Merge branch 'main' into main

This commit is contained in:
SB Yoon 2025-08-19 22:44:19 -06:00
commit 3f1f0f0f7f
46 changed files with 1253 additions and 332 deletions

119
README.md
View file

@ -2,8 +2,6 @@
A Gradio web UI for Large Language Models.
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.
[Try the Deep Reason extension](https://oobabooga.gumroad.com/l/deep_reason)
|![Image1](https://github.com/oobabooga/screenshots/raw/main/INSTRUCT-3.5.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/CHAT-3.5.png) |
@ -16,6 +14,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
- Easy setup: Choose between **portable builds** (zero setup, just unzip and run) for GGUF models on Windows/Linux/macOS, or the one-click installer that creates a self-contained `installer_files` directory.
- 100% offline and private, with zero telemetry, external resources, or remote update requests.
- **File attachments**: Upload text files, PDF documents, and .docx documents to talk about their contents.
- **Vision (multimodal models)**: Attach images to messages for visual understanding ([tutorial](https://github.com/oobabooga/text-generation-webui/wiki/Multimodal-Tutorial)).
- **Web search**: Optionally search the internet with LLM-generated queries to add context to the conversation.
- Aesthetic UI with dark and light themes.
- Syntax highlighting for code blocks and LaTeX rendering for mathematical expressions.
@ -31,54 +30,15 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
## How to install
#### Option 1: Portable builds (get started in 1 minute)
#### Option 1: Portable builds (get started in 1 minute)
No installation needed just download, unzip and run. All dependencies included.
Compatible with GGUF (llama.cpp) models on Windows, Linux, and macOS.
Download from here: https://github.com/oobabooga/text-generation-webui/releases
Download from here: **https://github.com/oobabooga/text-generation-webui/releases**
#### Option 2: One-click installer
For users who need additional backends (ExLlamaV3, Transformers) or extensions (TTS, voice input, translation, etc). Requires ~10GB disk space and downloads PyTorch.
1. Clone the repository, or [download its source code](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) and extract it.
2. Run the startup script for your OS: `start_windows.bat`, `start_linux.sh`, or `start_macos.sh`.
3. When prompted, select your GPU vendor.
4. After installation, open `http://127.0.0.1:7860` in your browser.
To restart the web UI later, run the same `start_` script.
To reinstall with a fresh Python environment, delete the `installer_files` folder and run the `start_` script again.
You can pass command-line flags directly (e.g., `./start_linux.sh --help`), or add them to `user_data/CMD_FLAGS.txt` (e.g., `--api` to enable the API).
To update, run the update script for your OS: `update_wizard_windows.bat`, `update_wizard_linux.sh`, or `update_wizard_macos.sh`.
<details>
<summary>
One-click installer details
</summary>
### One-click-installer
The script uses Miniforge to set up a Conda environment in the `installer_files` folder.
If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, or `cmd_macos.sh`.
* There is no need to run any of those scripts (`start_`, `update_wizard_`, or `cmd_`) as admin/root.
* To install requirements for extensions, it is recommended to use the update wizard script with the "Install/update extensions requirements" option. At the end, this script will install the main requirements for the project to make sure that they take precedence in case of version conflicts.
* For automated installation, you can use the `GPU_CHOICE`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=TRUE ./start_linux.sh`.
</details>
<details>
<summary>
Manual portable installation with venv
</summary>
### Manual portable installation with venv
#### Option 2: Manual portable install with venv
Very fast setup that should work on any Python 3.9+:
@ -97,7 +57,7 @@ venv\Scripts\activate
source venv/bin/activate
# Install dependencies (choose appropriate file under requirements/portable for your hardware)
pip install -r requirements/portable/requirements.txt
pip install -r requirements/portable/requirements.txt --upgrade
# Launch server (basic command)
python server.py --portable --api --auto-launch
@ -105,6 +65,39 @@ python server.py --portable --api --auto-launch
# When done working, deactivate
deactivate
```
#### Option 3: One-click installer
For users who need additional backends (ExLlamaV3, Transformers) or extensions (TTS, voice input, translation, etc). Requires ~10GB disk space and downloads PyTorch.
1. Clone the repository, or [download its source code](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) and extract it.
2. Run the startup script for your OS: `start_windows.bat`, `start_linux.sh`, or `start_macos.sh`.
3. When prompted, select your GPU vendor.
4. After installation, open `http://127.0.0.1:7860` in your browser.
To restart the web UI later, run the same `start_` script.
You can pass command-line flags directly (e.g., `./start_linux.sh --help`), or add them to `user_data/CMD_FLAGS.txt` (e.g., `--api` to enable the API).
To update, run the update script for your OS: `update_wizard_windows.bat`, `update_wizard_linux.sh`, or `update_wizard_macos.sh`.
To reinstall with a fresh Python environment, delete the `installer_files` folder and run the `start_` script again.
<details>
<summary>
One-click installer details
</summary>
### One-click-installer
The script uses Miniforge to set up a Conda environment in the `installer_files` folder.
If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, or `cmd_macos.sh`.
* There is no need to run any of those scripts (`start_`, `update_wizard_`, or `cmd_`) as admin/root.
* To install requirements for extensions, it is recommended to use the update wizard script with the "Install/update extensions requirements" option. At the end, this script will install the main requirements for the project to make sure that they take precedence in case of version conflicts.
* For automated installation, you can use the `GPU_CHOICE`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=TRUE ./start_linux.sh`.
</details>
<details>
@ -138,19 +131,19 @@ conda activate textgen
| System | GPU | Command |
|--------|---------|---------|
| Linux/WSL | NVIDIA | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cu124` |
| Linux/WSL | CPU only | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cpu` |
| Linux | AMD | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/rocm6.2.4` |
| MacOS + MPS | Any | `pip3 install torch==2.6.0` |
| Windows | NVIDIA | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cu124` |
| Windows | CPU only | `pip3 install torch==2.6.0` |
| Linux/WSL | NVIDIA | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128` |
| Linux/WSL | CPU only | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cpu` |
| Linux | AMD | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/rocm6.2.4` |
| MacOS + MPS | Any | `pip3 install torch==2.7.1` |
| Windows | NVIDIA | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128` |
| Windows | CPU only | `pip3 install torch==2.7.1` |
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/.
If you need `nvcc` to compile some library manually, you will additionally need to install this:
```
conda install -y -c "nvidia/label/cuda-12.4.1" cuda
conda install -y -c "nvidia/label/cuda-12.8.1" cuda
```
#### 3. Install the web UI
@ -237,13 +230,13 @@ usage: server.py [-h] [--multi-user] [--model MODEL] [--lora LORA [LORA ...]] [-
[--extensions EXTENSIONS [EXTENSIONS ...]] [--verbose] [--idle-timeout IDLE_TIMEOUT] [--loader LOADER] [--cpu] [--cpu-memory CPU_MEMORY] [--disk] [--disk-cache-dir DISK_CACHE_DIR]
[--load-in-8bit] [--bf16] [--no-cache] [--trust-remote-code] [--force-safetensors] [--no_use_fast] [--attn-implementation IMPLEMENTATION] [--load-in-4bit] [--use_double_quant]
[--compute_dtype COMPUTE_DTYPE] [--quant_type QUANT_TYPE] [--flash-attn] [--threads THREADS] [--threads-batch THREADS_BATCH] [--batch-size BATCH_SIZE] [--no-mmap] [--mlock]
[--gpu-layers N] [--tensor-split TENSOR_SPLIT] [--numa] [--no-kv-offload] [--row-split] [--extra-flags EXTRA_FLAGS] [--streaming-llm] [--ctx-size N] [--cache-type N]
[--model-draft MODEL_DRAFT] [--draft-max DRAFT_MAX] [--gpu-layers-draft GPU_LAYERS_DRAFT] [--device-draft DEVICE_DRAFT] [--ctx-size-draft CTX_SIZE_DRAFT] [--gpu-split GPU_SPLIT]
[--autosplit] [--cfg-cache] [--no_flash_attn] [--no_xformers] [--no_sdpa] [--num_experts_per_token N] [--enable_tp] [--cpp-runner] [--deepspeed] [--nvme-offload-dir NVME_OFFLOAD_DIR]
[--local_rank LOCAL_RANK] [--alpha_value ALPHA_VALUE] [--rope_freq_base ROPE_FREQ_BASE] [--compress_pos_emb COMPRESS_POS_EMB] [--listen] [--listen-port LISTEN_PORT]
[--listen-host LISTEN_HOST] [--share] [--auto-launch] [--gradio-auth GRADIO_AUTH] [--gradio-auth-path GRADIO_AUTH_PATH] [--ssl-keyfile SSL_KEYFILE] [--ssl-certfile SSL_CERTFILE]
[--subpath SUBPATH] [--old-colors] [--portable] [--api] [--public-api] [--public-api-id PUBLIC_API_ID] [--api-port API_PORT] [--api-key API_KEY] [--admin-key ADMIN_KEY]
[--api-enable-ipv6] [--api-disable-ipv4] [--nowebui]
[--gpu-layers N] [--tensor-split TENSOR_SPLIT] [--numa] [--no-kv-offload] [--row-split] [--extra-flags EXTRA_FLAGS] [--streaming-llm] [--mmproj MMPROJ] [--ctx-size N] [--cache-type N]
[--model-draft MODEL_DRAFT] [--draft-max DRAFT_MAX] [--gpu-layers-draft GPU_LAYERS_DRAFT] [--device-draft DEVICE_DRAFT] [--ctx-size-draft CTX_SIZE_DRAFT] [--enable-tp]
[--tp-backend TP_BACKEND] [--gpu-split GPU_SPLIT] [--autosplit] [--cfg-cache] [--no_flash_attn] [--no_xformers] [--no_sdpa] [--num_experts_per_token N] [--cpp-runner] [--deepspeed]
[--nvme-offload-dir NVME_OFFLOAD_DIR] [--local_rank LOCAL_RANK] [--alpha_value ALPHA_VALUE] [--rope_freq_base ROPE_FREQ_BASE] [--compress_pos_emb COMPRESS_POS_EMB] [--listen]
[--listen-port LISTEN_PORT] [--listen-host LISTEN_HOST] [--share] [--auto-launch] [--gradio-auth GRADIO_AUTH] [--gradio-auth-path GRADIO_AUTH_PATH] [--ssl-keyfile SSL_KEYFILE]
[--ssl-certfile SSL_CERTFILE] [--subpath SUBPATH] [--old-colors] [--portable] [--api] [--public-api] [--public-api-id PUBLIC_API_ID] [--api-port API_PORT] [--api-key API_KEY]
[--admin-key ADMIN_KEY] [--api-enable-ipv6] [--api-disable-ipv4] [--nowebui]
Text generation web UI
@ -300,6 +293,7 @@ llama.cpp:
--row-split Split the model by rows across GPUs. This may improve multi-gpu performance.
