#if defined(__SSE2__) || defined(_M_X64) /* * AES-NI support functions * * Copyright (C) 2013, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set * [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/ */ #include "aesni.h" #if defined(_MSC_VER) && defined(_M_X64) #define POLARSSL_HAVE_MSVC_X64_INTRINSICS #include #endif /* * AES-NI support detection routine */ int aesni_supports(unsigned int what) { static int done = 0; static unsigned int c = 0; if (!done) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) int regs[4]; // eax, ebx, ecx, edx __cpuid(regs, 1); c = regs[2]; #else asm("movl $1, %%eax \n" "cpuid \n" : "=c"(c) : : "eax", "ebx", "edx"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ done = 1; } return ((c & what) != 0); } /* * AES-NI AES-ECB block en(de)cryption */ int aesni_crypt_ecb(aes_context* ctx, int mode, const unsigned char input[16], unsigned char output[16]) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) __m128i *rk, a; int i; rk = (__m128i*)ctx->rk; a = _mm_xor_si128(_mm_loadu_si128((__m128i*)input), _mm_loadu_si128(rk++)); if (mode == AES_ENCRYPT) { for (i = ctx->nr - 1; i; --i) a = _mm_aesenc_si128(a, _mm_loadu_si128(rk++)); a = _mm_aesenclast_si128(a, _mm_loadu_si128(rk)); } else { for (i = ctx->nr - 1; i; --i) a = _mm_aesdec_si128(a, _mm_loadu_si128(rk++)); a = _mm_aesdeclast_si128(a, _mm_loadu_si128(rk)); } _mm_storeu_si128((__m128i*)output, a); #else asm("movdqu (%3), %%xmm0 \n" // load input "movdqu (%1), %%xmm1 \n" // load round key 0 "pxor %%xmm1, %%xmm0 \n" // round 0 "addq $16, %1 \n" // point to next round key "subl $1, %0 \n" // normal rounds = nr - 1 "test %2, %2 \n" // mode? "jz 2f \n" // 0 = decrypt "1: \n" // encryption loop "movdqu (%1), %%xmm1 \n" // load round key "aesenc %%xmm1, %%xmm0 \n" // do round "addq $16, %1 \n" // point to next round key "subl $1, %0 \n" // loop "jnz 1b \n" "movdqu (%1), %%xmm1 \n" // load round key "aesenclast %%xmm1, %%xmm0 \n" // last round "jmp 3f \n" "2: \n" // decryption loop "movdqu (%1), %%xmm1 \n" "aesdec %%xmm1, %%xmm0 \n" "addq $16, %1 \n" "subl $1, %0 \n" "jnz 2b \n" "movdqu (%1), %%xmm1 \n" // load round key "aesdeclast %%xmm1, %%xmm0 \n" // last round "3: \n" "movdqu %%xmm0, (%4) \n" // export output : : "r"(ctx->nr), "r"(ctx->rk), "r"(mode), "r"(input), "r"(output) : "memory", "cc", "xmm0", "xmm1"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ return (0); } #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) static inline void clmul256(__m128i a, __m128i b, __m128i* r0, __m128i* r1) { __m128i c, d, e, f, ef; c = _mm_clmulepi64_si128(a, b, 0x00); d = _mm_clmulepi64_si128(a, b, 0x11); e = _mm_clmulepi64_si128(a, b, 0x10); f = _mm_clmulepi64_si128(a, b, 0x01); // r0 = f0^e0^c1:c0 = c1:c0 ^ f0^e0:0 // r1 = d1:f1^e1^d0 = d1:d0 ^ 0:f1^e1 ef = _mm_xor_si128(e, f); *r0 = _mm_xor_si128(c, _mm_slli_si128(ef, 8)); *r1 = _mm_xor_si128(d, _mm_srli_si128(ef, 8)); } static inline void sll256(__m128i a0, __m128i a1, __m128i* s0, __m128i* s1) { __m128i l0, l1, r0, r1; l0 = _mm_slli_epi64(a0, 1); l1 = _mm_slli_epi64(a1, 1); r0 = _mm_srli_epi64(a0, 