text-generation-webui/README.md
2023-01-09 18:14:09 -03:00

154 lines
5.7 KiB
Markdown

# text-generation-webui
A gradio webui for running large language models locally. Supports gpt-j-6B, gpt-neox-20b, opt, galactica, and many others.
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.
![webui screenshot](https://github.com/oobabooga/text-generation-webui/raw/main/webui.png)
## Features
* Switch between different models using a dropdown menu.
* Generate nice HTML output for GPT-4chan.
* Generate Markdown output for [GALACTICA](https://github.com/paperswithcode/galai), including LaTeX support.
* Notebook mode that resembles OpenAI's playground.
* Chat mode for conversation and role playing.
* Load 13b/20b models in 8-bit mode.
* Load parameter presets from text files.
* CPU mode.
## Installation
Create a conda environment:
conda create -n textgen
conda activate textgen
Install the appropriate pytorch for your GPU. For NVIDIA GPUs, this should work:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
Install the requirements:
pip install -r requirements.txt
## Downloading models
Models should be placed under `models/model-name`. For instance, `models/gpt-j-6B` for [gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main).
#### Hugging Face
Hugging Face is the main place to download models. These are some of my favorite:
* [gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)
* [gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b/tree/main)
* [OPT](https://huggingface.co/models?search=facebook/opt)
* [GALACTICA](https://huggingface.co/models?search=facebook/galactica)
* [\*-Erebus](https://huggingface.co/models?search=erebus)
The files that you need to download are the json, txt, and pytorch\*.bin files. The remaining files are not necessary.
For your convenience, you can automatically download a model from HF using the script `download-model.py`. Its usage is very simple:
python download-model.py organization/model
For instance:
python download-model.py facebook/opt-1.3b
#### GPT-4chan
[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:
* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model)
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/)
You also need to put GPT-J-6B's config.json file in the same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json)
## Converting to pytorch
The script `convert-to-torch.py` allows you to convert models to .pt format, which is about 10x faster to load:
python convert-to-torch.py models/model-name
The output model will be saved to `torch-dumps/model-name.pt`. When you load a new model, the webui first looks for this .pt file; if it is not found, it loads the model as usual from `models/model-name`.
## Starting the webui
conda activate textgen
python server.py
Then browse to
`http://localhost:7860/?__theme=dark`
Optionally, you can use the following command-line flags:
`--model model-name`: Load this model by default.
`--notebook`: Launch the webui in notebook mode, where the output is written to the same text box as the input.
`--chat`: Launch the webui in chat mode.
`--cpu`: Use the CPU to generate text instead of the GPU.
## Presets
Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup.
## System requirements
These are the VRAM (in GiB) and RAM (in MiB) requirements to run some model examples.
#### GPU mode (default)
| model | VRAM (GPU) | RAM |
|:-----------------------|-------------:|--------:|
| OPT-350M-Erebus | 0.62 | 1939.3 |
| arxiv_ai_gpt2 | 1.48 | 6350.68 |
| blenderbot-1B-distill | 2.38 | 2705.9 |
| opt-1.3b | 2.45 | 2868.12 |
| gpt-neo-1.3b | 2.54 | 4047.04 |
| gpt4chan_model_float16 | 11.38 | 1909.79 |
| gpt-j-6b-float16 | 11.38 | 2847.75 |
| gpt-j-6B | 11.38 | 3959.55 |
| galactica-6.7b | 12.4 | 1933.19 |
| opt-6.7b | 12.4 | 1944.21 |
| bloomz-7b1-p3 | 13.17 | 1845.58 |
#### GPU mode with 8-bit precision
Allows you to load models that would not normally fit into your GPU. Enabled by default for 13b and 20b models in this webui.
| model | VRAM (GPU) | RAM |
|:---------------|-------------:|--------:|
| OPT-13B-Erebus | 12.23 | 749.08 |
| opt-13b | 12.23 | 1258.95 |
| gpt-neox-20b | 19.91 | 2104.04 |
#### CPU mode
A lot slower, but does not require a GPU.
| model | RAM |
|:-----------------------|---------:|
| OPT-350M-Erebus | 2622.17 |
| arxiv_ai_gpt2 | 3764.81 |
| gpt-neo-1.3b | 5937.81 |
| opt-1.3b | 7346.08 |
| blenderbot-1B-distill | 7565.36 |
| bloomz-7b1-p3 | 23613.9 |
| gpt-j-6B | 23975.5 |
| gpt4chan_model | 23999.5 |
| gpt-j-6b-float16 | 24999.1 |
| galactica-6.7b | 26248 |
| opt-6.7b | 27334.2 |
## Contributing
Pull requests, suggestions and issue reports are welcome.
## Other projects
Make sure to also check out the great work by [KoboldAI](https://github.com/KoboldAI/KoboldAI-Client). I have borrowed some of the presets listed on their [wiki](https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets) after performing a k-means clustering analysis to select the most relevant subsample.