diff --git a/README.md b/README.md index 907d8c38..6b49cee0 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,6 @@ A Gradio web UI for Large Language Models. -Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. - [Try the Deep Reason extension](https://oobabooga.gumroad.com/l/deep_reason) |![Image1](https://github.com/oobabooga/screenshots/raw/main/INSTRUCT-3.5.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/CHAT-3.5.png) | @@ -16,6 +14,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github. - Easy setup: Choose between **portable builds** (zero setup, just unzip and run) for GGUF models on Windows/Linux/macOS, or the one-click installer that creates a self-contained `installer_files` directory. - 100% offline and private, with zero telemetry, external resources, or remote update requests. - **File attachments**: Upload text files, PDF documents, and .docx documents to talk about their contents. +- **Vision (multimodal models)**: Attach images to messages for visual understanding ([tutorial](https://github.com/oobabooga/text-generation-webui/wiki/Multimodal-Tutorial)). - **Web search**: Optionally search the internet with LLM-generated queries to add context to the conversation. - Aesthetic UI with dark and light themes. - Syntax highlighting for code blocks and LaTeX rendering for mathematical expressions. @@ -31,54 +30,15 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github. ## How to install -#### Option 1: Portable builds (get started in 1 minute) +#### ✅ Option 1: Portable builds (get started in 1 minute) No installation needed – just download, unzip and run. All dependencies included. Compatible with GGUF (llama.cpp) models on Windows, Linux, and macOS. -Download from here: https://github.com/oobabooga/text-generation-webui/releases +Download from here: **https://github.com/oobabooga/text-generation-webui/releases** -#### Option 2: One-click installer - -For users who need additional backends (ExLlamaV3, Transformers) or extensions (TTS, voice input, translation, etc). Requires ~10GB disk space and downloads PyTorch. - -1. Clone the repository, or [download its source code](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) and extract it. -2. Run the startup script for your OS: `start_windows.bat`, `start_linux.sh`, or `start_macos.sh`. -3. When prompted, select your GPU vendor. -4. After installation, open `http://127.0.0.1:7860` in your browser. - -To restart the web UI later, run the same `start_` script. - -To reinstall with a fresh Python environment, delete the `installer_files` folder and run the `start_` script again. - -You can pass command-line flags directly (e.g., `./start_linux.sh --help`), or add them to `user_data/CMD_FLAGS.txt` (e.g., `--api` to enable the API). - -To update, run the update script for your OS: `update_wizard_windows.bat`, `update_wizard_linux.sh`, or `update_wizard_macos.sh`. - -
- -One-click installer details - - -### One-click-installer - -The script uses Miniforge to set up a Conda environment in the `installer_files` folder. - -If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, or `cmd_macos.sh`. - -* There is no need to run any of those scripts (`start_`, `update_wizard_`, or `cmd_`) as admin/root. -* To install requirements for extensions, it is recommended to use the update wizard script with the "Install/update extensions requirements" option. At the end, this script will install the main requirements for the project to make sure that they take precedence in case of version conflicts. -* For automated installation, you can use the `GPU_CHOICE`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=TRUE ./start_linux.sh`. - -
- -
- -Manual portable installation with venv - - -### Manual portable installation with venv +#### Option 2: Manual portable install with venv Very fast setup that should work on any Python 3.9+: @@ -97,7 +57,7 @@ venv\Scripts\activate source venv/bin/activate # Install dependencies (choose appropriate file under requirements/portable for your hardware) -pip install -r requirements/portable/requirements.txt +pip install -r requirements/portable/requirements.txt --upgrade # Launch server (basic command) python server.py --portable --api --auto-launch @@ -105,6 +65,39 @@ python server.py --portable --api --auto-launch # When done working, deactivate deactivate ``` + +#### Option 3: One-click installer + +For users who need additional backends (ExLlamaV3, Transformers) or extensions (TTS, voice input, translation, etc). Requires ~10GB disk space and downloads PyTorch. + +1. Clone the repository, or [download its source code](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) and extract it. +2. Run the startup script for your OS: `start_windows.bat`, `start_linux.sh`, or `start_macos.sh`. +3. When prompted, select your GPU vendor. +4. After installation, open `http://127.0.0.1:7860` in your browser. + +To restart the web UI later, run the same `start_` script. + +You can pass command-line flags directly (e.g., `./start_linux.sh --help`), or add them to `user_data/CMD_FLAGS.txt` (e.g., `--api` to enable the API). + +To update, run the update script for your OS: `update_wizard_windows.bat`, `update_wizard_linux.sh`, or `update_wizard_macos.sh`. + +To reinstall with a fresh Python environment, delete the `installer_files` folder and run the `start_` script again. + +
+ +One-click installer details + + +### One-click-installer + +The script uses Miniforge to set up a Conda environment in the `installer_files` folder. + +If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, or `cmd_macos.sh`. + +* There is no need to run any of those scripts (`start_`, `update_wizard_`, or `cmd_`) as admin/root. +* To install requirements for extensions, it is recommended to use the update wizard script with the "Install/update extensions requirements" option. At the end, this script will install the main requirements for the project to make sure that they take precedence in case of version conflicts. +* For automated installation, you can use the `GPU_CHOICE`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=TRUE ./start_linux.sh`. +
@@ -138,19 +131,19 @@ conda activate textgen | System | GPU | Command | |--------|---------|---------| -| Linux/WSL | NVIDIA | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cu124` | -| Linux/WSL | CPU only | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cpu` | -| Linux | AMD | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/rocm6.2.4` | -| MacOS + MPS | Any | `pip3 install torch==2.6.0` | -| Windows | NVIDIA | `pip3 install torch==2.6.0 --index-url https://download.pytorch.org/whl/cu124` | -| Windows | CPU only | `pip3 install torch==2.6.0` | +| Linux/WSL | NVIDIA | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128` | +| Linux/WSL | CPU only | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cpu` | +| Linux | AMD | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/rocm6.2.4` | +| MacOS + MPS | Any | `pip3 install torch==2.7.1` | +| Windows | NVIDIA | `pip3 install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128` | +| Windows | CPU only | `pip3 install torch==2.7.1` | The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. If you need `nvcc` to compile some library manually, you will additionally need to install this: ``` -conda install -y -c "nvidia/label/cuda-12.4.1" cuda +conda install -y -c "nvidia/label/cuda-12.8.1" cuda ``` #### 3. Install the web UI @@ -237,13 +230,13 @@ usage: server.py [-h] [--multi-user] [--model MODEL] [--lora LORA [LORA ...]] [- [--extensions EXTENSIONS [EXTENSIONS ...]] [--verbose] [--idle-timeout IDLE_TIMEOUT] [--loader LOADER] [--cpu] [--cpu-memory CPU_MEMORY] [--disk] [--disk-cache-dir DISK_CACHE_DIR] [--load-in-8bit] [--bf16] [--no-cache] [--trust-remote-code] [--force-safetensors] [--no_use_fast] [--attn-implementation IMPLEMENTATION] [--load-in-4bit] [--use_double_quant] [--compute_dtype COMPUTE_DTYPE] [--quant_type QUANT_TYPE] [--flash-attn] [--threads THREADS] [--threads-batch THREADS_BATCH] [--batch-size BATCH_SIZE] [--no-mmap] [--mlock] - [--gpu-layers N] [--tensor-split TENSOR_SPLIT] [--numa] [--no-kv-offload] [--row-split] [--extra-flags EXTRA_FLAGS] [--streaming-llm] [--ctx-size N] [--cache-type N] - [--model-draft MODEL_DRAFT] [--draft-max DRAFT_MAX] [--gpu-layers-draft GPU_LAYERS_DRAFT] [--device-draft DEVICE_DRAFT] [--ctx-size-draft CTX_SIZE_DRAFT] [--gpu-split GPU_SPLIT] - [--autosplit] [--cfg-cache] [--no_flash_attn] [--no_xformers] [--no_sdpa] [--num_experts_per_token N] [--enable_tp] [--cpp-runner] [--deepspeed] [--nvme-offload-dir NVME_OFFLOAD_DIR] - [--local_rank LOCAL_RANK] [--alpha_value ALPHA_VALUE] [--rope_freq_base ROPE_FREQ_BASE] [--compress_pos_emb COMPRESS_POS_EMB] [--listen] [--listen-port LISTEN_PORT] - [--listen-host LISTEN_HOST] [--share] [--auto-launch] [--gradio-auth GRADIO_AUTH] [--gradio-auth-path GRADIO_AUTH_PATH] [--ssl-keyfile SSL_KEYFILE] [--ssl-certfile SSL_CERTFILE] - [--subpath SUBPATH] [--old-colors] [--portable] [--api] [--public-api] [--public-api-id PUBLIC_API_ID] [--api-port API_PORT] [--api-key API_KEY] [--admin-key ADMIN_KEY] - [--api-enable-ipv6] [--api-disable-ipv4] [--nowebui] + [--gpu-layers N] [--tensor-split TENSOR_SPLIT] [--numa] [--no-kv-offload] [--row-split] [--extra-flags EXTRA_FLAGS] [--streaming-llm] [--mmproj MMPROJ] [--ctx-size N] [--cache-type N] + [--model-draft MODEL_DRAFT] [--draft-max DRAFT_MAX] [--gpu-layers-draft GPU_LAYERS_DRAFT] [--device-draft DEVICE_DRAFT] [--ctx-size-draft CTX_SIZE_DRAFT] [--enable-tp] + [--tp-backend TP_BACKEND] [--gpu-split GPU_SPLIT] [--autosplit] [--cfg-cache] [--no_flash_attn] [--no_xformers] [--no_sdpa] [--num_experts_per_token N] [--cpp-runner] [--deepspeed] + [--nvme-offload-dir NVME_OFFLOAD_DIR] [--local_rank LOCAL_RANK] [--alpha_value ALPHA_VALUE] [--rope_freq_base ROPE_FREQ_BASE] [--compress_pos_emb COMPRESS_POS_EMB] [--listen] + [--listen-port