63); r1 = _mm_srli_epi64(a1, 63); *s0 = _mm_or_si128(l0, _mm_slli_si128(r0, 8)); *s1 = _mm_or_si128(_mm_or_si128(l1, _mm_srli_si128(r0, 8)), _mm_slli_si128(r1, 8)); } static inline __m128i reducemod128(__m128i x10, __m128i x32) { __m128i a, b, c, dx0, e, f, g, h; // (1) left shift x0 by 63, 62 and 57 a = _mm_slli_epi64(x10, 63); b = _mm_slli_epi64(x10, 62); c = _mm_slli_epi64(x10, 57); // (2) compute D xor'ing a, b, c and x1 // d:x0 = x1:x0 ^ [a^b^c:0] dx0 = _mm_xor_si128(x10, _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(a, b), c), 8)); // (3) right shift [d:x0] by 1, 2, 7 e = _mm_or_si128(_mm_srli_epi64(dx0, 1), _mm_srli_si128(_mm_slli_epi64(dx0, 63), 8)); f = _mm_or_si128(_mm_srli_epi64(dx0, 2), _mm_srli_si128(_mm_slli_epi64(dx0, 62), 8)); g = _mm_or_si128(_mm_srli_epi64(dx0, 7), _mm_srli_si128(_mm_slli_epi64(dx0, 57), 8)); // (4) compute h = d^e1^f1^g1 : x0^e0^f0^g0 h = _mm_xor_si128(dx0, _mm_xor_si128(e, _mm_xor_si128(f, g))); // result is x3^h1:x2^h0 return _mm_xor_si128(x32, h); } #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ /* * GCM multiplication: c = a times b in GF(2^128) * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. */ void aesni_gcm_mult(unsigned char c[16], const unsigned char a[16], const unsigned char b[16]) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) __m128i xa, xb, m0, m1, x10, x32, r; xa.m128i_u64[1] = _byteswap_uint64(*((unsigned __int64*)a + 0)); xa.m128i_u64[0] = _byteswap_uint64(*((unsigned __int64*)a + 1)); xb.m128i_u64[1] = _byteswap_uint64(*((unsigned __int64*)b + 0)); xb.m128i_u64[0] = _byteswap_uint64(*((unsigned __int64*)b + 1)); clmul256(xa, xb, &m0, &m1); sll256(m0, m1, &x10, &x32); r = reducemod128(x10, x32); *((unsigned __int64*)c + 0) = _byteswap_uint64(r.m128i_u64[1]); *((unsigned __int64*)c + 1) = _byteswap_uint64(r.m128i_u64[0]); #else unsigned char aa[16], bb[16], cc[16]; size_t i; /* The inputs are in big-endian order, so byte-reverse them */ for (i = 0; i < 16; i++) { aa[i] = a[15 - i]; bb[i] = b[15 - i]; } asm("movdqu (%0), %%xmm0 \n" // a1:a0 "movdqu (%1), %%xmm1 \n" // b1:b0 /* * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 * using [CLMUL-WP] algorithm 1 (p. 13). */ "movdqa %%xmm1, %%xmm2 \n" // copy of b1:b0 "movdqa %%xmm1, %%xmm3 \n" // same "movdqa %%xmm1, %%xmm4 \n" // same "pclmulqdq $0x00, %%xmm0, %%xmm1 \n" // a0*b0 = c1:c0 "pclmulqdq $0x11, %%xmm0, %%xmm2 \n" // a1*b1 = d1:d0 "pclmulqdq $0x10, %%xmm0, %%xmm3 \n" // a0*b1 = e1:e0 "pclmulqdq $0x01, %%xmm0, %%xmm4 \n" // a1*b0 = f1:f0 "pxor %%xmm3, %%xmm4 \n" // e1+f1:e0+f0 "movdqa %%xmm4, %%xmm3 \n" // same "psrldq $8, %%xmm4 \n" // 0:e1+f1 "pslldq $8, %%xmm3 \n" // e0+f0:0 "pxor %%xmm4, %%xmm2 \n" // d1:d0+e1+f1 "pxor %%xmm3, %%xmm1 \n" // c1+e0+f1:c0 /* * Now shift the result one bit to the left, * taking advantage of [CLMUL-WP] eq 27 (p. 20) */ "movdqa %%xmm1, %%xmm3 \n" // r1:r0 "movdqa %%xmm2, %%xmm4 \n" // r3:r2 "psllq $1, %%xmm1 \n" // r1<<1:r0<<1 "psllq $1, %%xmm2 \n" // r3<<1:r2<<1 "psrlq $63, %%xmm3 \n" // r1>>63:r0>>63 "psrlq $63, %%xmm4 \n" // r3>>63:r2>>63 "movdqa %%xmm3, %%xmm5 \n" // r1>>63:r0>>63 "pslldq $8, %%xmm3 \n" // r0>>63:0 "pslldq $8, %%xmm4 \n" // r2>>63:0 "psrldq $8, %%xmm5 \n" // 0:r1>>63 "por %%xmm3, %%xmm1 \n" // r1<<1|r0>>63:r0<<1 "por %%xmm4, %%xmm2 \n" // r3<<1|r2>>62:r2<<1 "por %%xmm5, %%xmm2 \n" // r3<<1|r2>>62:r2<<1|r1>>63 /* * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 * using [CLMUL-WP] algorithm 5 (p. 20). * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). */ /* Step 2 (1) */ "movdqa %%xmm1, %%xmm3 \n" // x1:x0 "movdqa %%xmm1, %%xmm4 \n" // same "movdqa %%xmm1, %%xmm5 \n" // same "psllq $63, %%xmm3 \n" // x1<<63:x0<<63 = stuff:a "psllq $62, %%xmm4 \n" // x1<<62:x0<<62 = stuff:b "psllq $57, %%xmm5 \n" // x1<<57:x0<<57 = stuff:c /* Step 2 (2) */ "pxor %%xmm4, %%xmm3 \n" // stuff:a+b "pxor %%xmm5, %%xmm3 \n" // stuff:a+b+c "pslldq $8, %%xmm3 \n" // a+b+c:0 "pxor %%xmm3, %%xmm1 \n" // x1+a+b+c:x0 = d:x0 /* Steps 3 and 4 */ "movdqa %%xmm1,%%xmm0 \n" // d:x0 "movdqa %%xmm1,%%xmm4 \n" // same "movdqa %%xmm1,%%xmm5 \n" // same "psrlq $1, %%xmm0 \n" // e1:x0>>1 = e1:e0' "psrlq $2, %%xmm4 \n" // f1:x0>>2 = f1:f0' "psrlq $7, %%xmm5 \n" // g1:x0>>7 = g1:g0' "pxor %%xmm4, %%xmm0 \n" // e1+f1:e0'+f0' "pxor %%xmm5, %%xmm0 \n" // e1+f1+g1:e0'+f0'+g0' // e0'+f0'+g0' is almost e0+f0+g0, except for some missing // bits carried from d. Now get those bits back in. "movdqa %%xmm1,%%xmm3 \n" // d:x0 "movdqa %%xmm1,%%xmm4 \n" // same "movdqa %%xmm1,%%xmm5 \n" // same "psllq $63, %%xmm3 \n" // d<<63:stuff "psllq $62, %%xmm4 \n" // d<<62:stuff "psllq $57, %%xmm5 \n" // d<<57:stuff "pxor %%xmm4, %%xmm3 \n" // d<<63+d<<62:stuff "pxor %%xmm5, %%xmm3 \n" // missing bits of d:stuff "psrldq $8, %%xmm3 \n" // 0:missing bits of d "pxor %%xmm3, %%xmm0 \n" // e1+f1+g1:e0+f0+g0 "pxor %%xmm1, %%xmm0 \n" // h1:h0 "pxor %%xmm2, %%xmm0 \n" // x3+h1:x2+h0 "movdqu %%xmm0, (%2) \n" // done : : "r"(aa), "r"(bb), "r"(cc) : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"); /* Now byte-reverse the outputs */ for (i = 0; i < 16; i++) c[i] = cc[15 - i]; #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ return; } /* * Compute decryption round keys from encryption round keys */ void aesni_inverse_key(unsigned char* invkey, const unsigned char* fwdkey, int nr) { unsigned char* ik = invkey; const unsigned char* fk = fwdkey + 16 * nr; memcpy(ik, fk, 16); for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) _mm_storeu_si128((__m128i*)ik, _mm_aesimc_si128(_mm_loadu_si128((__m128i*)fk))); #else asm("movdqu (%0), %%xmm0 \n" "aesimc %%xmm0, %%xmm0 \n" "movdqu %%xmm0, (%1) \n" : : "r"(fk), "r"(ik) : "memory", "xmm0"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ memcpy(ik, fk, 16); } #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) inline static __m128i aes_key_128_assist(__m128i key, __m128i kg) { key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); kg = _mm_shuffle_epi32(kg, _MM_SHUFFLE(3, 3, 3, 3)); return _mm_xor_si128(key, kg); } // [AES-WP] Part of Fig. 25 page 32 inline static void aes_key_192_assist(__m128i* temp1, __m128i* temp3, __m128i kg) { __m128i temp4; kg = _mm_shuffle_epi32(kg, 