--extra-flags EXTRA_FLAGS Extra flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"
--streaming-llm Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.
--mmproj MMPROJ Path to the mmproj file for vision models.
Context and cache:
--ctx-size N, --n_ctx N, --max_seq_len N Context size in tokens.
@ -313,6 +307,10 @@ Speculative decoding:
--device-draft DEVICE_DRAFT Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1
--ctx-size-draft CTX_SIZE_DRAFT Size of the prompt context for the draft model. If 0, uses the same as the main model.
ExLlamaV3:
--enable-tp, --enable_tp Enable Tensor Parallelism (TP) to split the model across GPUs.
--tp-backend TP_BACKEND The backend for tensor parallelism. Valid options: native, nccl. Default: native.
ExLlamaV2:
--gpu-split GPU_SPLIT Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.
--autosplit Autosplit the model tensors across the available GPUs. This causes --gpu-split to be ignored.
@ -321,7 +319,6 @@ ExLlamaV2:
--no_xformers Force xformers to not be used.
--no_sdpa Force Torch SDPA to not be used.
--num_experts_per_token N Number of experts to use for generation. Applies to MoE models like Mixtral.
--enable_tp Enable Tensor Parallelism (TP) in ExLlamaV2.
TensorRT-LLM:
--cpp-runner Use the ModelRunnerCpp runner, which is faster than the default ModelRunner but doesn't support streaming yet.
@ -381,7 +378,7 @@ text-generation-webui
└── llama-2-13b-chat.Q4_K_M.gguf
```
* The remaining model types (like 16-bit Transformers models and EXL2 models) are made of several files and must be placed in a subfolder. Example:
* The remaining model types (like 16-bit Transformers models and EXL3 models) are made of several files and must be placed in a subfolder. Example:
```
text-generation-webui

View file

@ -99,3 +99,9 @@
.message-body p em {
color: rgb(110 110 110) !important;
}
.editing-textarea {
width: max(30rem) !important;
}
.circle-you + .text .edit-control-button, .circle-you + .text .editing-textarea {
color: #000 !important;
}

View file

@ -13,7 +13,7 @@
line-height: 28px !important;
}
.dark .chat .message-body :is(p, li, q, h1, h2, h3, h4, h5, h6) {
.dark .chat .message-body :is(p, li, q, em, h1, h2, h3, h4, h5, h6) {
color: #d1d5db !important;
}

View file

@ -1577,6 +1577,20 @@ strong {
margin-top: 4px;
}
.image-attachment {
flex-direction: column;
max-width: 314px;
}
.image-preview {
border-radius: 16px;
margin-bottom: 5px;
object-fit: cover;
object-position: center;
border: 2px solid var(--border-color-primary);
aspect-ratio: 1 / 1;
}
button:focus {
outline: none;
}

View file

@ -77,6 +77,68 @@ curl http://127.0.0.1:5000/v1/chat/completions \
}'
```
#### Multimodal/vision (llama.cpp and ExLlamaV3)
##### With /v1/chat/completions (recommended!)
```shell
curl http://127.0.0.1:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Please describe what you see in this image."},
{"type": "image_url", "image_url": {"url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/cat.png?raw=true"}}
]
}
],
"temperature": 0.6,
"top_p": 0.95,
"top_k": 20
}'
```
For base64-encoded images, just replace the inner "url" value with this format: `_STRING` where FORMAT is the file type (png, jpeg, gif, etc.) and BASE64_STRING is your base64-encoded image data.
##### With /v1/completions
```shell
curl http://127.0.0.1:5000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "About image <__media__> and image <__media__>, what I can say is that the first one"
},
{
"type": "image_url",
"image_url": {
"url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/cat.png?raw=true"
}
},
{
"type": "image_url",
"image_url": {
"url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/strawberry.png?raw=true"
}
}
]
}
],
"temperature": 0.6,
"top_p": 0.95,
"top_k": 20
}'
```
For base64-encoded images, just replace the inner "url" values with this format: `_STRING` where FORMAT is the file type (png, jpeg, gif, etc.) and BASE64_STRING is your base64-encoded image data.
#### SSE streaming
```shell

View file

@ -0,0 +1,66 @@
## Getting started
### 1. Find a multimodal model
GGUF models with vision capabilities are uploaded along a `mmproj` file to Hugging Face.
For instance, [unsloth/gemma-3-4b-it-GGUF](https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/tree/main) has this:
<img width="414" height="270" alt="print1" src="https://github.com/user-attachments/assets/ac5aeb61-f6a2-491e-a1f0-47d6e27ea286" />
### 2. Download the model to `user_data/models`
As an example, download
https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/resolve/main/gemma-3-4b-it-Q4_K_S.gguf?download=true
to your `text-generation-webui/user_data/models` folder.
### 3. Download the associated mmproj file to `user_data/mmproj`
Then download
https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/resolve/main/mmproj-F16.gguf?download=true
to your `text-generation-webui/user_data/mmproj` folder. Name it `mmproj-gemma-3-4b-it-F16.gguf` to give it a recognizable name.
### 4. Load the model
1. Launch the web UI
2. Navigate to the Model tab
3. Select the GGUF model in the Model dropdown:
<img width="545" height="92" alt="print2" src="https://github.com/user-attachments/assets/3f920f50-e6c3-4768-91e2-20828dd63a1c" />
4. Select the mmproj file in the Multimodal (vision) menu:
<img width="454" height="172" alt="print3" src="https://github.com/user-attachments/assets/a657e20f-0ceb-4d71-9fe4-2b78571d20a6" />
5. Click "Load"
### 5. Send a message with an image
Select your image by clicking on the 📎 icon and send your message:
<img width="368" height="135" alt="print5" src="https://github.com/user-attachments/assets/6175ec9f-04f4-4dba-9382-4ac80d5b0b1f" />
The model will reply with great understanding of the image contents:
<img width="809" height="884" alt="print6" src="https://github.com/user-attachments/assets/be4a8f4d-619d-49e6-86f5-012d89f8db8d" />
## Multimodal with ExLlamaV3
Multimodal also works with the ExLlamaV3 loader (the non-HF one).
No additional files are necessary, just load a multimodal EXL3 model and send an image.
Examples of models that you can use:
- https://huggingface.co/turboderp/gemma-3-27b-it-exl3
- https://huggingface.co/turboderp/Mistral-Small-3.1-24B-Instruct-2503-exl3
## Multimodal API examples
In the page below you can find some ready-to-use examples:
[Multimodal/vision (llama.cpp and ExLlamaV3)](https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API#multimodalvision-llamacpp-and-exllamav3)

View file

@ -16,6 +16,8 @@ from modules.chat import (
load_character_memoized,
load_instruction_template_memoized
)
from modules.image_utils import convert_openai_messages_to_images
from modules.logging_colors import logger
from modules.presets import load_preset_memoized
from modules.text_generation import decode, encode, generate_reply
@ -82,6 +84,33 @@ def process_parameters(body, is_legacy=False):
return generate_params
def process_multimodal_content(content):
"""Extract text and add image placeholders from OpenAI multimodal format"""
if isinstance(content, str):
return content
if isinstance(content, list):
text_parts = []
image_placeholders = ""
for item in content:
if not isinstance(item, dict):
continue
item_type = item.get('type', '')
if item_type == 'text':
text_parts.append(item.get('text', ''))
elif item_type == 'image_url':
image_placeholders += "<__media__>"
final_text = ' '.join(text_parts)
if image_placeholders:
return f"{image_placeholders}\n\n{final_text}"
else:
return final_text
return str(content)
def convert_history(history):
'''
Chat histories in this program are in the format [message, reply].
@ -99,8 +128,11 @@ def convert_history(history):
role = entry["role"]
if role == "user":
# Extract text content (images handled by model-specific code)
content = process_multimodal_content(content)
user_input = content
user_input_last = True
if current_message:
chat_dialogue.append([current_message, '', ''])
current_message = ""
@ -126,7 +158,11 @@ def convert_history(history):
if not user_input_last:
user_input = ""
return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)}
return user_input, system_message, {
'internal': chat_dialogue,
'visible': copy.deepcopy(chat_dialogue),
'messages': history # Store original messages for multimodal models
}
def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, prompt_only=False) -> dict:
@ -150,9 +186,23 @@ def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, p
elif m['role'] == 'function':
raise InvalidRequestError(message="role: function is not supported.", param='messages')
if 'content' not in m and "image_url" not in m:
# Handle multimodal content validation
content = m.get('content')
if content is None:
raise InvalidRequestError(message="messages: missing content", param='messages')
# Validate multimodal content structure
if isinstance(content, list):
for item in content:
if not isinstance(item, dict) or 'type' not in item:
raise InvalidRequestError(message="messages: invalid content item format", param='messages')
if item['type'] not in ['text', 'image_url']:
raise InvalidRequestError(message="messages: unsupported content type", param='messages')
if item['type'] == 'text' and 'text' not in item:
raise InvalidRequestError(message="messages: missing text in content item", param='messages')
if item['type'] == 'image_url' and ('image_url' not in item or 'url' not in item['image_url']):
raise InvalidRequestError(message="messages: missing image_url in content item", param='messages')
# Chat Completions
object_type = 'chat.completion' if not stream else 'chat.completion.chunk'
created_time = int(time.time())
@ -336,9 +386,26 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False):
prompt_str = 'context' if is_legacy else 'prompt'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if prompt_str not in body:
raise InvalidRequestError("Missing required input", param=prompt_str)
# Handle both prompt and messages format for unified multimodal support
if prompt_str not in body or body[prompt_str] is None:
if 'messages' in body:
# Convert messages format to prompt for completions endpoint
prompt_text = ""
for message in body.get('messages', []):
if isinstance(message, dict) and 'content' in message:
# Extract text content from multimodal messages
content = message['content']
if isinstance(content, str):
prompt_text += content
elif isinstance(content, list):
for item in content:
if isinstance(item, dict) and item.get('type') == 'text':
prompt_text += item.get('text', '')
# Allow empty prompts for image-only requests
body[prompt_str] = prompt_text
else:
raise InvalidRequestError("Missing required input", param=prompt_str)
# common params
generate_params = process_parameters(body, is_legacy=is_legacy)
@ -349,9 +416,22 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False):
suffix = body['suffix'] if body['suffix'] else ''
echo = body['echo']
# Add messages to generate_params if present for multimodal processing
if body.get('messages'):
generate_params['messages'] = body['messages']
raw_images = convert_openai_messages_to_images(generate_params['messages'])
if raw_images:
logger.info(f"Found {len(raw_images)} image(s) in request.")
