_ROUND(k, 0x10);
EXPAND_ROUND(k, 0x20);
EXPAND_ROUND(k, 0x40);
EXPAND_ROUND(k, 0x80);
EXPAND_ROUND(k, 0x1b);
EXPAND_ROUND(k, 0x36);
_mm_storeu_si128(xrk, k);
#undef EXPAND_ROUND
#else
asm("movdqu (%1), %%xmm0 \n" // copy the original key
"movdqu %%xmm0, (%0) \n" // as round key 0
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n"
"pshufd $0xff, %%xmm1, %%xmm1 \n" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n" // etc
"pxor %%xmm0, %%xmm1 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n" // update xmm0 for next time!
"add $16, %0 \n" // point to next round key
"movdqu %%xmm0, (%0) \n" // write it
"ret \n"
/* Main "loop" */
"2: \n"
"aeskeygenassist $0x01, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x80, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x1B, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x36, %%xmm0, %%xmm1 \ncall 1b \n"
:
: "r"(rk), "r"(key)
: "memory", "cc", "0");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
}
/*
* Key expansion, 192-bit case
*/
static void aesni_setkey_enc_192(unsigned char* rk,
const unsigned char* key)
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
__m128i temp1, temp3;
__m128i* key_schedule = (__m128i*)rk;
temp1 = _mm_loadu_si128((__m128i*)key);
temp3 = _mm_loadu_si128((__m128i*)(key + 16));
key_schedule[0] = temp1;
key_schedule[1] = temp3;
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x1));
key_schedule[1] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[1]), _mm_castsi128_pd(temp1), 0));
key_schedule[2] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1));
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x2));
key_schedule[3] = temp1;
key_schedule[4] = temp3;
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x4));
key_schedule[4] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[4]), _mm_castsi128_pd(temp1), 0));
key_schedule[5] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1));
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x8));
key_schedule[6] = temp1;
key_schedule[7] = temp3;
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x10));
key_schedule[7] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[7]), _mm_castsi128_pd(temp1), 0));
key_schedule[8] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1));
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x20));
key_schedule[9] = temp1;
key_schedule[10] = temp3;
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x40));
key_schedule[10] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[10]), _mm_castsi128_pd(temp1), 0));
key_schedule[11] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1));
aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x80));
key_schedule[12] = temp1;
#else
asm("movdqu (%1), %%xmm0 \n" // copy original round key
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"movq 16(%1), %%xmm1 \n"
"movq %%xmm1, (%0) \n"
"add $8, %0 \n"
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n"
"pshufd $0x55, %%xmm2, %%xmm2 \n" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n" // etc
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm2, %%xmm0 \n" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"pshufd $0xff, %%xmm0, %%xmm2 \n" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n" // update xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n"
"add $8, %0 \n"
"ret \n"
"2: \n"
"aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x80, %%xmm1, %%xmm2 \ncall 1b \n"
:
: "r"(rk), "r"(key)
: "memory", "cc", "0");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
}
/*
* Key expansion, 256-bit case
*/
static void aesni_setkey_enc_256(unsigned char* rk,
const unsigned char* key)
{
#if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS)
__m128i temp1, temp3;
__m128i* key_schedule = (__m128i*)rk;
temp1 = _mm_loadu_si128((__m128i*)key);
temp3 = _mm_loadu_si128((__m128i*)(key + 16));
key_schedule[0] = temp1;
key_schedule[1] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x01));
key_schedule[2] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[3] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x02));
key_schedule[4] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[5] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x04));
key_schedule[6] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[7] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x08));
key_schedule[8] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[9] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x10));
key_schedule[10] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[11] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x20));
key_schedule[12] = temp1;
aes_key_256_assist_2(&temp1, &temp3);
key_schedule[13] = temp3;
aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x40));
key_schedule[14] = temp1;
#else
asm("movdqu (%1), %%xmm0 \n"
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"movdqu 16(%1), %%xmm1 \n"
"movdqu %%xmm1, (%0) \n"
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n"
"pshufd $0xff, %%xmm2, %%xmm2 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm2, %%xmm0 \n"
"add $16, %0 \n"
"movdqu %%xmm0, (%0) \n"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
"aeskeygenassist $0, %%xmm0, %%xmm2\n"
"pshufd $0xaa, %%xmm2, %%xmm2 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm2, %%xmm1 \n"
"add $16, %0 \n"
"movdqu %%xmm1, (%0) \n"
"ret \n"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of aes_context.buf
*/
"2: \n"
"aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n"
:
: "r"(rk), "r"(key)
: "memory", "cc", "0");
#endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */
}
/*
* Key expansion, wrapper
*/
int aesni_setkey_enc(unsigned char* rk,
const unsigned char* key,
size_t bits)
{
switch (bits)
{
case 128: aesni_setkey_enc_128(rk, key); break;
case 192: aesni_setkey_enc_192(rk, key); break;
case 256: aesni_setkey_enc_256(rk, key); break;
default: return (POLARSSL_ERR_AES_INVALID_KEY_LENGTH);
}
return (0);
}
#endif