oaknut/README.md

230 lines
7.8 KiB
Markdown

# Oaknut
*A C++20 assembler for AArch64 (ARMv8.0 to ARMv8.2)*
Oaknut is a header-only library that allows one to dynamically assemble code in-memory at runtime.
## Usage
Give `oaknut::CodeGenerator` a pointer to a block of memory. Call functions on it to emit code.
Simple example:
```cpp
#include <cstdio>
#include <oaknut/code_block.hpp>
#include <oaknut/oaknut.hpp>
using EmittedFunction = int (*)();
EmittedFunction EmitExample(oaknut::CodeGenerator& code, int value)
{
using namespace oaknut::util;
EmittedFunction result = code.ptr<EmittedFunction>();
code.MOV(W0, value);
code.RET();
return result;
}
int main()
{
oaknut::CodeBlock mem{4096};
oaknut::CodeGenerator code{mem.ptr()};
mem.unprotect();
EmittedFunction fn = EmitExample(code, 42);
mem.protect();
mem.invalidate_all();
std::printf("%i\n", fn()); // Output: 42
return 0;
}
```
### Emit to `std::vector`
If you wish to merely emit code into memory without executing it, or if you are developing a cross-compiler that is not running on an ARM64 device, you can use `oaknut::VectorCodeGenerator` instead.
Provide `oaknut::VectorCodeGenerator` with a reference to a `std::vector<std::uint32_t>` and it will append to that vector.
Simple example:
```cpp
#include <cstdint>
#include <cstdio>
#include <oaknut/oaknut.hpp>
#include <vector>
int main()
{
std::vector<std::uint32_t> vec;
oaknut::VectorCodeGenerator code{vec};
code.MOV(W0, 42);
code.RET();
std::printf("%08x %08x\n", vec[0], vec[1]); // Output: d2800540 d65f03c0
return 0;
}
```
## Headers
| Header | Compiles on non-ARM64 | Contents |
| ------ | --------------------- | -------- |
| `<oaknut/oaknut.hpp>` | Yes | Provides `CodeGenerator` and `VectorCodeGenerator` for code emission, as well as the `oaknut::util` namespace. |
| `<oaknut/code_block.hpp>` | No | Utility header that provides `CodeBlock`, allocates, alters permissions of, and invalidates executable memory. |
| `<oaknut/oaknut_exception.hpp>` | Yes | Provides `OaknutException` which is thrown on an error. |
| `<oaknut/feature_detection/cpu_feature.hpp>` | Yes | Utility header that provides `CpuFeatures` which can be used to describe AArch64 features. |
| `<oaknut/feature_detection/feature_detection.hpp>` | No | Utility header that provides `detect_features` and `read_id_registers` for determining available AArch64 features. |
### Instructions
Each AArch64 instruction corresponds to one emitter function. For a list of emitter functions see:
* ARMv8.0: [general instructions](include/oaknut/impl/mnemonics_generic_v8.0.inc.hpp), [FP & SIMD instructions](include/oaknut/impl/mnemonics_fpsimd_v8.0.inc.hpp)
* ARMv8.1: [general instructions](include/oaknut/impl/mnemonics_generic_v8.1.inc.hpp), [FP & SIMD instructions](include/oaknut/impl/mnemonics_fpsimd_v8.1.inc.hpp)
* ARMv8.2: [general instructions](include/oaknut/impl/mnemonics_generic_v8.2.inc.hpp), [FP & SIMD instructions](include/oaknut/impl/mnemonics_fpsimd_v8.2.inc.hpp)
### Operands
The `oaknut::util` namespace provides convenient names for operands for instructions. For example:
|Name|Class| |
|----|----|----|
|W0, W1, ..., W30|`WReg`|32-bit general purpose registers|
|X0, X1, ..., X30|`XReg`|64-bit general purpose registers|
|WZR|`WzrReg` (convertable to `WReg`)|32-bit zero register|
|XZR|`ZrReg` (convertable to `XReg`)|64-bit zero register|
|WSP|`WspReg` (convertable to `WRegSp`)|32-bit stack pointer|
|SP|`SpReg` (convertable to `XRegSp`)|64-bit stack pointer|
|B0, B1, ..., B31|`BReg`|8-bit scalar SIMD register|
|H0, H1, ..., H31|`HReg`|16-bit scalar SIMD register|
|S0, S1, ..., S31|`SReg`|32-bit scalar SIMD register|
|D0, D1, ..., D31|`DReg`|64-bit scalar SIMD register|
|Q0, Q1, ..., Q31|`QReg`|128-bit scalar SIMD register|
For vector operations, you can specify registers like so:
|Name|Class| |
|----|----|----|
|V0.B8(), ...|`VReg_8B`|8 elements each 8 bits in size|