generate_params['raw_images'] = raw_images
if not stream:
prompt_arg = body[prompt_str]
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
# Handle empty/None prompts (e.g., image-only requests)
if prompt_arg is None:
prompt_arg = ""
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and len(prompt_arg) > 0 and isinstance(prompt_arg[0], int)):
prompt_arg = [prompt_arg]
resp_list_data = []
@ -359,7 +439,7 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False):
total_prompt_token_count = 0
for idx, prompt in enumerate(prompt_arg, start=0):
if isinstance(prompt[0], int):
if isinstance(prompt, list) and len(prompt) > 0 and isinstance(prompt[0], int):
# token lists
if requested_model == shared.model_name:
prompt = decode(prompt)[0]
@ -448,7 +528,6 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False):
# generate reply #######################################
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_reply(prompt, generate_params, is_chat=False)
answer = ''
seen_content = ''
completion_token_count = 0

View file

@ -2,7 +2,7 @@ import json
import time
from typing import Dict, List, Optional
from pydantic import BaseModel, Field, validator
from pydantic import BaseModel, Field, model_validator, validator
class GenerationOptions(BaseModel):
@ -99,13 +99,14 @@ class ToolCall(BaseModel):
class CompletionRequestParams(BaseModel):
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
prompt: str | List[str]
prompt: str | List[str] | None = Field(default=None, description="Text prompt for completion. Can also use 'messages' format for multimodal.")
messages: List[dict] | None = Field(default=None, description="OpenAI messages format for multimodal support. Alternative to 'prompt'.")
best_of: int | None = Field(default=1, description="Unused parameter.")
echo: bool | None = False
frequency_penalty: float | None = 0
logit_bias: dict | None = None
logprobs: int | None = None
max_tokens: int | None = 16
max_tokens: int | None = 512
n: int | None = Field(default=1, description="Unused parameter.")
presence_penalty: float | None = 0
stop: str | List[str] | None = None
@ -115,6 +116,12 @@ class CompletionRequestParams(BaseModel):
top_p: float | None = 1
user: str | None = Field(default=None, description="Unused parameter.")
@model_validator(mode='after')
def validate_prompt_or_messages(self):
if self.prompt is None and self.messages is None:
raise ValueError("Either 'prompt' or 'messages' must be provided")
return self
class CompletionRequest(GenerationOptions, CompletionRequestParams):
pass
@ -220,7 +227,7 @@ class LogitsRequestParams(BaseModel):
use_samplers: bool = False
top_logits: int | None = 50
frequency_penalty: float | None = 0
max_tokens: int | None = 16
max_tokens: int | None = 512
presence_penalty: float | None = 0
temperature: float | None = 1
top_p: float | None = 1

View file

@ -583,7 +583,7 @@ function moveToChatTab() {
const chatControlsFirstChild = document.querySelector("#chat-controls").firstElementChild;
const newParent = chatControlsFirstChild;
let newPosition = newParent.children.length - 2;
let newPosition = newParent.children.length - 3;
newParent.insertBefore(grandParent, newParent.children[newPosition]);
document.getElementById("save-character").style.display = "none";
@ -977,7 +977,7 @@ if (document.readyState === "loading") {
//------------------------------------------------
// File upload button
document.querySelector("#chat-input .upload-button").title = "Upload text files, PDFs, and DOCX documents";
document.querySelector("#chat-input .upload-button").title = "Upload text files, PDFs, DOCX documents, and images";
// Activate web search
document.getElementById("web-search").title = "Search the internet with DuckDuckGo";

View file

@ -269,18 +269,29 @@ def generate_chat_prompt(user_input, state, **kwargs):
enhanced_user_msg = user_msg
# Add attachment content if present AND if past attachments are enabled
if (state.get('include_past_attachments', True) and user_key in metadata and "attachments" in metadata[user_key]):
if user_key in metadata and "attachments" in metadata[user_key]:
attachments_text = ""
for attachment in metadata[user_key]["attachments"]:
filename = attachment.get("name", "file")
content = attachment.get("content", "")
if attachment.get("type") == "text/html" and attachment.get("url"):
attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n"
else:
attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n"
image_refs = ""
if attachments_text:
enhanced_user_msg = f"{user_msg}\n\nATTACHMENTS:\n{attachments_text}"
for attachment in metadata[user_key]["attachments"]:
if attachment.get("type") == "image":
# Add image reference for multimodal models
image_refs += "<__media__>"
elif state.get('include_past_attachments', True):
# Handle text/PDF attachments
filename = attachment.get("name", "file")
content = attachment.get("content", "")
if attachment.get("type") == "text/html" and attachment.get("url"):
attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n"
else:
attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n"
if image_refs or attachments_text:
enhanced_user_msg = user_msg
if image_refs:
enhanced_user_msg = f"{image_refs}\n\n{enhanced_user_msg}"
if attachments_text:
enhanced_user_msg += f"\n\nATTACHMENTS:\n{attachments_text}"
messages.insert(insert_pos, {"role": "user", "content": enhanced_user_msg})
@ -301,16 +312,25 @@ def generate_chat_prompt(user_input, state, **kwargs):
if user_key in metadata and "attachments" in metadata[user_key]:
attachments_text = ""
for attachment in metadata[user_key]["attachments"]:
filename = attachment.get("name", "file")
content = attachment.get("content", "")
if attachment.get("type") == "text/html" and attachment.get("url"):
attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n"
else:
attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n"
image_refs = ""
if attachments_text:
user_input = f"{user_input}\n\nATTACHMENTS:\n{attachments_text}"
for attachment in metadata[user_key]["attachments"]:
if attachment.get("type") == "image":
image_refs += "<__media__>"
else:
filename = attachment.get("name", "file")
content = attachment.get("content", "")
if attachment.get("type") == "text/html" and attachment.get("url"):
attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n"
else:
attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n"
if image_refs or attachments_text:
user_input = user_input
if image_refs:
user_input = f"{image_refs}\n\n{user_input}"
if attachments_text:
user_input += f"\n\nATTACHMENTS:\n{attachments_text}"
messages.append({"role": "user", "content": user_input})
@ -594,29 +614,63 @@ def add_message_attachment(history, row_idx, file_path, is_user=True):
file_extension = path.suffix.lower()
try:
# Handle different file types
if file_extension == '.pdf':
# Handle image files
if file_extension in ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']:
# Convert image to base64
with open(path, 'rb') as f:
image_data = base64.b64encode(f.read()).decode('utf-8')
# Determine MIME type from extension
mime_type_map = {
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.webp': 'image/webp',
'.bmp': 'image/bmp',
'.gif': 'image/gif'
}
mime_type = mime_type_map.get(file_extension, 'image/jpeg')
# Format as data URL
data_url = f"data:{mime_type};base64,{image_data}"
# Generate unique image ID
image_id = len([att for att in history['metadata'][key]["attachments"] if att.get("type") == "image"]) + 1
attachment = {
"name": filename,
"type": "image",
"image_data": data_url,
"image_id": image_id,
}
elif file_extension == '.pdf':
# Process PDF file
content = extract_pdf_text(path)
file_type = "application/pdf"
attachment = {
"name": filename,
"type": "application/pdf",
"content": content,
}
elif file_extension == '.docx':
content = extract_docx_text(path)
file_type = "application/docx"
attachment = {
"name": filename,
"type": "application/docx",
"content": content,
}
else:
# Default handling for text files
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
file_type = "text/plain"
# Add attachment
attachment = {
"name": filename,
"type": file_type,
"content": content,
}
attachment = {
"name": filename,
"type": "text/plain",
"content": content,
}
history['metadata'][key]["attachments"].append(attachment)
return content # Return the content for reuse
return attachment # Return the attachment for reuse
except Exception as e:
logger.error(f"Error processing attachment {filename}: {e}")
return None
@ -814,6 +868,22 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess
'metadata': output['metadata']
}
row_idx = len(output['internal']) - 1
# Collect image attachments for multimodal generation from the entire history
all_image_attachments = []
if 'metadata' in output:
for i in range(len(output['internal'])):
user_key = f"user_{i}"
if user_key in output['metadata'] and "attachments" in output['metadata'][user_key]:
for attachment in output['metadata'][user_key]["attachments"]:
if attachment.get("type") == "image":
all_image_attachments.append(attachment)
# Add all collected image attachments to state for the generation
if all_image_attachments:
state['image_attachments'] = all_image_attachments
# Generate the prompt
kwargs = {
'_continue': _continue,
@ -828,7 +898,6 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess
prompt = generate_chat_prompt(text, state, **kwargs)
# Add timestamp for assistant's response at the start of generation
row_idx = len(output['internal']) - 1
update_message_metadata(output['metadata'], "assistant", row_idx, timestamp=get_current_timestamp(), model_name=shared.model_name)
# Generate

View file

@ -135,7 +135,8 @@ class Exllamav2Model:
return result, result
def encode(self, string, **kwargs):
return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True)
add_bos = kwargs.pop('add_bos', True)
return self.tokenizer.encode(string, add_bos=add_bos, encode_special_tokens=True, **kwargs)
def decode(self, ids, **kwargs):
if isinstance(ids, list):

415
modules/exllamav3.py Normal file
View file

@ -0,0 +1,415 @@
import traceback
from pathlib import Path
from typing import Any, List, Tuple
from exllamav3 import Cache, Config, Generator, Model, Tokenizer
from exllamav3.cache import CacheLayer_fp16, CacheLayer_quant
from exllamav3.generator import Job
from exllamav3.generator.sampler import (
CustomSampler,
SS_Argmax,
SS_MinP,
SS_PresFreqP,
SS_RepP,
SS_Sample,
SS_Temperature,
SS_TopK,
SS_TopP
)
from modules import shared
from modules.image_utils import (
convert_image_attachments_to_pil,
convert_openai_messages_to_images
)
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length
try:
import flash_attn
except Exception:
logger.warning('Failed to load flash-attention due to the following error:\n')
traceback.print_exc()
class Exllamav3Model:
def __init__(self):
pass
@classmethod
def from_pretrained(cls, path_to_model):
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
# Reset global MMTokenAllocator to prevent token ID corruption when switching models
from exllamav3.tokenizer.mm_embedding import (
FIRST_MM_EMBEDDING_INDEX,
global_allocator
)
global_allocator.next_token_index = FIRST_MM_EMBEDDING_INDEX
config = Config.from_directory(str(path_to_model))
model = Model.from_config(config)
# Calculate the closest multiple of 256 at or above the chosen value
max_tokens = shared.args.ctx_size
if max_tokens % 256 != 0:
adjusted_tokens = ((max_tokens // 256) + 1) * 256
logger.warning(f"max_num_tokens must be a multiple of 256. Adjusting from {max_tokens} to {adjusted_tokens}")
max_tokens = adjusted_tokens
# Parse cache type (ExLlamaV2 pattern)
cache_type = shared.args.cache_type.lower()
cache_kwargs = {}
if cache_type == 'fp16':
layer_type = CacheLayer_fp16
elif cache_type.startswith('q'):
layer_type = CacheLayer_quant
if '_' in cache_type:
# Different bits for k and v (e.g., q4_q8)
k_part, v_part = cache_type.split('_')
k_bits = int(k_part[1:])
v_bits = int(v_part[1:])
else:
# Same bits for k and v (e.g., q4)
k_bits = v_bits = int(cache_type[1:])
# Validate bit ranges
if not (2 <= k_bits <= 8 and 2 <= v_bits <= 8):
logger.warning(f"Invalid quantization bits: k_bits={k_bits}, v_bits={v_bits}. Must be between 2 and 8. Falling back to fp16.")