LISTEN_PORT] [--listen-host LISTEN_HOST] [--share] [--auto-launch] [--gradio-auth GRADIO_AUTH] [--gradio-auth-path GRADIO_AUTH_PATH] [--ssl-keyfile SSL_KEYFILE] + [--ssl-certfile SSL_CERTFILE] [--subpath SUBPATH] [--old-colors] [--portable] [--api] [--public-api] [--public-api-id PUBLIC_API_ID] [--api-port API_PORT] [--api-key API_KEY] + [--admin-key ADMIN_KEY] [--api-enable-ipv6] [--api-disable-ipv4] [--nowebui] Text generation web UI @@ -300,6 +293,7 @@ llama.cpp: --row-split Split the model by rows across GPUs. This may improve multi-gpu performance. --extra-flags EXTRA_FLAGS Extra flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU" --streaming-llm Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed. + --mmproj MMPROJ Path to the mmproj file for vision models. Context and cache: --ctx-size N, --n_ctx N, --max_seq_len N Context size in tokens. @@ -313,6 +307,10 @@ Speculative decoding: --device-draft DEVICE_DRAFT Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1 --ctx-size-draft CTX_SIZE_DRAFT Size of the prompt context for the draft model. If 0, uses the same as the main model. +ExLlamaV3: + --enable-tp, --enable_tp Enable Tensor Parallelism (TP) to split the model across GPUs. + --tp-backend TP_BACKEND The backend for tensor parallelism. Valid options: native, nccl. Default: native. + ExLlamaV2: --gpu-split GPU_SPLIT Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. --autosplit Autosplit the model tensors across the available GPUs. This causes --gpu-split to be ignored. @@ -321,7 +319,6 @@ ExLlamaV2: --no_xformers Force xformers to not be used. --no_sdpa Force Torch SDPA to not be used. --num_experts_per_token N Number of experts to use for generation. Applies to MoE models like Mixtral. - --enable_tp Enable Tensor Parallelism (TP) in ExLlamaV2. TensorRT-LLM: --cpp-runner Use the ModelRunnerCpp runner, which is faster than the default ModelRunner but doesn't support streaming yet. @@ -381,7 +378,7 @@ text-generation-webui └── llama-2-13b-chat.Q4_K_M.gguf ``` -* The remaining model types (like 16-bit Transformers models and EXL2 models) are made of several files and must be placed in a subfolder. Example: +* The remaining model types (like 16-bit Transformers models and EXL3 models) are made of several files and must be placed in a subfolder. Example: ``` text-generation-webui diff --git a/css/chat_style-messenger.css b/css/chat_style-messenger.css index 65af5f7a..583703c0 100644 --- a/css/chat_style-messenger.css +++ b/css/chat_style-messenger.css @@ -99,3 +99,9 @@ .message-body p em { color: rgb(110 110 110) !important; } +.editing-textarea { + width: max(30rem) !important; +} +.circle-you + .text .edit-control-button, .circle-you + .text .editing-textarea { + color: #000 !important; +} diff --git a/css/html_instruct_style.css b/css/html_instruct_style.css index 9831ee8f..3e5ebe67 100644 --- a/css/html_instruct_style.css +++ b/css/html_instruct_style.css @@ -13,7 +13,7 @@ line-height: 28px !important; } -.dark .chat .message-body :is(p, li, q, h1, h2, h3, h4, h5, h6) { +.dark .chat .message-body :is(p, li, q, em, h1, h2, h3, h4, h5, h6) { color: #d1d5db !important; } diff --git a/css/main.css b/css/main.css index 240a94d5..062d3eb2 100644 --- a/css/main.css +++ b/css/main.css @@ -1577,6 +1577,20 @@ strong { margin-top: 4px; } +.image-attachment { + flex-direction: column; + max-width: 314px; +} + +.image-preview { + border-radius: 16px; + margin-bottom: 5px; + object-fit: cover; + object-position: center; + border: 2px solid var(--border-color-primary); + aspect-ratio: 1 / 1; +} + button:focus { outline: none; } diff --git a/docs/12 - OpenAI API.md b/docs/12 - OpenAI API.md index ec999397..227541a3 100644 --- a/docs/12 - OpenAI API.md +++ b/docs/12 - OpenAI API.md @@ -77,6 +77,68 @@ curl http://127.0.0.1:5000/v1/chat/completions \ }' ``` +#### Multimodal/vision (llama.cpp and ExLlamaV3) + +##### With /v1/chat/completions (recommended!) + +```shell +curl http://127.0.0.1:5000/v1/chat/completions \ + -H "Content-Type: application/json" \ + -d '{ + "messages": [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Please describe what you see in this image."}, + {"type": "image_url", "image_url": {"url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/cat.png?raw=true"}} + ] + } + ], + "temperature": 0.6, + "top_p": 0.95, + "top_k": 20 + }' +``` + +For base64-encoded images, just replace the inner "url" value with this format: `_STRING` where FORMAT is the file type (png, jpeg, gif, etc.) and BASE64_STRING is your base64-encoded image data. + +##### With /v1/completions + +```shell +curl http://127.0.0.1:5000/v1/completions \ + -H "Content-Type: application/json" \ + -d '{ + "messages": [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "About image <__media__> and image <__media__>, what I can say is that the first one" + }, + { + "type": "image_url", + "image_url": { + "url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/cat.png?raw=true" + } + }, + { + "type": "image_url", + "image_url": { + "url": "https://github.com/turboderp-org/exllamav3/blob/master/examples/media/strawberry.png?raw=true" + } + } + ] + } + ], + "temperature": 0.6, + "top_p": 0.95, + "top_k": 20 + }' +``` + +For base64-encoded images, just replace the inner "url" values with this format: `_STRING` where FORMAT is the file type (png, jpeg, gif, etc.) and BASE64_STRING is your base64-encoded image data. + #### SSE streaming ```shell diff --git a/docs/Multimodal Tutorial.md b/docs/Multimodal Tutorial.md new file mode 100644 index 00000000..a30889f7 --- /dev/null +++ b/docs/Multimodal Tutorial.md @@ -0,0 +1,66 @@ +## Getting started + +### 1. Find a multimodal model + +GGUF models with vision capabilities are uploaded along a `mmproj` file to Hugging Face. + +For instance, [unsloth/gemma-3-4b-it-GGUF](https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/tree/main) has this: + +print1 + +### 2. Download the model to `user_data/models` + +As an example, download + +https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/resolve/main/gemma-3-4b-it-Q4_K_S.gguf?download=true + +to your `text-generation-webui/user_data/models` folder. + +### 3. Download the associated mmproj file to `user_data/mmproj` + +Then download + +https://huggingface.co/unsloth/gemma-3-4b-it-GGUF/resolve/main/mmproj-F16.gguf?download=true + +to your `text-generation-webui/user_data/mmproj` folder. Name it `mmproj-gemma-3-4b-it-F16.gguf` to give it a recognizable name. + +### 4. Load the model + +1. Launch the web UI +2. Navigate to the Model tab +3. Select the GGUF model in the Model dropdown: + +print2 + +4. Select the mmproj file in the Multimodal (vision) menu: + +print3 + +5. Click "Load" + +### 5. Send a message with an image + +Select your image by clicking on the 📎 icon and send your message: + +print5 + +The model will reply with great understanding of the image contents: + +print6 + +## Multimodal with ExLlamaV3 + +Multimodal also works with the ExLlamaV3 loader (the non-HF one). + +No additional files are necessary, just load a multimodal EXL3 model and send an image. + +Examples of models that you can use: + +- https://huggingface.co/turboderp/gemma-3-27b-it-exl3 +- https://huggingface.co/turboderp/Mistral-Small-3.1-24B-Instruct-2503-exl3 + +## Multimodal API examples + +In the page below you can find some ready-to-use examples: + +[Multimodal/vision (llama.cpp and ExLlamaV3)](https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API#multimodalvision-llamacpp-and-exllamav3) diff --git a/extensions/openai/completions.py b/extensions/openai/completions.py index 5181b18b..c3037d0c 100644 --- a/extensions/openai/completions.py +++ b/extensions/openai/completions.py @@ -16,6 +16,8 @@ from modules.chat import ( load_character_memoized, load_instruction_template_memoized ) +from modules.image_utils import convert_openai_messages_to_images +from modules.logging_colors import logger from modules.presets import load_preset_memoized from modules.text_generation import decode, encode, generate_reply @@ -82,6 +84,33 @@ def process_parameters(body, is_legacy=False): return generate_params +def process_multimodal_content(content): + """Extract text and add image placeholders from OpenAI multimodal format""" + if isinstance(content, str): + return content + + if isinstance(content, list): + text_parts = [] + image_placeholders = "" + for item in content: + if not isinstance(item, dict): + continue + + item_type = item.get('type', '') + if item_type == 'text': + text_parts.append(item.get('text', '')) + elif item_type == 'image_url': + image_placeholders += "<__media__>" + + final_text = ' '.join(text_parts) + if image_placeholders: + return f"{image_placeholders}\n\n{final_text}" + else: + return final_text + + return str(content) + + def convert_history(history): ''' Chat histories in this program are in the format [message, reply]. @@ -99,8 +128,11 @@ def convert_history(history): role = entry["role"] if role == "user": + # Extract text content (images handled by model-specific code) + content = process_multimodal_content(content) user_input = content user_input_last = True + if current_message: chat_dialogue.append([current_message, '', '']) current_message = "" @@ -126,7 +158,11 @@ def convert_history(history): if not user_input_last: user_input = "" - return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)} + return user_input, system_message, { + 'internal': chat_dialogue, + 'visible': copy.deepcopy(chat_dialogue), + 'messages': history # Store original messages for multimodal models + } def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, prompt_only=False) -> dict: @@ -150,9 +186,23 @@ def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, p elif m['role'] == 'function': raise InvalidRequestError(message="role: function is not supported.", param='messages') - if 'content' not in m and "image_url" not in m: + # Handle multimodal content validation + content = m.get('content') + if content is None: raise InvalidRequestError(message="messages: missing content", param='messages') + # Validate multimodal content structure + if isinstance(content, list): + for item in content: + if not isinstance(item, dict) or 'type' not in item: + raise InvalidRequestError(message="messages: invalid content item format", param='messages') + if item['type'] not in ['text', 'image_url']: + raise InvalidRequestError(message="messages: unsupported content type", param='messages') + if item['type'] == 'text' and 'text' not in item: + raise InvalidRequestError(message="messages: missing text in content item", param='messages') + if item['type'] == 'image_url' and ('image_url' not in item or 'url' not in item['image_url']): + raise InvalidRequestError(message="messages: missing image_url in content item", param='messages') + # Chat Completions object_type = 'chat.completion' if not stream else 'chat.completion.chunk' created_time = int(time.time()) @@ -336,9 +386,26 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False): prompt_str = 'context' if is_legacy else 'prompt' - # ... encoded as a string, array of strings, array of tokens, or array of token arrays. - if prompt_str not in body: - raise InvalidRequestError("Missing required input", param=prompt_str) + # Handle both prompt and messages format for unified multimodal support + if prompt_str not in body or body[prompt_str] is None: + if 'messages' in body: + # Convert messages format to prompt for completions endpoint + prompt_text = "" + for message in body.get('messages', []): + if isinstance(message, dict) and 'content' in message: + # Extract text content from multimodal messages + content = message['content'] + if isinstance(content, str): + prompt_text += content + elif isinstance(content, list): + for item in content: + if isinstance(item, dict) and item.get('type') == 'text': + prompt_text += item.get('text', '') + + # Allow empty prompts for image-only requests + body[prompt_str] = prompt_text + else: + raise InvalidRequestError("Missing required input", param=prompt_str) # common params generate_params = process_parameters(body, is_legacy=is_legacy) @@ -349,9 +416,22 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False): suffix = body['suffix'] if body['suffix'] else '' echo = body['echo'] + # Add messages to generate_params if present for multimodal processing + if body.get('messages'): + generate_params['messages'] = body['messages'] + raw_images = convert_openai_messages_to_images(generate_params['messages']) + if raw_images: + logger.info(f"Found {len(raw_images)} image(s) in request.") + generate_params['raw_images'] = raw_images + if not stream: prompt_arg = body[prompt_str] - if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)): + + # Handle empty/None prompts (e.g., image-only requests) + if prompt_arg is None: + prompt_arg = "" + + if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and len(prompt_arg) > 0 and isinstance(prompt_arg[0], int)): prompt_arg = [prompt_arg] resp_list_data = [] @@ -359,7 +439,7 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False): total_prompt_token_count = 0 for idx, prompt in enumerate(prompt_arg, start=0): - if isinstance(prompt[0], int): + if isinstance(prompt, list) and len(prompt) > 0 and isinstance(prompt[0], int): # token lists if requested_model == shared.model_name: prompt = decode(prompt)[0] @@ -448,7 +528,6 @@ def completions_common(body: dict, is_legacy: bool = False, stream=False): # generate reply ####################################### debug_msg({'prompt': prompt, 'generate_params': generate_params}) generator = generate_reply(prompt, generate_params, is_chat=False) - answer = '' seen_content = '' completion_token_count = 0 diff --git a/extensions/openai/typing.py b/extensions/openai/typing.py index 6bd3749f..56d91582 100644 --- a/extensions/openai/typing.py +++ b/extensions/openai/typing.py @@ -2,7 +2,7 @@ import json import time from typing import Dict, List, Optional -from pydantic import BaseModel, Field, validator +from pydantic import BaseModel, Field, model_validator, validator class GenerationOptions(BaseModel): @@ -99,13 +99,14 @@ class ToolCall(BaseModel): class CompletionRequestParams(BaseModel): model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.") - prompt: str | List[str] + prompt: str | List[str] | None = Field(default=None, description="Text prompt for completion. Can also use 'messages' format for multimodal.") + messages: List[dict] | None = Field(default=None, description="OpenAI messages format for multimodal support. Alternative to 'prompt'.") best_of: int | None = Field(default=1, description="Unused parameter.") echo: bool | None = False frequency_penalty: float | None = 0 logit_bias: dict | None = None logprobs: int | None = None - max_tokens: int | None = 16 + max_tokens: int | None = 512 n: int | None = Field(default=1, description="Unused parameter.") presence_penalty: float | None = 0 stop: str | List[str] | None = None @@ -115,6 +116,12 @@ class CompletionRequestParams(BaseModel): top_p: float | None = 1 user: str | None = Field(default=None, description="Unused parameter.") + @model_validator(mode='after') + def validate_prompt_or_messages(self): + if self.prompt is None and self.messages is None: + raise ValueError("Either 'prompt' or 'messages' must be provided") + return self + class CompletionRequest(GenerationOptions, CompletionRequestParams): pass @@ -220,7 +227,7 @@ class LogitsRequestParams(BaseModel): use_samplers: bool = False top_logits: int | None = 50 frequency_penalty: float | None = 0 - max_tokens: int | None = 16 + max_tokens: int | None = 512 presence_penalty: float | None = 0 temperature: float | None = 1 top_p: float | None = 1 diff --git a/js/main.js b/js/main.js index e0f9314d..4b4b14c2 100644 --- a/js/main.js +++ b/js/main.js @@ -583,7 +583,7 @@ function moveToChatTab() { const chatControlsFirstChild = document.querySelector("#chat-controls").firstElementChild; const newParent = chatControlsFirstChild; - let newPosition = newParent.children.length - 2; + let newPosition = newParent.children.length - 3; newParent.insertBefore(grandParent, newParent.children[newPosition]); document.getElementById("save-character").style.display = "none"; @@ -977,7 +977,7 @@ if (document.readyState === "loading") { //------------------------------------------------ // File upload button -document.querySelector("#chat-input .upload-button").title = "Upload text files, PDFs, and DOCX documents"; +document.querySelector("#chat-input .upload-button").title = "Upload text files, PDFs, DOCX documents, and images"; // Activate web search document.getElementById("web-search").title = "Search the internet with DuckDuckGo"; diff --git a/modules/chat.py b/modules/chat.py index 1ab91b5e..ab6b43c0 100644 --- a/modules/chat.py +++ b/modules/chat.py @@ -269,18 +269,29 @@ def generate_chat_prompt(user_input, state, **kwargs): enhanced_user_msg = user_msg # Add attachment content if present AND if past attachments are enabled - if (state.get('include_past_attachments', True) and user_key in metadata and "attachments" in metadata[user_key]): + if user_key in metadata and "attachments" in metadata[user_key]: attachments_text = "" - for attachment in metadata[user_key]["attachments"]: - filename = attachment.get("name", "file") - content = attachment.get("content", "") - if attachment.get("type") == "text/html" and attachment.get("url"): - attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n" - else: - attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n" + image_refs = "" - if attachments_text: - enhanced_user_msg = f"{user_msg}\n\nATTACHMENTS:\n{attachments_text}" + for attachment in metadata[user_key]["attachments"]: + if attachment.get("type") == "image": + # Add image reference for multimodal models + image_refs += "<__media__>" + elif state.get('include_past_attachments', True): + # Handle text/PDF attachments + filename = attachment.get("name", "file") + content = attachment.get("content", "") + if attachment.get("type") == "text/html" and attachment.get("url"): + attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n" + else: + attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n" + + if image_refs or attachments_text: + enhanced_user_msg = user_msg + if image_refs: + enhanced_user_msg = f"{image_refs}\n\n{enhanced_user_msg}" + if attachments_text: + enhanced_user_msg += f"\n\nATTACHMENTS:\n{attachments_text}" messages.insert(insert_pos, {"role": "user", "content": enhanced_user_msg}) @@ -301,16 +312,25 @@ def generate_chat_prompt(user_input, state, **kwargs): if user_key in metadata and "attachments" in metadata[user_key]: attachments_text = "" - for attachment in metadata[user_key]["attachments"]: - filename = attachment.get("name", "file") - content = attachment.get("content", "") - if attachment.get("type") == "text/html" and attachment.get("url"): - attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n" - else: - attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n" + image_refs = "" - if attachments_text: - user_input = f"{user_input}\n\nATTACHMENTS:\n{attachments_text}" + for attachment in metadata[user_key]["attachments"]: + if attachment.get("type") == "image": + image_refs += "<__media__>" + else: + filename = attachment.get("name", "file") + content = attachment.get("content", "") + if attachment.get("type") == "text/html" and attachment.get("url"): + attachments_text += f"\nName: {filename}\nURL: {attachment['url']}\nContents:\n\n=====\n{content}\n=====\n\n" + else: + attachments_text += f"\nName: {filename}\nContents:\n\n=====\n{content}\n=====\n\n" + + if image_refs or attachments_text: + user_input = user_input + if image_refs: + user_input = f"{image_refs}\n\n{user_input}" + if attachments_text: + user_input += f"\n\nATTACHMENTS:\n{attachments_text}" messages.append({"role": "user", "content": user_input}) @@ -594,29 +614,63 @@ def add_message_attachment(history, row_idx, file_path, is_user=True): file_extension = path.suffix.lower() try: - # Handle different file types - if file_extension == '.pdf': + # Handle image files + if file_extension in ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']: + # Convert image to base64 + with open(path, 'rb') as f: + image_data = base64.b64encode(f.read()).decode('utf-8') + + # Determine MIME type from extension + mime_type_map = { + '.jpg': 'image/jpeg', + '.jpeg': 'image/jpeg', + '.png': 'image/png', + '.webp': 'image/webp', + '.bmp': 'image/bmp', + '.gif': 'image/gif' + } + mime_type = mime_type_map.get(file_extension, 'image/jpeg') + + # Format as data URL + data_url = f"data:{mime_type};base64,{image_data}" + + # Generate unique image ID + image_id = len([att for att in history['metadata'][key]["attachments"] if att.get("type") == "image"]) + 1 + + attachment = { + "name": filename, + "type": "image", + "image_data": data_url, + "image_id": image_id, + } + elif file_extension == '.pdf': # Process PDF file content = extract_pdf_text(path) - file_type = "application/pdf" + attachment = { + "name": filename, + "type": "application/pdf", + "content": content, + } elif file_extension == '.docx': content = extract_docx_text(path) - file_type = "application/docx" + attachment = { + "name": filename, + "type": "application/docx", + "content": content, + } else: # Default handling for text files with open(path, 'r', encoding='utf-8') as f: content = f.read() - file_type = "text/plain" - # Add attachment - attachment = { - "name": filename, - "type": file_type, - "content": content, - } + attachment = { + "name": filename, + "type": "text/plain", + "content": content, + } history['metadata'][key]["attachments"].append(attachment) - return content # Return the content for reuse + return attachment # Return the attachment for reuse except Exception as e: logger.error(f"Error processing attachment {filename}: {e}") return None @@ -814,6 +868,22 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess 'metadata': output['metadata'] } + row_idx = len(output['internal']) - 1 + + # Collect image attachments for multimodal generation from the entire history + all_image_attachments = [] + if 'metadata' in output: + for i in range(len(output['internal'])): + user_key = f"user_{i}" + if user_key in output['metadata'] and "attachments" in output['metadata'][user_key]: + for attachment in output['metadata'][user_key]["attachments"]: + if attachment.get("type") == "image": + all_image_attachments.append(attachment) + + # Add all collected image attachments to state for the generation + if all_image_attachments: + state['image_attachments'] = all_image_attachments + # Generate the prompt kwargs = { '_continue': _continue, @@ -828,7 +898,6 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess prompt = generate_chat_prompt(text, state, **kwargs) # Add timestamp for assistant's response at the start of generation - row_idx = len(output['internal']) - 1 update_message_metadata(output['metadata'], "assistant", row_idx, timestamp=get_current_timestamp(), model_name=shared.model_name) # Generate diff --git a/modules/exllamav2.py b/modules/exllamav2.py index 6bb422ea..5d5c5b56 100644 --- a/modules/exllamav2.py +++ b/modules/exllamav2.py @@ -135,7 +135,8 @@ class Exllamav2Model: return result, result def encode(self, string, **kwargs): - return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True) + add_bos = kwargs.pop('add_bos', True) + return self.tokenizer.encode(string, add_bos=add_bos, encode_special_tokens=True, **kwargs) def decode(self, ids, **kwargs): if isinstance(ids, list): diff --git a/modules/exllamav3.py b/modules/exllamav3.py new file mode 100644 index 00000000..fd676a00 --- /dev/null +++ b/modules/exllamav3.py @@ -0,0 +1,415 @@ +import traceback +from pathlib import Path +from typing import Any, List, Tuple + +from exllamav3 import Cache, Config, Generator, Model, Tokenizer +from exllamav3.cache import CacheLayer_fp16, CacheLayer_quant +from exllamav3.generator import Job +from exllamav3.generator.sampler import ( + CustomSampler, + SS_Argmax, + SS_MinP, + SS_PresFreqP, + SS_RepP, + SS_Sample, + SS_Temperature, + SS_TopK, + SS_TopP +) + +from modules import shared +from modules.image_utils import ( + convert_image_attachments_to_pil, + convert_openai_messages_to_images +) +from modules.logging_colors import logger +from modules.text_generation import get_max_prompt_length + +try: + import flash_attn +except Exception: + logger.warning('Failed to load flash-attention due to the following error:\n') + traceback.print_exc() + + +class Exllamav3Model: + def __init__(self): + pass + + @classmethod + def from_pretrained(cls, path_to_model): + path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) + + # Reset global MMTokenAllocator to prevent token ID corruption when switching models + from exllamav3.tokenizer.mm_embedding import ( + FIRST_MM_EMBEDDING_INDEX, + global_allocator + ) + global_allocator.next_token_index = FIRST_MM_EMBEDDING_INDEX + + config = Config.from_directory(str(path_to_model)) + model = Model.from_config(config) + + # Calculate the closest multiple of 256 at or above the chosen value + max_tokens = shared.args.ctx_size + if max_tokens % 256 != 0: + adjusted_tokens = ((max_tokens // 256) + 1) * 256 + logger.warning(f"max_num_tokens must be a multiple of 256. Adjusting from {max_tokens} to {adjusted_tokens}") + max_tokens = adjusted_tokens + + # Parse cache type (ExLlamaV2 pattern) + cache_type = shared.args.cache_type.lower() + cache_kwargs = {} + if cache_type == 'fp16': + layer_type = CacheLayer_fp16 + elif cache_type.startswith('q'): + layer_type = CacheLayer_quant + if '_' in cache_type: + # Different bits for k and v (e.g., q4_q8) + k_part, v_part = cache_type.split('_') + k_bits = int(k_part[1:]) + v_bits = int(v_part[1:]) + else: + # Same bits for k and v (e.g., q4) + k_bits = v_bits = int(cache_type[1:]) + + # Validate bit ranges + if not (2 <= k_bits <= 8 and 2 <= v_bits <= 8): + logger.warning(f"Invalid quantization bits: k_bits={k_bits}, v_bits={v_bits}. Must be between 2 and 8. Falling back to fp16.") + layer_type = CacheLayer_fp16 + else: + cache_kwargs = {'k_bits': k_bits, 'v_bits': v_bits} + else: + logger.warning(f"Unrecognized cache type: {cache_type}. Falling back to fp16.") + layer_type = CacheLayer_fp16 + + cache = Cache(model, max_num_tokens=max_tokens, layer_type=layer_type, **cache_kwargs) + + load_params = {'progressbar': True} + split = None + if shared.args.gpu_split: + split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] + load_params['use_per_device'] = split + + # Tensor-parallelism + if shared.args.enable_tp: + load_params['tensor_p'] = True + load_params['tp_backend'] = shared.args.tp_backend + + model.load(**load_params) + tokenizer = Tokenizer.from_config(config) + + # Initialize draft model for speculative decoding + draft_model = None + draft_cache = None + if shared.args.model_draft and shared.args.model_draft.lower() not in ["", "none"]: + logger.info(f"Loading draft model for speculative decoding: {shared.args.model_draft}") + + draft_path = Path(shared.args.model_draft) + if not draft_path.is_dir(): + draft_path = Path(f'{shared.args.model_dir}') / Path(shared.args.model_draft) + + if not draft_path.is_dir(): + logger.warning(f"Draft model not found at {draft_path}, speculative decoding disabled.") + else: + draft_config = Config.from_directory(str(draft_path)) + + # Set context size for draft model with 256-multiple validation + if shared.args.ctx_size_draft > 0: + draft_max_tokens = shared.args.ctx_size_draft + else: + draft_max_tokens = shared.args.ctx_size + + # Validate draft model context size is a multiple of 256 + if draft_max_tokens % 256 != 0: + adjusted_draft_tokens = ((draft_max_tokens // 256) + 1) * 256 + logger.warning(f"Draft model max_num_tokens must be a multiple of 256. Adjusting from {draft_max_tokens} to {adjusted_draft_tokens}") + draft_max_tokens = adjusted_draft_tokens + + draft_config.max_seq_len = draft_max_tokens + + draft_model = Model.from_config(draft_config) + draft_cache = Cache(draft_model, max_num_tokens=draft_max_tokens, layer_type=layer_type, **cache_kwargs) + + draft_load_params = {'progressbar': True} + if split: + draft_load_params['use_per_device'] = split + + draft_model.load(**draft_load_params) + logger.info(f"Draft model loaded successfully. Max speculative tokens: {shared.args.draft_max}") + + # Load vision model component (ExLlamaV3 native) + vision_model = None + if "vision_config" in config.config_dict: + logger.info("Vision component detected in model config. Attempting to load...") + try: + vision_model = Model.from_config(config, component="vision") + vision_model.load(progressbar=True) + logger.info("Vision model loaded successfully.") + except Exception as e: + logger.warning(f"Vision model loading failed (multimodal disabled): {e}") + else: + logger.info("No vision component in model config. Skipping multimodal setup.") + + generator = Generator( + model=model, + cache=cache, + tokenizer=tokenizer, + draft_model=draft_model, + draft_cache=draft_cache, + num_speculative_tokens=shared.args.draft_max if draft_model is not None else 0, + ) + + result = cls() + result.model = model + result.cache = cache + result.tokenizer = tokenizer + result.generator = generator + result.config = config + result.max_tokens = max_tokens + result.vision_model = vision_model + result.draft_model = draft_model + result.draft_cache = draft_cache + + return result + + def is_multimodal(self) -> bool: + """Check if this model supports multimodal input.""" + return hasattr(self, 'vision_model') and self.vision_model is not None + + def _process_images_for_generation(self, prompt: str, state: dict) -> Tuple[str, List[Any]]: + """ + Process all possible image inputs and return modified prompt + embeddings. + Returns: (processed_prompt, image_embeddings) + """ + # Collect images from various sources using shared utilities + pil_images = [] + + # From webui image_attachments (preferred format) + if 'image_attachments' in state and state['image_attachments']: + pil_images.extend(convert_image_attachments_to_pil(state['image_attachments'])) + # From OpenAI API raw_images + elif 'raw_images' in state and state['raw_images']: + pil_images.extend(state['raw_images']) + # From OpenAI API messages format + elif 'messages' in state and state['messages']: + pil_images.extend(convert_openai_messages_to_images(state['messages'])) + + if not pil_images: + return prompt, [] + + # ExLlamaV3-specific: Generate embeddings + try: + # Use pre-computed embeddings if available (proper MMEmbedding lifetime) + if 'image_embeddings' in state and state['image_embeddings']: + # Use existing embeddings - this preserves MMEmbedding lifetime + image_embeddings = state['image_embeddings'] + else: + # Do not reset the cache/allocator index; it causes token ID conflicts during generation. + logger.info(f"Processing {len(pil_images)} image(s) with ExLlamaV3 vision model") + image_embeddings = [ + self.vision_model.get_image_embeddings(tokenizer=self.tokenizer, image=img) + for img in pil_images + ] + + # ExLlamaV3-specific: Handle prompt processing with placeholders + placeholders = [ie.text_alias for ie in image_embeddings] + + if '<__media__>' in prompt: + # Web chat: Replace <__media__> placeholders + for alias in placeholders: + prompt = prompt.replace('<__media__>', alias, 1) + logger.info(f"Replaced {len(placeholders)} <__media__> placeholder(s)") + else: + # API: Prepend embedding aliases + combined_placeholders = "\n".join(placeholders) + prompt = combined_placeholders + "\n" + prompt + logger.info(f"Prepended {len(placeholders)} embedding(s) to prompt") + + return prompt, image_embeddings + + except Exception as e: + logger.error(f"Failed to process images: {e}") + return prompt, [] + + def generate_with_streaming(self, prompt, state): + """ + Generate text with streaming using native ExLlamaV3 API + """ + + if shared.is_multimodal: + # Process images and modify prompt (ExLlamaV3-specific) + prompt, image_embeddings = self._process_images_for_generation(prompt, state) + else: + image_embeddings = [] + + # Greedy decoding is a special case + if state['temperature'] == 0: + sampler = CustomSampler([SS_Argmax()]) + else: + # 1. Create a list of all active, unordered samplers + unordered_samplers = [] + + # Penalties + penalty_range = state['repetition_penalty_range'] + if penalty_range <= 0: + penalty_range = int(10e7) # Use large number for "full context" + rep_decay = 0 # Not a configurable parameter + + # Add penalty samplers if they are active + if state['repetition_penalty'] != 1.0: + unordered_samplers.append(SS_RepP(state['repetition_penalty'], penalty_range, rep_decay)) + if state['presence_penalty'] != 0.0 or state['frequency_penalty'] != 0.0: + unordered_samplers.append(SS_PresFreqP(state['presence_penalty'], state['frequency_penalty'], penalty_range, rep_decay)) + + # Standard samplers + if state['top_k'] > 0: + unordered_samplers.append(SS_TopK(state['top_k'])) + if state['top_p'] < 1.0: + unordered_samplers.append(SS_TopP(state['top_p'])) + if state['min_p'] > 0.0: + unordered_samplers.append(SS_MinP(state['min_p'])) + + # Temperature (SS_NoOp is returned if temp is 1.0) + unordered_samplers.append(SS_Temperature(state['temperature'])) + + # 2. Define the mapping from class names to the priority list keys + class_name_to_nickname = { + 'SS_RepP': 'repetition_penalty', + 'SS_PresFreqP': 'presence_frequency_penalty', + 'SS_TopK': 'top_k', + 'SS_TopP': 'top_p', + 'SS_MinP': 'min_p', + 'SS_Temperature': 'temperature', + } + + # 3. Get the priority list and handle temperature_last + default_priority = ['repetition_penalty', 'presence_frequency_penalty', 'top_k', 'top_p', 'min_p', 'temperature'] + sampler_priority = state.get('sampler_priority') or default_priority + + if state['temperature_last'] and 'temperature' in sampler_priority: + sampler_priority.append(sampler_priority.pop(sampler_priority.index('temperature'))) + + # 4. Sort the unordered list based on the priority list + def custom_sort_key(sampler_obj): + class_name = sampler_obj.__class__.__name__ + nickname = class_name_to_nickname.get(class_name) + if nickname and nickname in sampler_priority: + return sampler_priority.index(nickname) + return -1 + + ordered_samplers = sorted(unordered_samplers, key=custom_sort_key) + + # 5. Add the final sampling stage and build the sampler + ordered_samplers.append(SS_Sample()) + sampler = CustomSampler(ordered_samplers) + + # Encode prompt with embeddings (ExLlamaV3-specific) + input_ids = self.tokenizer.encode( + prompt, + add_bos=state['add_bos_token'], + encode_special_tokens=True, + embeddings=image_embeddings, + ) + + input_ids = input_ids[:, -get_max_prompt_length(state):] + + self._last_prompt_token_count = input_ids.shape[-1] + + # Determine max_new_tokens + if state['auto_max_new_tokens']: + max_new_tokens = state['truncation_length'] - self._last_prompt_token_count + else: + max_new_tokens = state['max_new_tokens'] + + # Get stop conditions + stop_conditions = [] + if not state['ban_eos_token']: + if hasattr(self.tokenizer, 'eos_token_id') and self.tokenizer.eos_token_id is not None: + stop_conditions.append(self.tokenizer.eos_token_id) + + job = Job( + input_ids=input_ids, + max_new_tokens=max_new_tokens, + decode_special_tokens=not state['skip_special_tokens'], + embeddings=image_embeddings if image_embeddings else None, + sampler=sampler, + stop_conditions=stop_conditions if stop_conditions else None, + ) + + # Stream generation + self.generator.enqueue(job) + + response_text = "" + + try: + while self.generator.num_remaining_jobs(): + results = self.generator.iterate() + for result in results: + if "eos" in result and result["eos"]: + break + + chunk = result.get("text", "") + if chunk: + response_text += chunk + yield response_text + + finally: + self.generator.clear_queue() + + def generate(self, prompt, state): + output = "" + for chunk in self.generate_with_streaming(prompt, state): + output = chunk + + return output + + def encode(self, string, **kwargs): + add_bos = kwargs.pop('add_bos', True) + return self.tokenizer.encode(string, add_bos=add_bos, **kwargs) + + def decode(self, ids, **kwargs): + return self.tokenizer.decode(ids, **kwargs) + + @property + def last_prompt_token_count(self): + return getattr(self, '_last_prompt_token_count', 0) + + def unload(self): + logger.info("Unloading ExLlamaV3 model components...") + + if hasattr(self, 'vision_model') and self.vision_model is not None: + try: + del self.vision_model + except Exception as e: + logger.warning(f"Error unloading vision model: {e}") + self.vision_model = None + + if hasattr(self, 'draft_model') and self.draft_model is not None: + try: + self.draft_model.unload() + del self.draft_model + except Exception as e: + logger.warning(f"Error unloading draft model: {e}") + self.draft_model = None + + if hasattr(self, 'draft_cache') and self.draft_cache is not None: + self.draft_cache = None + + if hasattr(self, 'model') and self.model is not None: + try: + self.model.unload() + del self.model + except Exception as e: + logger.warning(f"Error unloading main model: {e}") + + self.model = None + + if hasattr(self, 'cache') and self.cache is not None: + self.cache = None + + if hasattr(self, 'generator') and self.generator is not None: + self.generator = None + + if hasattr(self, 'tokenizer') and self.tokenizer is not None: + self.tokenizer = None diff --git a/modules/exllamav3_hf.py b/modules/exllamav3_hf.py index 1254ff5d..d9f4ed57 100644 --- a/modules/exllamav3_hf.py +++ b/modules/exllamav3_hf.py @@ -74,6 +74,11 @@ class Exllamav3HF(PreTrainedModel, GenerationMixin): split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] load_params['use_per_device'] = split + # Tensor-parallelism + if shared.args.enable_tp: + load_params['tensor_p'] = True + load_params['tp_backend'] = shared.args.tp_backend + self.ex_model.load(**load_params) self.past_seq = None self.max_tokens = max_tokens diff --git a/modules/html_generator.py b/modules/html_generator.py index 79237f7f..279f9ba6 100644 --- a/modules/html_generator.py +++ b/modules/html_generator.py @@ -306,6 +306,9 @@ def process_markdown_content(string): # Convert to HTML using markdown html_output = markdown.markdown(result, extensions=['fenced_code', 'tables', SaneListExtension()]) + # Remove extra newlines before + html_output = re.sub(r'\s*', '', html_output) + # Unescape code blocks pattern = re.compile(r']*>(.*?)', re.DOTALL) html_output = pattern.sub(lambda x: html.unescape(x.group()), html_output) @@ -406,16 +409,26 @@ def format_message_attachments(history, role, index): for attachment in attachments: name = html.escape(attachment["name"]) - # Make clickable if URL exists - if "url" in attachment: - name = f'{name}' + if attachment.get("type") == "image": + image_data = attachment.get("image_data", "") + attachments_html += ( + f'
' + f'{name}' + f'
{name}
' + f'
' + ) + else: + # Make clickable if URL exists (web search) + if "url" in attachment: + name = f'{name}' + + attachments_html += ( + f'
' + f'
{attachment_svg}
' + f'
{name}
' + f'
' + ) - attachments_html += ( - f'
' - f'
{attachment_svg}
' - f'
{name}
' - f'
