added Kaiser window

This commit is contained in:
Ahmet Inan 2024-04-22 14:15:38 +02:00
parent 86b33327a4
commit 5d92cb4b29

View file

@ -0,0 +1,46 @@
/*
Kaiser window
Copyright 2024 Ahmet Inan <xdsopl@gmail.com>
*/
package xdsopl.robot36;
import java.util.Arrays;
public class Kaiser {
double[] summands;
Kaiser() {
// i0(x) converges for x inside -3*Pi:3*Pi in less than 35 iterations
summands = new double[35];
}
private double square(double value) {
return value * value;
}
/*
i0() implements the zero-th order modified Bessel function of the first kind:
https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1
$I_\alpha(x) = i^{-\alpha} J_\alpha(ix) = \sum_{m=0}^\infty \frac{1}{m!\, \Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2m+\alpha}$
$I_0(x) = J_0(ix) = \sum_{m=0}^\infty \frac{1}{m!\, \Gamma(m+1)}\left(\frac{x}{2}\right)^{2m} = \sum_{m=0}^\infty \left(\frac{x^m}{2^m\,m!}\right)^{2}$
We obviously can't use the factorial here, so let's get rid of it:
$= 1 + \left(\frac{x}{2 \cdot 1}\right)^2 + \left(\frac{x}{2 \cdot 1}\cdot \frac{x}{2 \cdot 2}\right)^2 + \left(\frac{x}{2 \cdot 1}\cdot \frac{x}{2 \cdot 2}\cdot \frac{x}{2 \cdot 3}\right)^2 + .. = 1 + \sum_{m=1}^\infty \left(\prod_{n=1}^m \frac
*/
private double i0(double x) {
summands[0] = 1;
double val = 1;
for (int n = 1; n < summands.length; ++n)
summands[n] = square(val *= x / (2 * n));
Arrays.sort(summands);
double sum = 0;
for (int n = summands.length - 1; n >= 0; --n)
sum += summands[n];
return sum;
}
public double window(double a, int n, int N) {
return i0(Math.PI * a * Math.sqrt(1 - square((2.0 * n) / (N - 1) - 1))) / i0(Math.PI * a);
}
}