layer_type = CacheLayer_fp16
else:
cache_kwargs = {'k_bits': k_bits, 'v_bits': v_bits}
else:
logger.warning(f"Unrecognized cache type: {cache_type}. Falling back to fp16.")
layer_type = CacheLayer_fp16
cache = Cache(model, max_num_tokens=max_tokens, layer_type=layer_type, **cache_kwargs)
load_params = {'progressbar': True}
split = None
if shared.args.gpu_split:
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
load_params['use_per_device'] = split
# Tensor-parallelism
if shared.args.enable_tp:
load_params['tensor_p'] = True
load_params['tp_backend'] = shared.args.tp_backend
model.load(**load_params)
tokenizer = Tokenizer.from_config(config)
# Initialize draft model for speculative decoding
draft_model = None
draft_cache = None
if shared.args.model_draft and shared.args.model_draft.lower() not in ["", "none"]:
logger.info(f"Loading draft model for speculative decoding: {shared.args.model_draft}")
draft_path = Path(shared.args.model_draft)
if not draft_path.is_dir():
draft_path = Path(f'{shared.args.model_dir}') / Path(shared.args.model_draft)
if not draft_path.is_dir():
logger.warning(f"Draft model not found at {draft_path}, speculative decoding disabled.")
else:
draft_config = Config.from_directory(str(draft_path))
# Set context size for draft model with 256-multiple validation
if shared.args.ctx_size_draft > 0:
draft_max_tokens = shared.args.ctx_size_draft
else:
draft_max_tokens = shared.args.ctx_size
# Validate draft model context size is a multiple of 256
if draft_max_tokens % 256 != 0:
adjusted_draft_tokens = ((draft_max_tokens // 256) + 1) * 256
logger.warning(f"Draft model max_num_tokens must be a multiple of 256. Adjusting from {draft_max_tokens} to {adjusted_draft_tokens}")
draft_max_tokens = adjusted_draft_tokens
draft_config.max_seq_len = draft_max_tokens
draft_model = Model.from_config(draft_config)
draft_cache = Cache(draft_model, max_num_tokens=draft_max_tokens, layer_type=layer_type, **cache_kwargs)
draft_load_params = {'progressbar': True}
if split:
draft_load_params['use_per_device'] = split
draft_model.load(**draft_load_params)
logger.info(f"Draft model loaded successfully. Max speculative tokens: {shared.args.draft_max}")
# Load vision model component (ExLlamaV3 native)
vision_model = None
if "vision_config" in config.config_dict:
logger.info("Vision component detected in model config. Attempting to load...")
try:
vision_model = Model.from_config(config, component="vision")
vision_model.load(progressbar=True)
logger.info("Vision model loaded successfully.")
except Exception as e:
logger.warning(f"Vision model loading failed (multimodal disabled): {e}")
else:
logger.info("No vision component in model config. Skipping multimodal setup.")
generator = Generator(
model=model,
cache=cache,
tokenizer=tokenizer,
draft_model=draft_model,
draft_cache=draft_cache,
num_speculative_tokens=shared.args.draft_max if draft_model is not None else 0,
)
result = cls()
result.model = model
result.cache = cache
result.tokenizer = tokenizer
result.generator = generator
result.config = config
result.max_tokens = max_tokens
result.vision_model = vision_model
result.draft_model = draft_model
result.draft_cache = draft_cache
return result
def is_multimodal(self) -> bool:
"""Check if this model supports multimodal input."""
return hasattr(self, 'vision_model') and self.vision_model is not None
def _process_images_for_generation(self, prompt: str, state: dict) -> Tuple[str, List[Any]]:
"""
Process all possible image inputs and return modified prompt + embeddings.
Returns: (processed_prompt, image_embeddings)
"""
# Collect images from various sources using shared utilities
pil_images = []
# From webui image_attachments (preferred format)
if 'image_attachments' in state and state['image_attachments']:
pil_images.extend(convert_image_attachments_to_pil(state['image_attachments']))
# From OpenAI API raw_images
elif 'raw_images' in state and state['raw_images']:
pil_images.extend(state['raw_images'])
# From OpenAI API messages format
elif 'messages' in state and state['messages']:
pil_images.extend(convert_openai_messages_to_images(state['messages']))
if not pil_images:
return prompt, []
# ExLlamaV3-specific: Generate embeddings
try:
# Use pre-computed embeddings if available (proper MMEmbedding lifetime)
if 'image_embeddings' in state and state['image_embeddings']:
# Use existing embeddings - this preserves MMEmbedding lifetime
image_embeddings = state['image_embeddings']
else:
# Do not reset the cache/allocator index; it causes token ID conflicts during generation.
logger.info(f"Processing {len(pil_images)} image(s) with ExLlamaV3 vision model")
image_embeddings = [
self.vision_model.get_image_embeddings(tokenizer=self.tokenizer, image=img)
for img in pil_images
]
# ExLlamaV3-specific: Handle prompt processing with placeholders
placeholders = [ie.text_alias for ie in image_embeddings]
if '<__media__>' in prompt:
# Web chat: Replace <__media__> placeholders
for alias in placeholders:
prompt = prompt.replace('<__media__>', alias, 1)
logger.info(f"Replaced {len(placeholders)} <__media__> placeholder(s)")
else:
# API: Prepend embedding aliases
combined_placeholders = "\n".join(placeholders)
prompt = combined_placeholders + "\n" + prompt
logger.info(f"Prepended {len(placeholders)} embedding(s) to prompt")
return prompt, image_embeddings
except Exception as e:
logger.error(f"Failed to process images: {e}")
return prompt, []
def generate_with_streaming(self, prompt, state):
"""
Generate text with streaming using native ExLlamaV3 API
"""
if shared.is_multimodal:
# Process images and modify prompt (ExLlamaV3-specific)
prompt, image_embeddings = self._process_images_for_generation(prompt, state)
else:
image_embeddings = []
# Greedy decoding is a special case
if state['temperature'] == 0:
sampler = CustomSampler([SS_Argmax()])
else:
# 1. Create a list of all active, unordered samplers
unordered_samplers = []
# Penalties
penalty_range = state['repetition_penalty_range']
if penalty_range <= 0:
penalty_range = int(10e7) # Use large number for "full context"
rep_decay = 0 # Not a configurable parameter
# Add penalty samplers if they are active
if state['repetition_penalty'] != 1.0:
unordered_samplers.append(SS_RepP(state['repetition_penalty'], penalty_range, rep_decay))
if state['presence_penalty'] != 0.0 or state['frequency_penalty'] != 0.0:
unordered_samplers.append(SS_PresFreqP(state['presence_penalty'], state['frequency_penalty'], penalty_range, rep_decay))
# Standard samplers
if state['top_k'] > 0:
unordered_samplers.append(SS_TopK(state['top_k']))
if state['top_p'] < 1.0:
unordered_samplers.append(SS_TopP(state['top_p']))
if state['min_p'] > 0.0:
unordered_samplers.append(SS_MinP(state['min_p']))
# Temperature (SS_NoOp is returned if temp is 1.0)
unordered_samplers.append(SS_Temperature(state['temperature']))
# 2. Define the mapping from class names to the priority list keys
class_name_to_nickname = {
'SS_RepP': 'repetition_penalty',
'SS_PresFreqP': 'presence_frequency_penalty',
'SS_TopK': 'top_k',
'SS_TopP': 'top_p',
'SS_MinP': 'min_p',
'SS_Temperature': 'temperature',
}
# 3. Get the priority list and handle temperature_last
default_priority = ['repetition_penalty', 'presence_frequency_penalty', 'top_k', 'top_p', 'min_p', 'temperature']
sampler_priority = state.get('sampler_priority') or default_priority
if state['temperature_last'] and 'temperature' in sampler_priority:
sampler_priority.append(sampler_priority.pop(sampler_priority.index('temperature')))
# 4. Sort the unordered list based on the priority list
def custom_sort_key(sampler_obj):
class_name = sampler_obj.__class__.__name__
nickname = class_name_to_nickname.get(class_name)
if nickname and nickname in sampler_priority:
return sampler_priority.index(nickname)
return -1
ordered_samplers = sorted(unordered_samplers, key=custom_sort_key)
# 5. Add the final sampling stage and build the sampler
ordered_samplers.append(SS_Sample())
sampler = CustomSampler(ordered_samplers)
# Encode prompt with embeddings (ExLlamaV3-specific)
input_ids = self.tokenizer.encode(
prompt,
add_bos=state['add_bos_token'],
encode_special_tokens=True,
embeddings=image_embeddings,
)
input_ids = input_ids[:, -get_max_prompt_length(state):]
self._last_prompt_token_count = input_ids.shape[-1]
# Determine max_new_tokens
if state['auto_max_new_tokens']:
max_new_tokens = state['truncation_length'] - self._last_prompt_token_count
else:
max_new_tokens = state['max_new_tokens']
# Get stop conditions
stop_conditions = []
if not state['ban_eos_token']:
if hasattr(self.tokenizer, 'eos_token_id') and self.tokenizer.eos_token_id is not None:
stop_conditions.append(self.tokenizer.eos_token_id)
job = Job(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
decode_special_tokens=not state['skip_special_tokens'],
embeddings=image_embeddings if image_embeddings else None,
sampler=sampler,
stop_conditions=stop_conditions if stop_conditions else None,
)
# Stream generation
self.generator.enqueue(job)
response_text = ""
try:
while self.generator.num_remaining_jobs():
results = self.generator.iterate()
for result in results:
if "eos" in result and result["eos"]:
break
chunk = result.get("text", "")
if chunk:
response_text += chunk
yield response_text
finally:
self.generator.clear_queue()
def generate(self, prompt, state):
output = ""
for chunk in self.generate_with_streaming(prompt, state):
output = chunk
return output
def encode(self, string, **kwargs):
add_bos = kwargs.pop('add_bos', True)
return self.tokenizer.encode(string, add_bos=add_bos, **kwargs)
def decode(self, ids, **kwargs):
return self.tokenizer.decode(ids, **kwargs)
@property
def last_prompt_token_count(self):
return getattr(self, '_last_prompt_token_count', 0)
def unload(self):
logger.info("Unloading ExLlamaV3 model components...")