' - ) attachments_html += '' return attachments_html diff --git a/modules/image_utils.py b/modules/image_utils.py new file mode 100644 index 00000000..658f00d7 --- /dev/null +++ b/modules/image_utils.py @@ -0,0 +1,106 @@ +""" +Shared image processing utilities for multimodal support. +Used by both ExLlamaV3 and llama.cpp implementations. +""" +import base64 +import io +from typing import Any, List, Tuple + +from PIL import Image + +from modules.logging_colors import logger + + +def convert_pil_to_base64(image: Image.Image) -> str: + """Converts a PIL Image to a base64 encoded string.""" + buffered = io.BytesIO() + # Save image to an in-memory bytes buffer in PNG format + image.save(buffered, format="PNG") + # Encode the bytes to a base64 string + return base64.b64encode(buffered.getvalue()).decode('utf-8') + + +def decode_base64_image(base64_string: str) -> Image.Image: + """Decodes a base64 string to a PIL Image.""" + try: + if base64_string.startswith('data:image/'): + base64_string = base64_string.split(',', 1)[1] + + image_data = base64.b64decode(base64_string) + image = Image.open(io.BytesIO(image_data)) + return image + except Exception as e: + logger.error(f"Failed to decode base64 image: {e}") + raise ValueError(f"Invalid base64 image data: {e}") + + +def process_message_content(content: Any) -> Tuple[str, List[Image.Image]]: + """ + Processes message content that may contain text and images. + Returns: A tuple of (text_content, list_of_pil_images). + """ + if isinstance(content, str): + return content, [] + + if isinstance(content, list): + text_parts = [] + images = [] + for item in content: + if not isinstance(item, dict): + continue + + item_type = item.get('type', '') + if item_type == 'text': + text_parts.append(item.get('text', '')) + elif item_type == 'image_url': + image_url_data = item.get('image_url', {}) + image_url = image_url_data.get('url', '') + + if image_url.startswith('data:image/'): + try: + images.append(decode_base64_image(image_url)) + except Exception as e: + logger.warning(f"Failed to process a base64 image: {e}") + elif image_url.startswith('http'): + # Support external URLs + try: + import requests + response = requests.get(image_url, timeout=10) + response.raise_for_status() + image_data = response.content + image = Image.open(io.BytesIO(image_data)) + images.append(image) + logger.info("Successfully loaded external image from URL") + except Exception as e: + logger.warning(f"Failed to fetch external image: {e}") + else: + logger.warning(f"Unsupported image URL format: {image_url[:70]}...") + + return ' '.join(text_parts), images + + return str(content), [] + + +def convert_image_attachments_to_pil(image_attachments: List[dict]) -> List[Image.Image]: + """Convert webui image_attachments format to PIL Images.""" + pil_images = [] + for attachment in image_attachments: + if attachment.get('type') == 'image' and 'image_data' in attachment: + try: + image = decode_base64_image(attachment['image_data']) + if image.mode != 'RGB': + image = image.convert('RGB') + pil_images.append(image) + except Exception as e: + logger.warning(f"Failed to process image attachment: {e}") + return pil_images + + +def convert_openai_messages_to_images(messages: List[dict]) -> List[Image.Image]: + """Convert OpenAI messages format to PIL Images.""" + all_images = [] + for message in messages: + if isinstance(message, dict) and 'content' in message: + _, images = process_message_content(message['content']) + all_images.extend(images) + return all_images diff --git a/modules/llama_cpp_server.py b/modules/llama_cpp_server.py index e64f1694..5953803a 100644 --- a/modules/llama_cpp_server.py +++ b/modules/llama_cpp_server.py @@ -8,11 +8,17 @@ import sys import threading import time from pathlib import Path +from typing import Any, List import llama_cpp_binaries import requests from modules import shared +from modules.image_utils import ( + convert_image_attachments_to_pil, + convert_openai_messages_to_images, + convert_pil_to_base64 +) from modules.logging_colors import logger llamacpp_valid_cache_types = {"fp16", "q8_0", "q4_0"} @@ -124,19 +130,61 @@ class LlamaServer: return payload + def _process_images_for_generation(self, state: dict) -> List[Any]: + """ + Process all possible image inputs and return PIL images + """ + pil_images = [] + # Source 1: Web UI (from chatbot_wrapper) + if 'image_attachments' in state and state['image_attachments']: + pil_images.extend(convert_image_attachments_to_pil(state['image_attachments'])) + # Source 2: Chat Completions API (/v1/chat/completions) + elif 'history' in state and state.get('history', {}).get('messages'): + pil_images.extend(convert_openai_messages_to_images(state['history']['messages'])) + # Source 3: Legacy Completions API (/v1/completions) + elif 'raw_images' in state and state['raw_images']: + pil_images.extend(state.get('raw_images', [])) + + return pil_images + + def is_multimodal(self) -> bool: + """Check if this model supports multimodal input.""" + return shared.args.mmproj not in [None, 'None'] + def generate_with_streaming(self, prompt, state): url = f"http://127.0.0.1:{self.port}/completion" payload = self.prepare_payload(state) - token_ids = self.encode(prompt, add_bos_token=state["add_bos_token"]) - self.last_prompt_token_count = len(token_ids) + pil_images = [] + + if shared.is_multimodal: + pil_images = self._process_images_for_generation(state) + + if pil_images: + # Multimodal case + IMAGE_TOKEN_COST_ESTIMATE = 600 # A safe, conservative estimate per image + + base64_images = [convert_pil_to_base64(img) for img in pil_images] + payload["prompt"] = { + "prompt_string": prompt, + "multimodal_data": base64_images + } + + # Calculate an estimated token count + text_tokens = self.encode(prompt, add_bos_token=state["add_bos_token"]) + self.last_prompt_token_count = len(text_tokens) + (len(pil_images) * IMAGE_TOKEN_COST_ESTIMATE) + else: + # Text only case + token_ids = self.encode(prompt, add_bos_token=state["add_bos_token"]) + self.last_prompt_token_count = len(token_ids) + payload["prompt"] = token_ids + if state['auto_max_new_tokens']: - max_new_tokens = state['truncation_length'] - len(token_ids) + max_new_tokens = state['truncation_length'] - self.last_prompt_token_count else: max_new_tokens = state['max_new_tokens'] payload.update({ - "prompt": token_ids, "n_predict": max_new_tokens, "stream": True, "cache_prompt": True @@ -144,7 +192,7 @@ class LlamaServer: if shared.args.verbose: logger.info("GENERATE_PARAMS=") - printable_payload = {k: v for k, v in payload.items() if k != "prompt"} + printable_payload = {k: (v if k != "prompt" else "[multimodal object]" if pil_images else v) for k, v in payload.items()} pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(printable_payload) print() @@ -295,6 +343,13 @@ class LlamaServer: cmd += ["--rope-freq-scale", str(1.0 / shared.args.compress_pos_emb)] if shared.args.rope_freq_base > 0: cmd += ["--rope-freq-base", str(shared.args.rope_freq_base)] + if shared.args.mmproj not in [None, 'None']: + path = Path(shared.args.mmproj) + if not path.exists(): + path = Path('user_data/mmproj') / shared.args.mmproj + + if path.exists(): + cmd += ["--mmproj", str(path)] if shared.args.model_draft not in [None, 'None']: path = Path(shared.args.model_draft) if not path.exists(): @@ -316,6 +371,7 @@ class LlamaServer: cmd += ["--ctx-size-draft", str(shared.args.ctx_size_draft)] if shared.args.streaming_llm: cmd += ["--cache-reuse", "1"] + cmd += ["--swa-full"] if shared.args.extra_flags: # Clean up the input extra_flags = shared.args.extra_flags.strip() diff --git a/modules/loaders.py b/modules/loaders.py index 251cb4e1..f487633d 100644 --- a/modules/loaders.py +++ b/modules/loaders.py @@ -28,6 +28,8 @@ loaders_and_params = OrderedDict({ 'device_draft', 'ctx_size_draft', 'speculative_decoding_accordion', + 'mmproj', + 'mmproj_accordion', 'vram_info', ], 'Transformers': [ @@ -54,6 +56,19 @@ loaders_and_params = OrderedDict({ 'cfg_cache', 'trust_remote_code', 'no_use_fast', + 'enable_tp', + 'tp_backend', + ], + 'ExLlamav3': [ + 'ctx_size', + 'cache_type', + 'gpu_split', + 'model_draft', + 'draft_max', + 'ctx_size_draft', + 'speculative_decoding_accordion', + 'enable_tp', + 'tp_backend', ], 'ExLlamav2_HF': [ 'ctx_size', @@ -251,6 +266,24 @@ loaders_samplers = { 'grammar_string', 'grammar_file_row', }, + 'ExLlamav3': { + 'temperature', + 'min_p', + 'top_p', + 'top_k', + 'repetition_penalty', + 'frequency_penalty', + 'presence_penalty', + 'repetition_penalty_range', + 'temperature_last', + 'sampler_priority', + 'auto_max_new_tokens', + 'ban_eos_token', + 'add_bos_token', + 'enable_thinking', + 'seed', + 'skip_special_tokens', + }, 'ExLlamav2': { 'temperature', 'dynatemp_low', diff --git a/modules/models.py b/modules/models.py index 7b6a6ce1..39db805a 100644 --- a/modules/models.py +++ b/modules/models.py @@ -19,6 +19,7 @@ def load_model(model_name, loader=None): 'llama.cpp': llama_cpp_server_loader, 'Transformers': transformers_loader, 'ExLlamav3_HF': ExLlamav3_HF_loader, + 'ExLlamav3': ExLlamav3_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader, 'ExLlamav2': ExLlamav2_loader, 'TensorRT-LLM': TensorRT_LLM_loader, @@ -55,6 +56,10 @@ def load_model(model_name, loader=None): if loader.lower().startswith('exllama') or loader.lower().startswith('tensorrt') or loader == 'llama.cpp' or loader == 'MLX': shared.settings['truncation_length'] = shared.args.ctx_size + shared.is_multimodal = False + if loader.lower() in ('exllamav3', 'llama.cpp'): + shared.is_multimodal = model.is_multimodal() + logger.info(f"Loaded \"{model_name}\" in {(time.time()-t0):.2f} seconds.") logger.info(f"LOADER: \"{loader}\"") logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}") @@ -89,6 +94,14 @@ def ExLlamav3_HF_loader(model_name): return Exllamav3HF.from_pretrained(model_name) +def ExLlamav3_loader(model_name): + from modules.exllamav3 import Exllamav3Model + + model = Exllamav3Model.from_pretrained(model_name) + tokenizer = model.tokenizer + return model, tokenizer + + def ExLlamav2_HF_loader(model_name): from modules.exllamav2_hf import Exllamav2HF @@ -129,8 +142,12 @@ def unload_model(keep_model_name=False): if shared.model is None: return - is_llamacpp = (shared.model.__class__.__name__ == 'LlamaServer') - if shared.model.__class__.__name__ == 'Exllamav3HF': + model_class_name = shared.model.__class__.