|V0.B16(), ...|`VReg_16B`|16 elements each 8 bits in size|
|V0.H4(), ...|`VReg_4H`|4 elements each 16 bits in size|
|V0.H8(), ...|`VReg_8H`|8 elements each 16 bits in size|
|V0.S2(), ...|`VReg_2S`|2 elements each 32 bits in size|
|V0.S4(), ...|`VReg_4S`|4 elements each 32 bits in size|
|V0.D1(), ...|`VReg_1D`|1 elements each 64 bits in size|
|V0.D2(), ...|`VReg_2D`|2 elements each 64 bits in size|
And you can specify elements like so:
|Name|Class| |
|----|----|----|
|V0.B()[0]|`BElem`|0th 8-bit element of V0 register|
|V0.H()[0]|`HElem`|0th 16-bit element of V0 register|
|V0.S()[0]|`SElem`|0th 32-bit element of V0 register|
|V0.D()[0]|`DElem`|0th 64-bit element of V0 register|
Register lists are specified using `List`:
```
List{V0.B16(), V1.B16(), V2.B16()} // This expression has type List<VReg_16B, 3>
```
And lists of elements similarly (both forms are equivalent):
```
List{V0.B()[1], V1.B()[1], V2.B()[1]} // This expression has type List<BElem, 3>
List{V0.B(), V1.B(), V2.B()}[1] // This expression has type List<BElem, 3>
```
You can find examples of instruction use in [tests/general.cpp](tests/general.cpp) and [tests/fpsimd.cpp](tests/fpsimd.cpp).
## Feature Detection
### CPU features
This library also includes utility headers for CPU feature detection.
One just needs to include `<oaknut/feature_detection/feature_detection.hpp>`, then call `detect_features` to get a bitset of features in a cross-platform manner.
CPU feature detection is operating system specific, and some operating systems even have multiple methods. Here are a list of supported operating systems and implemented methods:
| Operating system | Default Method |
| ---- | ---- |
| Linux / Android | [ELF hwcaps](https://www.kernel.org/doc/html/latest/arch/arm64/elf_hwcaps.html) |
| Apple | [sysctlbyname](https://developer.apple.com/documentation/kernel/1387446-sysctlbyname) |
| Windows | [IsProcessorFeaturePresent](https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-isprocessorfeaturepresent) |
| FreeBSD | ELF hwcaps |
| NetBSD | machdep.cpu%d.cpu_id sysctl |
| OpenBSD | CTL_MACHDEP.CPU_ID_* sysctl |
There are alternative methods available for advanced users to specify specific methods to detect features if they wish. (See `detect_features_via_*`.)
Simple example:
```cpp
#include <cstdio>
#include <oaknut/feature_detection/feature_detection.hpp>
int main() {
oaknut::CpuFeatures feats = oaknut::detect_features();
std::printf("CPU supports JSCVT: %i\n", feats.has(oaknut::CpuFeature::JSCVT));
}
```
### ID registers
We also provide a crossplatform way for ID registers to be read:
| **`OAKNUT_SUPPORTS_READING_ID_REGISTERS`** | Available functionality |
| ---- | ---- |
| 0 | Reading ID registers is not supported on this operating system. |
| 1 | This operating system provides a system-wide set of ID registers, use `read_id_registers()`. |
| 2 | Per-core ID registers, use `get_core_count()` and `read_id_registers(int index)`. |
All of the above operating systems with the exception of apple also support reading ID registers, and if one prefers one can do feature detection via `detect_features_via_id_registers(*read_id_registers())`.
Simple example:
```cpp
#include <cstddef>
#include <cstdio>
#include <oaknut/feature_detection/feature_detection.hpp>
int main() {
#if OAKNUT_SUPPORTS_READING_ID_REGISTERS == 1
oaknut::id::IdRegisters id = oaknut::read_id_registers();
std::printf("ISAR0 register: %08x\n", id.isar0.value);
#elif OAKNUT_SUPPORTS_READING_ID_REGISTERS == 2
oaknut::id::IdRegisters id = oaknut::read_id_registers(0);
const std::size_t core_count = oaknut::get_core_count();
for (std::size_t core_index = 0; core_index < core_count; core_index++) {
std::printf("ISAR0 register (for core %zu): %08x\n", core_index, id.isar0.value);
}
#else
std::printf("Reading ID registers not supported\n");
#endif
}
```
## License
This project is [MIT licensed](LICENSE).