if hasattr(self, 'vision_model') and self.vision_model is not None:
try:
del self.vision_model
except Exception as e:
logger.warning(f"Error unloading vision model: {e}")
self.vision_model = None
if hasattr(self, 'draft_model') and self.draft_model is not None:
try:
self.draft_model.unload()
del self.draft_model
except Exception as e:
logger.warning(f"Error unloading draft model: {e}")
self.draft_model = None
if hasattr(self, 'draft_cache') and self.draft_cache is not None:
self.draft_cache = None
if hasattr(self, 'model') and self.model is not None:
try:
self.model.unload()
del self.model
except Exception as e:
logger.warning(f"Error unloading main model: {e}")
self.model = None
if hasattr(self, 'cache') and self.cache is not None:
self.cache = None
if hasattr(self, 'generator') and self.generator is not None:
self.generator = None
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
self.tokenizer = None

View file

@ -74,6 +74,11 @@ class Exllamav3HF(PreTrainedModel, GenerationMixin):
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
load_params['use_per_device'] = split
# Tensor-parallelism
if shared.args.enable_tp:
load_params['tensor_p'] = True
load_params['tp_backend'] = shared.args.tp_backend
self.ex_model.load(**load_params)
self.past_seq = None
self.max_tokens = max_tokens

View file

@ -306,6 +306,9 @@ def process_markdown_content(string):
# Convert to HTML using markdown
html_output = markdown.markdown(result, extensions=['fenced_code', 'tables', SaneListExtension()])
# Remove extra newlines before </code>
html_output = re.sub(r'\s*</code>', '</code>', html_output)
# Unescape code blocks
pattern = re.compile(r'<code[^>]*>(.*?)</code>', re.DOTALL)
html_output = pattern.sub(lambda x: html.unescape(x.group()), html_output)
@ -406,16 +409,26 @@ def format_message_attachments(history, role, index):
for attachment in attachments:
name = html.escape(attachment["name"])
# Make clickable if URL exists
if "url" in attachment:
name = f'<a href="{html.escape(attachment["url"])}" target="_blank" rel="noopener noreferrer">{name}</a>'
if attachment.get("type") == "image":
image_data = attachment.get("image_data", "")
attachments_html += (
f'<div class="attachment-box image-attachment">'
f'<img src="{image_data}" alt="{name}" class="image-preview" />'
f'<div class="attachment-name">{name}</div>'
f'</div>'
)
else:
# Make clickable if URL exists (web search)
if "url" in attachment:
name = f'<a href="{html.escape(attachment["url"])}" target="_blank" rel="noopener noreferrer">{name}</a>'
attachments_html += (
f'<div class="attachment-box">'
f'<div class="attachment-icon">{attachment_svg}</div>'
f'<div class="attachment-name">{name}</div>'
f'</div>'
)
attachments_html += (
f'<div class="attachment-box">'
f'<div class="attachment-icon">{attachment_svg}</div>'
f'<div class="attachment-name">{name}</div>'
f'</div>'
)
attachments_html += '</div>'
return attachments_html

106
modules/image_utils.py Normal file
View file

@ -0,0 +1,106 @@
"""
Shared image processing utilities for multimodal support.
Used by both ExLlamaV3 and llama.cpp implementations.
"""
import base64
import io
from typing import Any, List, Tuple
from PIL import Image
from modules.logging_colors import logger
def convert_pil_to_base64(image: Image.Image) -> str:
"""Converts a PIL Image to a base64 encoded string."""
buffered = io.BytesIO()
# Save image to an in-memory bytes buffer in PNG format
image.save(buffered, format="PNG")
# Encode the bytes to a base64 string
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def decode_base64_image(base64_string: str) -> Image.Image:
"""Decodes a base64 string to a PIL Image."""
try:
if base64_string.startswith('data:image/'):
base64_string = base64_string.split(',', 1)[1]
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
except Exception as e:
logger.error(f"Failed to decode base64 image: {e}")
raise ValueError(f"Invalid base64 image data: {e}")
def process_message_content(content: Any) -> Tuple[str, List[Image.Image]]:
"""
Processes message content that may contain text and images.
Returns: A tuple of (text_content, list_of_pil_images).
"""
if isinstance(content, str):
return content, []
if isinstance(content, list):
text_parts = []
images = []
for item in content:
if not isinstance(item, dict):
continue
item_type = item.get('type', '')
if item_type == 'text':
text_parts.append(item.get('text', ''))
elif item_type == 'image_url':
image_url_data = item.get('image_url', {})
image_url = image_url_data.get('url', '')
if image_url.startswith('data:image/'):
try:
images.append(decode_base64_image(image_url))
except Exception as e:
logger.warning(f"Failed to process a base64 image: {e}")
elif image_url.startswith('http'):
# Support external URLs
try:
import requests
response = requests.get(image_url, timeout=10)
response.raise_for_status()
image_data = response.content
image = Image.open(io.BytesIO(image_data))
images.append(image)
logger.info("Successfully loaded external image from URL")
except Exception as e:
logger.warning(f"Failed to fetch external image: {e}")
else:
logger.warning(f"Unsupported image URL format: {image_url[:70]}...")
return ' '.join(text_parts), images
return str(content), []
def convert_image_attachments_to_pil(image_attachments: List[dict]) -> List[Image.Image]:
"""Convert webui image_attachments format to PIL Images."""
pil_images = []
for attachment in image_attachments:
if attachment.get('type') == 'image' and 'image_data' in attachment:
try:
image = decode_base64_image(attachment['image_data'])
if image.mode != 'RGB':
image = image.convert('RGB')
pil_images.append(image)
except Exception as e:
logger.warning(f"Failed to process image attachment: {e}")
return pil_images
def convert_openai_messages_to_images(messages: List[dict]) -> List[Image.Image]:
"""Convert OpenAI messages format to PIL Images."""
all_images = []
for message in messages:
if isinstance(message, dict) and 'content' in message:
_, images = process_message_content(message['content'])
all_images.extend(images)
return all_images

View file

@ -8,11 +8,17 @@ import sys
import threading
import time
from pathlib import Path
from typing import Any, List
import llama_cpp_binaries
import requests
from modules import shared
from modules.image_utils import (
convert_image_attachments_to_pil,
convert_openai_messages_to_images,
convert_pil_to_base64
)
from modules.logging_colors import logger
llamacpp_valid_cache_types = {"fp16", "q8_0", "q4_0"}
@ -124,19 +130,61 @@ class LlamaServer:
return payload
def _process_images_for_generation(self, state: dict) -> List[Any]:
"""
Process all possible image inputs and return PIL images
"""
pil_images = []
# Source 1: Web UI (from chatbot_wrapper)
if 'image_attachments' in state and state['image_attachments']:
pil_images.extend(convert_image_attachments_to_pil(state['image_attachments']))
# Source 2: Chat Completions API (/v1/chat/completions)
elif 'history' in state and state.get('history', {}).get('messages'):
pil_images.extend(convert_openai_messages_to_images(state['history']['messages']))
# Source 3: Legacy Completions API (/v1/completions)
elif 'raw_images' in state and state['raw_images']:
pil_images.extend(state.get('raw_images', []))
return pil_images
def is_multimodal(self) -> bool:
"""Check if this model supports multimodal input."""