__name__ + is_llamacpp = (model_class_name == 'LlamaServer') + + if model_class_name in ['Exllamav3Model', 'Exllamav3HF']: + shared.model.unload() + elif model_class_name in ['Exllamav2Model', 'Exllamav2HF'] and hasattr(shared.model, 'unload'): shared.model.unload() elif shared.model.__class__.__name__ == 'MLXModel': shared.model.unload() diff --git a/modules/models_settings.py b/modules/models_settings.py index f336e45b..f28238ad 100644 --- a/modules/models_settings.py +++ b/modules/models_settings.py @@ -15,7 +15,7 @@ from modules.logging_colors import logger def get_fallback_settings(): return { 'bf16': False, - 'ctx_size': 2048, + 'ctx_size': 8192, 'rope_freq_base': 0, 'compress_pos_emb': 1, 'alpha_value': 1, @@ -106,9 +106,16 @@ def get_model_metadata(model): for k in ['max_position_embeddings', 'model_max_length', 'max_seq_len']: if k in metadata: - model_settings['truncation_length'] = metadata[k] - model_settings['truncation_length_info'] = metadata[k] - model_settings['ctx_size'] = min(metadata[k], 8192) + value = metadata[k] + elif k in metadata.get('text_config', {}): + value = metadata['text_config'][k] + else: + continue + + model_settings['truncation_length'] = value + model_settings['truncation_length_info'] = value + model_settings['ctx_size'] = min(value, 8192) + break if 'rope_theta' in metadata: model_settings['rope_freq_base'] = metadata['rope_theta'] @@ -132,16 +139,26 @@ def get_model_metadata(model): with open(jinja_path, 'r', encoding='utf-8') as f: template = f.read() + # 2. If no .jinja file, try chat_template.json + if template is None: + json_template_path = Path(f'{shared.args.model_dir}/{model}') / 'chat_template.json' + if json_template_path.exists(): + with open(json_template_path, 'r', encoding='utf-8') as f: + json_data = json.load(f) + if 'chat_template' in json_data: + template = json_data['chat_template'] + + # 3. Fall back to tokenizer_config.json metadata if path.exists(): metadata = json.loads(open(path, 'r', encoding='utf-8').read()) - # 2. Only read from metadata if we haven't already loaded from .jinja + # Only read from metadata if we haven't already loaded from .jinja or .json if template is None and 'chat_template' in metadata: template = metadata['chat_template'] if isinstance(template, list): template = template[0]['template'] - # 3. If a template was found from either source, process it + # 4. If a template was found from any source, process it if template: for k in ['eos_token', 'bos_token']: if k in metadata: @@ -184,34 +201,31 @@ def get_model_metadata(model): def infer_loader(model_name, model_settings, hf_quant_method=None): - import platform - - # Check for MLX models first (before path checks) - if (model_name.startswith('mlx-community/') or model_name.startswith('mlx-community_')) and platform.system() == "Darwin" and platform.machine() == "arm64": + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + if not path_to_model.exists(): + loader = None + elif shared.args.portable: + loader = 'llama.cpp' + elif len(list(path_to_model.glob('*.gguf'))) > 0: + loader = 'llama.cpp' + elif re.match(r'.*\.gguf', model_name.lower()): + loader = 'llama.cpp' + elif hf_quant_method == 'mlx': loader = 'MLX' - elif re.match(r'.*\.mlx', model_name.lower()) and platform.system() == "Darwin" and platform.machine() == "arm64": + elif re.match(r'.*\.mlx', model_name.lower()): loader = 'MLX' + elif model_name.lower().startswith('mlx-community'): + loader = 'MLX' + elif hf_quant_method == 'exl3': + loader = 'ExLlamav3' + elif hf_quant_method in ['exl2', 'gptq']: + loader = 'ExLlamav2_HF' + elif re.match(r'.*exl3', model_name.lower()): + loader = 'ExLlamav3' + elif re.match(r'.*exl2', model_name.lower()): + loader = 'ExLlamav2_HF' else: - # Original logic for other loaders - path_to_model = Path(f'{shared.args.model_dir}/{model_name}') - if not path_to_model.exists(): - loader = None - elif shared.args.portable: - loader = 'llama.cpp' - elif len(list(path_to_model.glob('*.gguf'))) > 0: - loader = 'llama.cpp' - elif re.match(r'.*\.gguf', model_name.lower()): - loader = 'llama.cpp' - elif hf_quant_method == 'exl3': - loader = 'ExLlamav3_HF' - elif hf_quant_method in ['exl2', 'gptq']: - loader = 'ExLlamav2_HF' - elif re.match(r'.*exl3', model_name.lower()): - loader = 'ExLlamav3_HF' - elif re.match(r'.*exl2', model_name.lower()): - loader = 'ExLlamav2_HF' - else: - loader = 'Transformers' + loader = 'Transformers' return loader @@ -243,7 +257,7 @@ def apply_model_settings_to_state(model, state): model_settings = get_model_metadata(model) if 'loader' in model_settings: loader = model_settings.pop('loader') - if not (loader == 'ExLlamav2_HF' and state['loader'] in ['ExLlamav2']): + if not ((loader == 'ExLlamav2_HF' and state['loader'] == 'ExLlamav2') or (loader == 'ExLlamav3_HF' and state['loader'] == 'ExLlamav3')): state['loader'] = loader for k in model_settings: diff --git a/modules/shared.py b/modules/shared.py index ab5198d1..644261a0 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -16,6 +16,7 @@ model = None tokenizer = None model_name = 'None' is_seq2seq = False +is_multimodal = False model_dirty_from_training = False lora_names = [] @@ -85,6 +86,7 @@ group.add_argument('--no-kv-offload', action='store_true', help='Do not offload group.add_argument('--row-split', action='store_true', help='Split the model by rows across GPUs. This may improve multi-gpu performance.') group.add_argument('--extra-flags', type=str, default=None, help='Extra flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"') group.add_argument('--streaming-llm', action='store_true', help='Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.') +group.add_argument('--mmproj', type=str, default=None, help='Path to the mmproj file for vision models.') # Cache group = parser.add_argument_group('Context and cache') @@ -99,6 +101,11 @@ group.add_argument('--gpu-layers-draft', type=int, default=256, help='Number of group.add_argument('--device-draft', type=str, default=None, help='Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1') group.add_argument('--ctx-size-draft', type=int, default=0, help='Size of the prompt context for the draft model. If 0, uses the same as the main model.') +# ExLlamaV3 +group = parser.add_argument_group('ExLlamaV3') +group.add_argument('--enable-tp', '--enable_tp', action='store_true', help='Enable Tensor Parallelism (TP) to split the model across GPUs.') +group.add_argument('--tp-backend', type=str, default='native', help='The backend for tensor parallelism. Valid options: native, nccl. Default: native.') + # ExLlamaV2 group = parser.add_argument_group('ExLlamaV2') group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.') @@ -108,7 +115,6 @@ group.add_argument('--no_flash_attn', action='store_true', help='Force flash-att group.add_argument('--no_xformers', action='store_true', help='Force xformers to not be used.') group.add_argument('--no_sdpa', action='store_true', help='Force Torch SDPA to not be used.') group.add_argument('--num_experts_per_token', type=int, default=2, metavar='N', help='Number of experts to use for generation. Applies to MoE models like Mixtral.') -group.add_argument('--enable_tp', action='store_true', help='Enable Tensor Parallelism (TP) in ExLlamaV2.') # TensorRT-LLM group = parser.add_argument_group('TensorRT-LLM') @@ -318,6 +324,8 @@ def fix_loader_name(name): return 'ExLlamav2_HF' elif name in ['exllamav3-hf', 'exllamav3_hf', 'exllama-v3-hf', 'exllama_v3_hf', 'exllama-v3_hf', 'exllama3-hf', 'exllama3_hf', 'exllama-3-hf', 'exllama_3_hf', 'exllama-3_hf']: return 'ExLlamav3_HF' + elif name in ['exllamav3']: + return 'ExLlamav3' elif name in ['tensorrt', 'tensorrtllm', 'tensorrt_llm', 'tensorrt-llm', 'tensort', 'tensortllm']: return 'TensorRT-LLM' diff --git a/modules/text_generation.py b/modules/text_generation.py index 9746e5ab..abedbe67 100644 --- a/modules/text_generation.py +++ b/modules/text_generation.py @@ -40,7 +40,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap yield '' return - if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'TensorRTLLMModel', 'MLXModel']: + if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel', 'MLXModel']: generate_func = generate_reply_custom else: generate_func = generate_reply_HF @@ -128,9 +128,9 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt from modules.torch_utils import get_device - if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel']: + if shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel']: input_ids = shared.tokenizer.encode(str(prompt)) - if shared.model.__class__.__name__ != 'Exllamav2Model': + if shared.model.__class__.__name__ not in ['Exllamav2Model', 'Exllamav3Model']: input_ids = np.array(input_ids).reshape(1, len(input_ids)) else: input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) @@ -148,7 +148,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt if truncation_length is not None: input_ids = input_ids[:, -truncation_length:] - if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel', 'MLXModel'] or shared.args.cpu: + if shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav3Model', 'TensorRTLLMModel', 'MLXModel'] or shared.args.cpu: return input_ids else: device = get_device() diff --git a/modules/ui.py b/modules/ui.py index e7805046..502005e7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -155,6 +155,7 @@ def list_model_elements(): 'bf16', 'autosplit', 'enable_tp', + 'tp_backend', 'no_flash_attn', 'no_xformers', 'no_sdpa', @@ -167,6 +168,7 @@ def list_model_elements(): 'gpu_layers_draft', 'device_draft', 'ctx_size_draft', + 'mmproj', ] return elements diff --git a/modules/ui_chat.py b/modules/ui_chat.py index 1d85a398..94c980bb 100644 --- a/modules/ui_chat.py +++ b/modules/ui_chat.py @@ -54,7 +54,7 @@ def create_ui(): gr.HTML(value='