0x55); temp4 = _mm_slli_si128(*temp1, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); *temp1 = _mm_xor_si128(*temp1, kg); kg = _mm_shuffle_epi32(*temp1, 0xff); temp4 = _mm_slli_si128(*temp3, 0x4); *temp3 = _mm_xor_si128(*temp3, temp4); *temp3 = _mm_xor_si128(*temp3, kg); } // [AES-WP] Part of Fig. 26 page 34 inline static void aes_key_256_assist_1(__m128i* temp1, __m128i kg) { __m128i temp4; kg = _mm_shuffle_epi32(kg, 0xff); temp4 = _mm_slli_si128(*temp1, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp1 = _mm_xor_si128(*temp1, temp4); *temp1 = _mm_xor_si128(*temp1, kg); } inline static void aes_key_256_assist_2(__m128i* temp1, __m128i* temp3) { __m128i temp2, temp4; temp4 = _mm_aeskeygenassist_si128(*temp1, 0x0); temp2 = _mm_shuffle_epi32(temp4, 0xaa); temp4 = _mm_slli_si128(*temp3, 0x4); *temp3 = _mm_xor_si128(*temp3, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp3 = _mm_xor_si128(*temp3, temp4); temp4 = _mm_slli_si128(temp4, 0x4); *temp3 = _mm_xor_si128(*temp3, temp4); *temp3 = _mm_xor_si128(*temp3, temp2); } #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ /* * Key expansion, 128-bit case */ static void aesni_setkey_enc_128(unsigned char* rk, const unsigned char* key) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) __m128i *xrk, k; xrk = (__m128i*)rk; #define EXPAND_ROUND(k, rcon) \ _mm_storeu_si128(xrk++, k); \ k = aes_key_128_assist(k, _mm_aeskeygenassist_si128(k, rcon)) k = _mm_loadu_si128((__m128i*)key); EXPAND_ROUND(k, 0x01); EXPAND_ROUND(k, 0x02); EXPAND_ROUND(k, 0x04); EXPAND_ROUND(k, 0x08); EXPAND_ROUND(k, 0x10); EXPAND_ROUND(k, 0x20); EXPAND_ROUND(k, 0x40); EXPAND_ROUND(k, 0x80); EXPAND_ROUND(k, 0x1b); EXPAND_ROUND(k, 0x36); _mm_storeu_si128(xrk, k); #undef EXPAND_ROUND #else asm("movdqu (%1), %%xmm0 \n" // copy the original key "movdqu %%xmm0, (%0) \n" // as round key 0 "jmp 2f \n" // skip auxiliary routine /* * Finish generating the next round key. * * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff * with X = rot( sub( r3 ) ) ^ RCON. * * On exit, xmm0 is r7:r6:r5:r4 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 * and those are written to the round key buffer. */ "1: \n" "pshufd $0xff, %%xmm1, %%xmm1 \n" // X:X:X:X "pxor %%xmm0, %%xmm1 \n" // X+r3:X+r2:X+r1:r4 "pslldq $4, %%xmm0 \n" // r2:r1:r0:0 "pxor %%xmm0, %%xmm1 \n" // X+r3+r2:X+r2+r1:r5:r4 "pslldq $4, %%xmm0 \n" // etc "pxor %%xmm0, %%xmm1 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm1, %%xmm0 \n" // update xmm0 for next time! "add $16, %0 \n" // point to next round key "movdqu %%xmm0, (%0) \n" // write it "ret \n" /* Main "loop" */ "2: \n" "aeskeygenassist $0x01, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x02, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x04, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x08, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x10, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x20, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x40, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x80, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x1B, %%xmm0, %%xmm1 \ncall 1b \n" "aeskeygenassist $0x36, %%xmm0, %%xmm1 \ncall 1b \n" : : "r"(rk), "r"(key) : "memory", "cc", "0"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ } /* * Key expansion, 192-bit case */ static void aesni_setkey_enc_192(unsigned char* rk, const unsigned char* key) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) __m128i temp1, temp3; __m128i* key_schedule = (__m128i*)rk; temp1 = _mm_loadu_si128((__m128i*)key); temp3 = _mm_loadu_si128((__m128i*)(key + 16)); key_schedule[0] = temp1; key_schedule[1] = temp3; aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x1)); key_schedule[1] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[1]), _mm_castsi128_pd(temp1), 0)); key_schedule[2] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1)); aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x2)); key_schedule[3] = temp1; key_schedule[4] = temp3; aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x4)); key_schedule[4] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[4]), _mm_castsi128_pd(temp1), 0)); key_schedule[5] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1)); aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x8)); key_schedule[6] = temp1; key_schedule[7] = temp3; aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x10)); key_schedule[7] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[7]), _mm_castsi128_pd(temp1), 0)); key_schedule[8] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1)); aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x20)); key_schedule[9] = temp1; key_schedule[10] = temp3; aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x40)); key_schedule[10] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(key_schedule[10]), _mm_castsi128_pd(temp1), 0)); key_schedule[11] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(temp1), _mm_castsi128_pd(temp3), 1)); aes_key_192_assist(&temp1, &temp3, _mm_aeskeygenassist_si128(temp3, 0x80)); key_schedule[12] = temp1; #else asm("movdqu (%1), %%xmm0 \n" // copy original round key "movdqu %%xmm0, (%0) \n" "add $16, %0 \n" "movq 16(%1), %%xmm1 \n" "movq %%xmm1, (%0) \n" "add $8, %0 \n" "jmp 2f \n" // skip auxiliary routine /* * Finish generating the next 6 quarter-keys. * * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. * * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 * and those are written to the round key buffer. */ "1: \n" "pshufd $0x55, %%xmm2, %%xmm2 \n" // X:X:X:X "pxor %%xmm0, %%xmm2 \n" // X+r3:X+r2:X+r1:r4 "pslldq $4, %%xmm0 \n" // etc "pxor %%xmm0, %%xmm2 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm0, %%xmm2 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm2, %%xmm0 \n" // update xmm0 = r9:r8:r7:r6 "movdqu %%xmm0, (%0) \n" "add $16, %0 \n" "pshufd $0xff, %%xmm0, %%xmm2 \n" // r9:r9:r9:r9 "pxor %%xmm1, %%xmm2 \n" // stuff:stuff:r9+r5:r10 "pslldq $4, %%xmm1 \n" // r2:r1:r0:0 "pxor %%xmm2, %%xmm1 \n" // update xmm1 = stuff:stuff:r11:r10 "movq %%xmm1, (%0) \n" "add $8, %0 \n" "ret \n" "2: \n" "aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x80, %%xmm1, %%xmm2 \ncall 1b \n" : : "r"(rk), "r"(key) : "memory", "cc", "0"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ } /* * Key expansion, 256-bit case */ static void aesni_setkey_enc_256(unsigned char* rk, const unsigned char* key) { #if defined(POLARSSL_HAVE_MSVC_X64_INTRINSICS) __m128i temp1, temp3; __m128i* key_schedule = (__m128i*)rk; temp1 = _mm_loadu_si128((__m128i*)key); temp3 = _mm_loadu_si128((__m128i*)(key + 16)); key_schedule[0] = temp1; key_schedule[1] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x01)); key_schedule[2] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[3] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x02)); key_schedule[4] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[5] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x04)); key_schedule[6] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[7] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x08)); key_schedule[8] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[9] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x10)); key_schedule[10] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[11] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x20)); key_schedule[12] = temp1; aes_key_256_assist_2(&temp1, &temp3); key_schedule[13] = temp3; aes_key_256_assist_1(&temp1, _mm_aeskeygenassist_si128(temp3, 0x40)); key_schedule[14] = temp1; #else asm("movdqu (%1), %%xmm0 \n" "movdqu %%xmm0, (%0) \n" "add $16, %0 \n" "movdqu 16(%1), %%xmm1 \n" "movdqu %%xmm1, (%0) \n" "jmp 2f \n" // skip auxiliary routine /* * Finish generating the next two round keys. * * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON * * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 * and those have been written to the output buffer. */ "1: \n" "pshufd $0xff, %%xmm2, %%xmm2 \n" "pxor %%xmm0, %%xmm2 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm0, %%xmm2 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm0, %%xmm2 \n" "pslldq $4, %%xmm0 \n" "pxor %%xmm2, %%xmm0 \n" "add $16, %0 \n" "movdqu %%xmm0, (%0) \n" /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) * and proceed to generate next round key from there */ "aeskeygenassist $0, %%xmm0, %%xmm2\n" "pshufd $0xaa, %%xmm2, %%xmm2 \n" "pxor %%xmm1, %%xmm2 \n" "pslldq $4, %%xmm1 \n" "pxor %%xmm1, %%xmm2 \n" "pslldq $4, %%xmm1 \n" "pxor %%xmm1, %%xmm2 \n" "pslldq $4, %%xmm1 \n" "pxor %%xmm2, %%xmm1 \n" "add $16, %0 \n" "movdqu %%xmm1, (%0) \n" "ret \n" /* * Main "loop" - Generating one more key than necessary, * see definition of aes_context.buf */ "2: \n" "aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n" "aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n" : : "r"(rk), "r"(key) : "memory", "cc", "0"); #endif /* POLARSSL_HAVE_MSVC_X64_INTRINSICS */ } /* * Key expansion, wrapper */ int aesni_setkey_enc(unsigned char* rk, const unsigned char* key, size_t bits) { switch (bits) { case 128: aesni_setkey_enc_128(rk, key); break; case 192: aesni_setkey_enc_192(rk, key); break; case 256: aesni_setkey_enc_256(rk, key); break; default: return (POLARSSL_ERR_AES_INVALID_KEY_LENGTH); } return (0); } #endif