return shared.args.mmproj not in [None, 'None']
def generate_with_streaming(self, prompt, state):
url = f"http://127.0.0.1:{self.port}/completion"
payload = self.prepare_payload(state)
token_ids = self.encode(prompt, add_bos_token=state["add_bos_token"])
self.last_prompt_token_count = len(token_ids)
pil_images = []
if shared.is_multimodal:
pil_images = self._process_images_for_generation(state)
if pil_images:
# Multimodal case
IMAGE_TOKEN_COST_ESTIMATE = 600 # A safe, conservative estimate per image
base64_images = [convert_pil_to_base64(img) for img in pil_images]
payload["prompt"] = {
"prompt_string": prompt,
"multimodal_data": base64_images
}
# Calculate an estimated token count
text_tokens = self.encode(prompt, add_bos_token=state["add_bos_token"])
self.last_prompt_token_count = len(text_tokens) + (len(pil_images) * IMAGE_TOKEN_COST_ESTIMATE)
else:
# Text only case
token_ids = self.encode(prompt, add_bos_token=state["add_bos_token"])
self.last_prompt_token_count = len(token_ids)
payload["prompt"] = token_ids
if state['auto_max_new_tokens']:
max_new_tokens = state['truncation_length'] - len(token_ids)
max_new_tokens = state['truncation_length'] - self.last_prompt_token_count
else:
max_new_tokens = state['max_new_tokens']
payload.update({
"prompt": token_ids,
"n_predict": max_new_tokens,
"stream": True,
"cache_prompt": True
@ -144,7 +192,7 @@ class LlamaServer:
if shared.args.verbose:
logger.info("GENERATE_PARAMS=")
printable_payload = {k: v for k, v in payload.items() if k != "prompt"}
printable_payload = {k: (v if k != "prompt" else "[multimodal object]" if pil_images else v) for k, v in payload.items()}
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(printable_payload)
print()
@ -295,6 +343,13 @@ class LlamaServer:
cmd += ["--rope-freq-scale", str(1.0 / shared.args.compress_pos_emb)]
if shared.args.rope_freq_base > 0:
cmd += ["--rope-freq-base", str(shared.args.rope_freq_base)]
if shared.args.mmproj not in [None, 'None']:
path = Path(shared.args.mmproj)
if not path.exists():
path = Path('user_data/mmproj') / shared.args.mmproj
if path.exists():
cmd += ["--mmproj", str(path)]
if shared.args.model_draft not in [None, 'None']:
path = Path(shared.args.model_draft)
if not path.exists():
@ -316,6 +371,7 @@ class LlamaServer:
cmd += ["--ctx-size-draft", str(shared.args.ctx_size_draft)]
if shared.args.streaming_llm:
cmd += ["--cache-reuse", "1"]
cmd += ["--swa-full"]
if shared.args.extra_flags:
# Clean up the input
extra_flags = shared.args.extra_flags.strip()

View file

@ -28,6 +28,8 @@ loaders_and_params = OrderedDict({
'device_draft',
'ctx_size_draft',
'speculative_decoding_accordion',
'mmproj',
'mmproj_accordion',
'vram_info',
],
'Transformers': [
@ -54,6 +56,19 @@ loaders_and_params = OrderedDict({
'cfg_cache',
'trust_remote_code',
'no_use_fast',
'enable_tp',
'tp_backend',
],
'ExLlamav3': [
'ctx_size',
'cache_type',
'gpu_split',
'model_draft',
'draft_max',
'ctx_size_draft',
'speculative_decoding_accordion',
'enable_tp',
'tp_backend',
],
'ExLlamav2_HF': [
'ctx_size',
@ -251,6 +266,24 @@ loaders_samplers = {
'grammar_string',
'grammar_file_row',
},
'ExLlamav3': {
'temperature',
'min_p',
'top_p',
'top_k',
'repetition_penalty',
'frequency_penalty',
'presence_penalty',
'repetition_penalty_range',
'temperature_last',
'sampler_priority',
'auto_max_new_tokens',
'ban_eos_token',
'add_bos_token',
'enable_thinking',
'seed',
'skip_special_tokens',
},
'ExLlamav2': {
'temperature',
'dynatemp_low',

View file

@ -19,6 +19,7 @@ def load_model(model_name, loader=None):
'llama.cpp': llama_cpp_server_loader,
'Transformers': transformers_loader,
'ExLlamav3_HF': ExLlamav3_HF_loader,
'ExLlamav3': ExLlamav3_loader,
'ExLlamav2_HF': ExLlamav2_HF_loader,
'ExLlamav2': ExLlamav2_loader,
'TensorRT-LLM': TensorRT_LLM_loader,
@ -55,6 +56,10 @@ def load_model(model_name, loader=None):
if loader.lower().startswith('exllama') or loader.lower().startswith('tensorrt') or loader == 'llama.cpp' or loader == 'MLX':
shared.settings['truncation_length'] = shared.args.ctx_size
shared.is_multimodal = False
if loader.lower() in ('exllamav3', 'llama.cpp'):
shared.is_multimodal = model.is_multimodal()
logger.info(f"Loaded \"{model_name}\" in {(time.time()-t0):.2f} seconds.")
logger.info(f"LOADER: \"{loader}\"")
logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}")
@ -89,6 +94,14 @@ def ExLlamav3_HF_loader(model_name):
return Exllamav3HF.from_pretrained(model_name)
def ExLlamav3_loader(model_name):
from modules.exllamav3 import Exllamav3Model
model = Exllamav3Model.from_pretrained(model_name)
tokenizer = model.tokenizer
return model, tokenizer
def ExLlamav2_HF_loader(model_name):
from modules.exllamav2_hf import Exllamav2HF
@ -129,8 +142,12 @@ def unload_model(keep_model_name=False):
if shared.model is None:
return
is_llamacpp = (shared.model.__class__.__name__ == 'LlamaServer')
if shared.model.__class__.__name__ == 'Exllamav3HF':
model_class_name = shared.model.__class__.__name__
is_llamacpp = (model_class_name == 'LlamaServer')
if model_class_name in ['Exllamav3Model', 'Exllamav3HF']:
shared.model.unload()
elif model_class_name in ['Exllamav2Model', 'Exllamav2HF'] and hasattr(shared.model, 'unload'):
shared.model.unload()
elif shared.model.__class__.__name__ == 'MLXModel':
shared.model.unload()

View file

@ -15,7 +15,7 @@ from modules.logging_colors import logger
def get_fallback_settings():
return {
'bf16': False,
'ctx_size': 2048,
'ctx_size': 8192,
'rope_freq_base': 0,
'compress_pos_emb': 1,
'alpha_value': 1,
@ -106,9 +106,16 @@ def get_model_metadata(model):
for k in ['max_position_embeddings', 'model_max_length', 'max_seq_len']:
if k in metadata:
model_settings['truncation_length'] = metadata[k]
model_settings['truncation_length_info'] = metadata[k]
model_settings['ctx_size'] = min(metadata[k], 8192)
value = metadata[k]
elif k in metadata.get('text_config', {}):
value = metadata['text_config'][k]
else:
continue
model_settings['truncation_length'] = value
model_settings['truncation_length_info'] = value
model_settings['ctx_size'] = min(value, 8192)
break
if 'rope_theta' in metadata:
model_settings['rope_freq_base'] = metadata['rope_theta']
@ -132,16 +139,26 @@ def get_model_metadata(model):
with open(jinja_path, 'r', encoding='utf-8') as f:
template = f.read()
# 2. If no .jinja file, try chat_template.json
if template is None:
json_template_path = Path(f'{shared.args.model_dir}/{model}') / 'chat_template.json'
if json_template_path.exists():
with open(json_template_path, 'r', encoding='utf-8') as f:
json_data = json.load(f)
if 'chat_template' in json_data:
template = json_data['chat_template']
# 3. Fall back to tokenizer_config.json metadata
if path.exists():
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
# 2. Only read from metadata if we haven't already loaded from .jinja
# Only read from metadata if we haven't already loaded from .jinja or .json
if template is None and 'chat_template' in metadata:
template = metadata['chat_template']
if isinstance(template, list):
template = template[0]['template']
# 3. If a template was found from either source, process it
# 4. If a template was found from any source, process it
if template:
for k in ['eos_token', 'bos_token']:
if k in metadata:
@ -184,34 +201,31 @@ def get_model_metadata(model):
def infer_loader(model_name, model_settings, hf_quant_method=None):
import platform
# Check for MLX models first (before path checks)
if (model_name.startswith('mlx-community/') or model_name.startswith('mlx-community_')) and platform.system() == "Darwin" and platform.machine() == "arm64":
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
loader = None
elif shared.args.portable:
loader = 'llama.cpp'
elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
elif hf_quant_method == 'mlx':
loader = 'MLX'
elif re.match(r'.*\.mlx', model_name.lower()) and platform.system() == "Darwin" and platform.machine() == "arm64":
elif re.match(r'.*\.mlx', model_name.lower()):
loader = 'MLX'
elif model_name.lower().startswith('mlx-community'):
loader = 'MLX'
elif hf_quant_method == 'exl3':
loader = 'ExLlamav3'
elif hf_quant_method in ['exl2', 'gptq']:
loader = 'ExLlamav2_HF'
elif re.match(r'.*exl3', model_name.lower()):
loader = 'ExLlamav3'
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
else:
# Original logic for other loaders
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
loader = None
elif shared.args.portable:
loader = 'llama.cpp'
elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
elif hf_quant_method == 'exl3':
loader = 'ExLlamav3_HF'
elif hf_quant_method in ['exl2', 'gptq']:
loader = 'ExLlamav2_HF'
elif re.match(r'.*exl3', model_name.lower()):
loader = 'ExLlamav3_HF'
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
else:
loader = 'Transformers'
loader = 'Transformers'
return loader
@ -243,7 +257,7 @@ def apply_model_settings_to_state(model, state):
model_settings = get_model_metadata(model)
if 'loader' in model_settings:
loader = model_settings.pop('loader')
if not (loader == 'ExLlamav2_HF' and state['loader'] in ['ExLlamav2']):
if not ((loader == 'ExLlamav2_HF' and state['loader'] == 'ExLlamav2') or (loader == 'ExLlamav3_HF' and state['loader'] == 'ExLlamav3')):
state['loader'] = loader
for k in model_settings:

View file

@ -16,6 +16,7 @@ model = None
tokenizer = None
model_name = 'None'
is_seq2seq = False
is_multimodal = False
model_dirty_from_training = False
lora_names = []
@ -85,6 +86,7 @@ group.add_argument('--no-kv-offload', action='store_true', help='Do not offload
group.add_argument('--row-split', action='store_true', help='Split the model by rows across GPUs. This may improve multi-gpu performance.')
group.add_argument('--extra-flags', type=str, default=None, help='Extra flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"')
group.add_argument('--streaming-llm', action='store_true', help='Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.')
group.add_argument('--mmproj', type=str, default=None, help='Path to the mmproj file for vision models.')
# Cache
group = parser.add_argument_group('Context and cache')
@ -99,6 +101,11 @@ group.add_argument('--gpu-layers-draft', type=int, default=256, help='Number of
group.add_argument('--device-draft', type=str, default=None, help='Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1')
group.add_argument('--ctx-size-draft', type=int, default=0, help='Size of the prompt context for the draft model. If 0, uses the same as the main model.')
# ExLlamaV3
group = parser.add_argument_group('ExLlamaV3')
group.add_argument('--enable-tp', '--enable_tp', action='store_true', help='Enable Tensor Parallelism (TP) to split the model across GPUs.')
group.add_argument('--tp-backend', type=str, default='native', help='The backend for tensor parallelism. Valid options: native, nccl. Default: native.')
# ExLlamaV2
group = parser.add_argument_group('ExLlamaV2')
group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
@ -108,7 +115,6 @@ group.add_argument('--no_flash_attn', action='store_true', help='Force flash-att
group.add_argument('--no_xformers', action='store_true', help='Force xformers to not be used.')
group.add_argument('--no_sdpa', action='store_true', help='Force Torch SDPA to not be used.')
group.add_argument('--num_experts_per_token', type=int, default=2, metavar='N', help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
group.add_argument('--enable_tp', action='store_true', help='Enable Tensor Parallelism (TP) in ExLlamaV2.')
# TensorRT-LLM
group = parser.add_argument_group('TensorRT-LLM')
@ -318,6 +324,8 @@ def fix_loader_name(name):
return 'ExLlamav2_HF'
elif name in ['exllamav3-hf', 'exllamav3_hf', 'exllama-v3-hf', 'exllama_v3_hf', 'exllama-v3_hf', 'exllama3-hf', 'exllama3_hf', 'exllama-3-hf', 'exllama_3_hf', 'exllama-3_hf']:
return 'ExLlamav3_HF'
elif name in ['exllamav3']:
return 'ExLlamav3'
elif name in ['tensorrt', 'tensorrtllm', 'tensorrt_llm', 'tensorrt-llm', 'tensort', 'tensortllm']:
return 'TensorRT-LLM'

View file

@ -40,7 +40,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
yield ''
return
if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'TensorRTLLMModel', 'MLXModel']:
if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel', 'MLXModel']:
generate_func = generate_reply_custom
else:
generate_func = generate_reply_HF
@ -128,9 +128,9 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
from modules.torch_utils import get_device
if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel']:
if shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel']:
input_ids = shared.tokenizer.encode(str(prompt))
if shared.model.__class__.__name__ != 'Exllamav2Model':
if shared.model.__class__.__name__ not in ['Exllamav2Model', 'Exllamav3Model']:
input_ids = np.array(input_ids).reshape(1, len(input_ids))
else:
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
@ -148,7 +148,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:]
if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel', 'MLXModel'] or shared.args.cpu:
if shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel', 'MLXModel'] or shared.args.cpu:
return input_ids
else:
device = get_device()

View file

@ -155,6 +155,7 @@ def list_model_elements():
'bf16',
'autosplit',
'enable_tp',
'tp_backend',
'no_flash_attn',
'no_xformers',
'no_sdpa',
@ -167,6 +168,7 @@ def list_model_elements():
'gpu_layers_draft',
'device_draft',
'ctx_size_draft',
'mmproj',
]
return elements

View file

@ -54,7 +54,7 @@ def create_ui():
gr.HTML(value='<div class="hover-element" onclick="void(0)"><span style="width: 100px; display: block" id="hover-element-button">&#9776;</span><div class="hover-menu" id="hover-menu"></div>', elem_id='gr-hover')
with gr.Column(scale=10, elem_id='chat-input-container'):
shared.gradio['textbox'] = gr.MultimodalTextbox(label='', placeholder='Send a message', file_types=['text', '.pdf'], file_count="multiple", elem_id='chat-input', elem_classes=['add_scrollbar'])
shared.gradio['textbox'] = gr.MultimodalTextbox(label='', placeholder='Send a message', file_types=['text', '.pdf', 'image'], file_count="multiple", elem_id='chat-input', elem_classes=['add_scrollbar'])
shared.gradio['typing-dots'] = gr.HTML(value='<div class="typing"><span></span><span class="dot1"></span><span class="dot2"></span></div>', label='typing', elem_id='typing-container')
with gr.Column(scale=1, elem_id='generate-stop-container'):
@ -78,12 +78,19 @@ def create_ui():
with gr.Row():
shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', value=shared.settings['start_with'], elem_classes=['add_scrollbar'])
gr.HTML("<div style='margin: 0; border-bottom: 1px solid rgba(255,255,255,0.1);'></div>")
shared.gradio['reasoning_effort'] = gr.Dropdown(value=shared.settings['reasoning_effort'], choices=['low', 'medium', 'high'], label='Reasoning effort', info='Used by GPT-OSS.')
shared.gradio['enable_thinking'] = gr.Checkbox(value=shared.settings['enable_thinking'], label='Enable thinking', info='Used by pre-2507 Qwen3.')
gr.HTML("<div style='margin: 0; border-bottom: 1px solid rgba(255,255,255,0.1);'></div>")
shared.gradio['enable_web_search'] = gr.Checkbox(value=shared.settings.get('enable_web_search', False), label='Activate web search', elem_id='web-search')
with gr.Row(visible=shared.settings.get('enable_web_search', False)) as shared.gradio['web_search_row']:
shared.gradio['web_search_pages'] = gr.Number(value=shared.settings.get('web_search_pages', 3), precision=0, label='Number of pages to download', minimum=1, maximum=10)
gr.HTML("<div style='margin: 0; border-bottom: 1px solid rgba(255,255,255,0.1);'></div>")
with gr.Row():
shared.gradio['mode'] = gr.Radio(choices=['instruct', 'chat-instruct', 'chat'], value=None, label='Mode', info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template Parameters > Instruction template is used.', elem_id='chat-mode')
@ -93,6 +100,8 @@ def create_ui():
with gr.Row():
shared.gradio['chat-instruct_command'] = gr.Textbox(value=shared.settings['chat-instruct_command'], lines=12, label='Command for chat-instruct mode', info='<|character|> and <|prompt|> get replaced with the bot name and the regular chat prompt respectively.', visible=shared.settings['mode'] == 'chat-instruct', elem_classes=['add_scrollbar'])
gr.HTML("<div style='margin: 0; border-bottom: 1px solid rgba(255,255,255,0.1);'></div>")
with gr.Row():
shared.gradio['count_tokens'] = gr.Button('Count tokens', size='sm')

View file

@ -42,10 +42,12 @@ def create_ui():
with gr.Row():
with gr.Column():
shared.gradio['gpu_layers'] = gr.Slider(label="gpu-layers", minimum=0, maximum=get_initial_gpu_layers_max(), step=1, value=shared.args.gpu_layers, info='Must be greater than 0 for the GPU to be used. ⚠️ Lower this value if you can\'t load the model.')
shared.gradio['ctx_size'] = gr.Slider(label='ctx-size', minimum=256, maximum=131072, step=256, value=shared.args.ctx_size, info='Context length. Common values: 4096, 8192, 16384, 32768, 65536, 131072. ⚠️ Lower this value if you can\'t load the model.')
shared.gradio['ctx_size'] = gr.Slider(label='ctx-size', minimum=256, maximum=131072, step=256, value=shared.args.ctx_size, info='Context length. Common values: 4096, 8192, 16384, 32768, 65536, 131072.')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
shared.gradio['attn_implementation'] = gr.Dropdown(label="attn-implementation", choices=['sdpa', 'eager', 'flash_attention_2'], value=shared.args.attn_implementation, info='Attention implementation.')
shared.gradio['cache_type'] = gr.Dropdown(label="cache-type", choices=['fp16', 'q8_0', 'q4_0', 'fp8', 'q8', 'q7', 'q6', 'q5', 'q4', 'q3', 'q2'], value=shared.args.cache_type, allow_custom_value=True, info='Valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4; ExLlamaV3 - fp16, q2 to q8. For ExLlamaV3, you can type custom combinations for separate k/v bits (e.g. q4_q8).')
shared.gradio['tp_backend'] = gr.Dropdown(label="tp-backend", choices=['native', 'nccl'], value=shared.args.tp_backend, info='The backend for tensor parallelism.')
with gr.Column():
shared.gradio['vram_info'] = gr.HTML(value=get_initial_vram_info())
shared.gradio['flash_attn'] = gr.Checkbox(label="flash-attn", value=shared.args.flash_attn, info='Use flash-attention.')
@ -54,11 +56,17 @@ def create_ui():
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant, info='Used by load-in-4bit.')
shared.gradio['autosplit'] = gr.Checkbox(label="autosplit", value=shared.args.autosplit, info='Automatically split the model tensors across the available GPUs.')
shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable Tensor Parallelism (TP).')
shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable tensor parallelism (TP).')
shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.')
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code)
shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `ctx_size` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.')
# Multimodal
with gr.Accordion("Multimodal (vision)", open=False, elem_classes='tgw-accordion') as shared.gradio['mmproj_accordion']:
with gr.Row():
shared.gradio['mmproj'] = gr.Dropdown(label="mmproj file", choices=utils.get_available_mmproj(), value=lambda: shared.args.mmproj or 'None', elem_classes='slim-dropdown', info='Select a file that matches your model. Must be placed in user_data/mmproj/', interactive=not mu)
ui.create_refresh_button(shared.gradio['mmproj'], lambda: None, lambda: {'choices': utils.get_available_mmproj()}, 'refresh-button', interactive=not mu)
# Speculative decoding
with gr.Accordion("Speculative decoding", open=False, elem_classes='tgw-accordion') as shared.gradio['speculative_decoding_accordion']:
with gr.Row():

View file

@ -154,6 +154,19 @@ def get_available_ggufs():
return sorted(model_list, key=natural_keys)
def get_available_mmproj():
mmproj_dir = Path('user_data/mmproj')
if not mmproj_dir.exists():
return ['None']
mmproj_files = []
for item in mmproj_dir.iterdir():
if item.is_file() and item.suffix.lower() in ('.gguf', '.bin'):
mmproj_files.append(item.name)
return ['None'] + sorted(mmproj_files, key=natural_keys)
def get_available_presets():
return sorted(set((k.stem for k in Path('user_data/presets').glob('*.yaml'))), key=natural_keys)

View file

@ -1,6 +1,8 @@
import concurrent.futures
import html
import random
import re
import urllib.request
from concurrent.futures import as_completed
from datetime import datetime
from urllib.parse import quote_plus
@ -50,16 +52,21 @@ def download_web_page(url, timeout=10):
def perform_web_search(query, num_pages=3, max_workers=5, timeout=10):
"""Perform web search and return results with content"""
try:
# Use DuckDuckGo HTML search endpoint
search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}"
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
response = requests.get(search_url, headers=headers, timeout=timeout)
response.raise_for_status()
agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36"
]
response_text = ""
req = urllib.request.Request(search_url, headers={'User-Agent': random.choice(agents)})
with urllib.request.urlopen(req, timeout=timeout) as response:
response_text = response.read().decode('utf-8')
# Extract results with regex
titles = re.findall(r'<a[^>]*class="[^"]*result__a[^"]*"[^>]*>(.*?)</a>', response.text, re.DOTALL)
urls = re.findall(r'<a[^>]*class="[^"]*result__url[^"]*"[^>]*>(.*?)</a>', response.text, re.DOTALL)
titles = re.findall(r'<a[^>]*class="[^"]*result__a[^"]*"[^>]*>(.*?)</a>', response_text, re.DOTALL)
urls = re.findall(r'<a[^>]*class="[^"]*result__url[^"]*"[^>]*>(.*?)</a>', response_text, re.DOTALL)
# Prepare download tasks
download_tasks = []

View file

@ -16,7 +16,7 @@ import sys
# os.environ["HCC_AMDGPU_TARGET"] = 'gfx1030'
# Define the required versions
TORCH_VERSION = "2.6.0"
TORCH_VERSION = "2.7.1"
PYTHON_VERSION = "3.11"
LIBSTDCXX_VERSION_LINUX = "12.1.0"
@ -113,17 +113,16 @@ def get_gpu_choice():
choice = get_user_choice(
"What is your GPU?",
{
'A': 'NVIDIA - CUDA 12.4',
'A': 'NVIDIA',
'B': 'AMD - Linux/macOS only, requires ROCm 6.2.4',
'C': 'Apple M Series',
'D': 'Intel Arc (beta)',
'E': 'NVIDIA - CUDA 12.8',
'N': 'CPU mode'
},
)
# Convert choice to GPU name
gpu_choice = {"A": "NVIDIA", "B": "AMD", "C": "APPLE", "D": "INTEL", "E": "NVIDIA_CUDA128", "N": "NONE"}[choice]
gpu_choice = {"A": "NVIDIA_CUDA128", "B": "AMD", "C": "APPLE", "D": "INTEL", "N": "NONE"}[choice]
# Save choice to state
state['gpu_choice'] = gpu_choice
@ -136,10 +135,8 @@ def get_pytorch_install_command(gpu_choice):
"""Get PyTorch installation command based on GPU choice"""
base_cmd = f"python -m pip install torch=={TORCH_VERSION} "
if gpu_choice == "NVIDIA":
return base_cmd + "--index-url https://download.pytorch.org/whl/cu124"
elif gpu_choice == "NVIDIA_CUDA128":
return "python -m pip install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128"
if gpu_choice == "NVIDIA_CUDA128":
return base_cmd + "--index-url https://download.pytorch.org/whl/cu128"
elif gpu_choice == "AMD":
return base_cmd + "--index-url https://download.pytorch.org/whl/rocm6.2.4"
elif gpu_choice in ["APPLE", "NONE"]:
@ -157,10 +154,8 @@ def get_pytorch_update_command(gpu_choice):
"""Get PyTorch update command based on GPU choice"""
base_cmd = f"python -m pip install --upgrade torch=={TORCH_VERSION} "
if gpu_choice == "NVIDIA":
return f"{base_cmd} --index-url https://download.pytorch.org/whl/cu124"
elif gpu_choice == "NVIDIA_CUDA128":
return "python -m pip install --upgrade torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128"
if gpu_choice == "NVIDIA_CUDA128":
return f"{base_cmd} --index-url https://download.pytorch.org/whl/cu128"
elif gpu_choice == "AMD":
return f"{base_cmd} --index-url https://download.pytorch.org/whl/rocm6.2.4"
elif gpu_choice in ["APPLE", "NONE"]:
@ -176,16 +171,14 @@ def get_requirements_file(gpu_choice):
"""Get requirements file path based on GPU choice"""
requirements_base = os.path.join("requirements", "full")
if gpu_choice == "AMD":
if gpu_choice == "NVIDIA_CUDA128":
file_name = f"requirements{'_noavx2' if not cpu_has_avx2() else ''}.txt"
elif gpu_choice == "AMD":
file_name = f"requirements_amd{'_noavx2' if not cpu_has_avx2() else ''}.txt"
elif gpu_choice == "APPLE":
file_name = f"requirements_apple_{'intel' if is_x86_64() else 'silicon'}.txt"
elif gpu_choice in ["INTEL", "NONE"]:
file_name = f"requirements_cpu_only{'_noavx2' if not cpu_has_avx2() else ''}.txt"
elif gpu_choice == "NVIDIA":
file_name = f"requirements{'_noavx2' if not cpu_has_avx2() else ''}.txt"
elif gpu_choice == "NVIDIA_CUDA128":
file_name = f"requirements_cuda128{'_noavx2' if not cpu_has_avx2() else ''}.txt"
else:
raise ValueError(f"Unknown GPU choice: {gpu_choice}")
@ -331,8 +324,6 @@ def install_webui():
cmd_flags_file.write("\n--cpu\n")
# Handle CUDA version display
elif any((is_windows(), is_linux())) and gpu_choice == "NVIDIA":
print("CUDA: 12.4")
elif any((is_windows(), is_linux())) and gpu_choice == "NVIDIA_CUDA128":
print("CUDA: 12.8")
@ -368,6 +359,19 @@ def update_requirements(initial_installation=False, pull=True):
assert_success=True
)
# Check for outdated CUDA 12.4 installs and refuse to update
state = load_state()
if state.get('gpu_choice') == 'NVIDIA':
print_big_message(
"Your current installation uses CUDA 12.4, which has been removed.\n"
"To update to the new default (CUDA 12.8), a clean installation is required.\n\n"
"INSTRUCTIONS:\n"
"1. Delete the 'installer_files' folder in your text-generation-webui directory.\n"
"2. Run the start script again (e.g., start_windows.bat).\n\n"
"This will create a fresh environment with the latest software."
)
sys.exit(0)
current_commit = get_current_commit()
wheels_changed = not os.path.exists(state_file)
if not wheels_changed:
@ -404,7 +408,7 @@ def update_requirements(initial_installation=False, pull=True):
with open(requirements_file, 'r') as f:
after_pull_whl_lines = [line for line in f if '.whl' in line]
wheels_changed = wheels_changed or (before_pull_whl_lines != after_pull_whl_lines)
wheels_changed = wheels_changed or (before_pull_whl_lines != after_pull_whl_lines)
# Check for changes to installer files
for file in files_to_check:

View file

@ -24,7 +24,7 @@ scipy
sentencepiece
tensorboard
transformers==4.55.*
triton-windows==3.2.0.post19; platform_system == "Windows"
triton-windows==3.3.1.post19; platform_system == "Windows"
tqdm
wandb
@ -34,12 +34,12 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/kingbri1/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.7cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View file

@ -33,7 +33,7 @@ sse-starlette==1.6.5
tiktoken
# AMD wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"

View file

@ -33,7 +33,7 @@ sse-starlette==1.6.5
tiktoken
# AMD wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"

View file

@ -33,7 +33,7 @@ sse-starlette==1.6.5
tiktoken
# Mac wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5-py3-none-any.whl
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6-py3-none-any.whl
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl

View file

@ -34,8 +34,8 @@ sse-starlette==1.6.5
tiktoken
# Mac wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5-py3-none-any.whl
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6-py3-none-any.whl
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl

View file

@ -33,5 +33,5 @@ sse-starlette==1.6.5
tiktoken
# llama.cpp (CPU only, AVX2)
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"

View file

@ -33,5 +33,5 @@ sse-starlette==1.6.5
tiktoken
# llama.cpp (CPU only, no AVX2)
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"

View file

@ -1,45 +0,0 @@
accelerate==1.8.*
bitsandbytes==0.46.*
colorama
datasets
einops
fastapi==0.112.4
gradio==4.37.*
html2text==2025.4.15
jinja2==3.1.6
markdown
numpy==2.2.*
pandas
peft==0.16.*
Pillow>=9.5.0
psutil
pydantic==2.8.2
PyPDF2==3.0.1
python-docx==1.1.2
pyyaml
requests
rich
safetensors==0.5.*
scipy
sentencepiece
tensorboard
transformers==4.55.*
triton-windows==3.3.1.post19; platform_system == "Windows"
tqdm
wandb
# API
flask_cloudflared==0.0.14
sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View file

@ -1,45 +0,0 @@
accelerate==1.8.*
bitsandbytes==0.46.*
colorama
datasets
einops
fastapi==0.112.4
gradio==4.37.*
html2text==2025.4.15
jinja2==3.1.6
markdown
numpy==2.2.*
pandas
peft==0.16.*
Pillow>=9.5.0
psutil
pydantic==2.8.2
PyPDF2==3.0.1
python-docx==1.1.2
pyyaml
requests
rich
safetensors==0.5.*
scipy
sentencepiece
tensorboard
transformers==4.55.*
triton-windows==3.3.1.post19; platform_system == "Windows"
tqdm
wandb
# API
flask_cloudflared==0.0.14
sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View file

@ -24,7 +24,7 @@ scipy
sentencepiece
tensorboard
transformers==4.55.*
triton-windows==3.2.0.post19; platform_system == "Windows"
triton-windows==3.3.1.post19; platform_system == "Windows"
tqdm
wandb
@ -34,12 +34,12 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/kingbri1/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.7cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# Mac wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"

View file

@ -19,6 +19,6 @@ sse-starlette==1.6.5
tiktoken
# Mac wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# llama.cpp (CPU only, AVX2)
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# llama.cpp (CPU only, no AVX2)
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"

View file

@ -18,5 +18,5 @@ sse-starlette==1.6.5
tiktoken
# CUDA wheels
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"