', elem_id='gr-hover') with gr.Column(scale=10, elem_id='chat-input-container'): - shared.gradio['textbox'] = gr.MultimodalTextbox(label='', placeholder='Send a message', file_types=['text', '.pdf'], file_count="multiple", elem_id='chat-input', elem_classes=['add_scrollbar']) + shared.gradio['textbox'] = gr.MultimodalTextbox(label='', placeholder='Send a message', file_types=['text', '.pdf', 'image'], file_count="multiple", elem_id='chat-input', elem_classes=['add_scrollbar']) shared.gradio['typing-dots'] = gr.HTML(value='
', label='typing', elem_id='typing-container') with gr.Column(scale=1, elem_id='generate-stop-container'): @@ -78,12 +78,19 @@ def create_ui(): with gr.Row(): shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', value=shared.settings['start_with'], elem_classes=['add_scrollbar']) + gr.HTML("
") + shared.gradio['reasoning_effort'] = gr.Dropdown(value=shared.settings['reasoning_effort'], choices=['low', 'medium', 'high'], label='Reasoning effort', info='Used by GPT-OSS.') shared.gradio['enable_thinking'] = gr.Checkbox(value=shared.settings['enable_thinking'], label='Enable thinking', info='Used by pre-2507 Qwen3.') + + gr.HTML("
") + shared.gradio['enable_web_search'] = gr.Checkbox(value=shared.settings.get('enable_web_search', False), label='Activate web search', elem_id='web-search') with gr.Row(visible=shared.settings.get('enable_web_search', False)) as shared.gradio['web_search_row']: shared.gradio['web_search_pages'] = gr.Number(value=shared.settings.get('web_search_pages', 3), precision=0, label='Number of pages to download', minimum=1, maximum=10) + gr.HTML("
") + with gr.Row(): shared.gradio['mode'] = gr.Radio(choices=['instruct', 'chat-instruct', 'chat'], value=None, label='Mode', info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template Parameters > Instruction template is used.', elem_id='chat-mode') @@ -93,6 +100,8 @@ def create_ui(): with gr.Row(): shared.gradio['chat-instruct_command'] = gr.Textbox(value=shared.settings['chat-instruct_command'], lines=12, label='Command for chat-instruct mode', info='<|character|> and <|prompt|> get replaced with the bot name and the regular chat prompt respectively.', visible=shared.settings['mode'] == 'chat-instruct', elem_classes=['add_scrollbar']) + gr.HTML("
") + with gr.Row(): shared.gradio['count_tokens'] = gr.Button('Count tokens', size='sm') diff --git a/modules/ui_model_menu.py b/modules/ui_model_menu.py index 031b9808..dd240627 100644 --- a/modules/ui_model_menu.py +++ b/modules/ui_model_menu.py @@ -42,10 +42,12 @@ def create_ui(): with gr.Row(): with gr.Column(): shared.gradio['gpu_layers'] = gr.Slider(label="gpu-layers", minimum=0, maximum=get_initial_gpu_layers_max(), step=1, value=shared.args.gpu_layers, info='Must be greater than 0 for the GPU to be used. ⚠️ Lower this value if you can\'t load the model.') - shared.gradio['ctx_size'] = gr.Slider(label='ctx-size', minimum=256, maximum=131072, step=256, value=shared.args.ctx_size, info='Context length. Common values: 4096, 8192, 16384, 32768, 65536, 131072. ⚠️ Lower this value if you can\'t load the model.') + shared.gradio['ctx_size'] = gr.Slider(label='ctx-size', minimum=256, maximum=131072, step=256, value=shared.args.ctx_size, info='Context length. Common values: 4096, 8192, 16384, 32768, 65536, 131072.') shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') shared.gradio['attn_implementation'] = gr.Dropdown(label="attn-implementation", choices=['sdpa', 'eager', 'flash_attention_2'], value=shared.args.attn_implementation, info='Attention implementation.') shared.gradio['cache_type'] = gr.Dropdown(label="cache-type", choices=['fp16', 'q8_0', 'q4_0', 'fp8', 'q8', 'q7', 'q6', 'q5', 'q4', 'q3', 'q2'], value=shared.args.cache_type, allow_custom_value=True, info='Valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4; ExLlamaV3 - fp16, q2 to q8. For ExLlamaV3, you can type custom combinations for separate k/v bits (e.g. q4_q8).') + shared.gradio['tp_backend'] = gr.Dropdown(label="tp-backend", choices=['native', 'nccl'], value=shared.args.tp_backend, info='The backend for tensor parallelism.') + with gr.Column(): shared.gradio['vram_info'] = gr.HTML(value=get_initial_vram_info()) shared.gradio['flash_attn'] = gr.Checkbox(label="flash-attn", value=shared.args.flash_attn, info='Use flash-attention.') @@ -54,11 +56,17 @@ def create_ui(): shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit) shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant, info='Used by load-in-4bit.') shared.gradio['autosplit'] = gr.Checkbox(label="autosplit", value=shared.args.autosplit, info='Automatically split the model tensors across the available GPUs.') - shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable Tensor Parallelism (TP).') + shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable tensor parallelism (TP).') shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.') shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code) shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `ctx_size` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.') - + + # Multimodal + with gr.Accordion("Multimodal (vision)", open=False, elem_classes='tgw-accordion') as shared.gradio['mmproj_accordion']: + with gr.Row(): + shared.gradio['mmproj'] = gr.Dropdown(label="mmproj file", choices=utils.get_available_mmproj(), value=lambda: shared.args.mmproj or 'None', elem_classes='slim-dropdown', info='Select a file that matches your model. Must be placed in user_data/mmproj/', interactive=not mu) + ui.create_refresh_button(shared.gradio['mmproj'], lambda: None, lambda: {'choices': utils.get_available_mmproj()}, 'refresh-button', interactive=not mu) + # Speculative decoding with gr.Accordion("Speculative decoding", open=False, elem_classes='tgw-accordion') as shared.gradio['speculative_decoding_accordion']: with gr.Row(): diff --git a/modules/utils.py b/modules/utils.py index 117ad590..4927ef04 100644 --- a/modules/utils.py +++ b/modules/utils.py @@ -154,6 +154,19 @@ def get_available_ggufs(): return sorted(model_list, key=natural_keys) +def get_available_mmproj(): + mmproj_dir = Path('user_data/mmproj') + if not mmproj_dir.exists(): + return ['None'] + + mmproj_files = [] + for item in mmproj_dir.iterdir(): + if item.is_file() and item.suffix.lower() in ('.gguf', '.bin'): + mmproj_files.append(item.name) + + return ['None'] + sorted(mmproj_files, key=natural_keys) + + def get_available_presets(): return sorted(set((k.stem for k in Path('user_data/presets').glob('*.yaml'))), key=natural_keys) diff --git a/modules/web_search.py b/modules/web_search.py index 3b1f6e18..597af4b2 100644 --- a/modules/web_search.py +++ b/modules/web_search.py @@ -1,6 +1,8 @@ import concurrent.futures import html +import random import re +import urllib.request from concurrent.futures import as_completed from datetime import datetime from urllib.parse import quote_plus @@ -50,16 +52,21 @@ def download_web_page(url, timeout=10): def perform_web_search(query, num_pages=3, max_workers=5, timeout=10): """Perform web search and return results with content""" try: - # Use DuckDuckGo HTML search endpoint search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}" - headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'} - response = requests.get(search_url, headers=headers, timeout=timeout) - response.raise_for_status() + agents = [ + "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36", + "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36" + ] + + response_text = "" + req = urllib.request.Request(search_url, headers={'User-Agent': random.choice(agents)}) + with urllib.request.urlopen(req, timeout=timeout) as response: + response_text = response.read().decode('utf-8') # Extract results with regex - titles = re.findall(r']*class="[^"]*result__a[^"]*"[^>]*>(.*?)', response.text, re.DOTALL) - urls = re.findall(r']*class="[^"]*result__url[^"]*"[^>]*>(.*?)', response.text, re.DOTALL) + titles = re.findall(r']*class="[^"]*result__a[^"]*"[^>]*>(.*?)', response_text, re.DOTALL) + urls = re.findall(r']*class="[^"]*result__url[^"]*"[^>]*>(.*?)', response_text, re.DOTALL) # Prepare download tasks download_tasks = [] diff --git a/one_click.py b/one_click.py index 050da76b..881d7489 100644 --- a/one_click.py +++ b/one_click.py @@ -16,7 +16,7 @@ import sys # os.environ["HCC_AMDGPU_TARGET"] = 'gfx1030' # Define the required versions -TORCH_VERSION = "2.6.0" +TORCH_VERSION = "2.7.1" PYTHON_VERSION = "3.11" LIBSTDCXX_VERSION_LINUX = "12.1.0" @@ -113,17 +113,16 @@ def get_gpu_choice(): choice = get_user_choice( "What is your GPU?", { - 'A': 'NVIDIA - CUDA 12.4', + 'A': 'NVIDIA', 'B': 'AMD - Linux/macOS only, requires ROCm 6.2.4', 'C': 'Apple M Series', 'D': 'Intel Arc (beta)', - 'E': 'NVIDIA - CUDA 12.8', 'N': 'CPU mode' }, ) # Convert choice to GPU name - gpu_choice = {"A": "NVIDIA", "B": "AMD", "C": "APPLE", "D": "INTEL", "E": "NVIDIA_CUDA128", "N": "NONE"}[choice] + gpu_choice = {"A": "NVIDIA_CUDA128", "B": "AMD", "C": "APPLE", "D": "INTEL", "N": "NONE"}[choice] # Save choice to state state['gpu_choice'] = gpu_choice @@ -136,10 +135,8 @@ def get_pytorch_install_command(gpu_choice): """Get PyTorch installation command based on GPU choice""" base_cmd = f"python -m pip install torch=={TORCH_VERSION} " - if gpu_choice == "NVIDIA": - return base_cmd + "--index-url https://download.pytorch.org/whl/cu124" - elif gpu_choice == "NVIDIA_CUDA128": - return "python -m pip install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128" + if gpu_choice == "NVIDIA_CUDA128": + return base_cmd + "--index-url https://download.pytorch.org/whl/cu128" elif gpu_choice == "AMD": return base_cmd + "--index-url https://download.pytorch.org/whl/rocm6.2.4" elif gpu_choice in ["APPLE", "NONE"]: @@ -157,10 +154,8 @@ def get_pytorch_update_command(gpu_choice): """Get PyTorch update command based on GPU choice""" base_cmd = f"python -m pip install --upgrade torch=={TORCH_VERSION} " - if gpu_choice == "NVIDIA": - return f"{base_cmd} --index-url https://download.pytorch.org/whl/cu124" - elif gpu_choice == "NVIDIA_CUDA128": - return "python -m pip install --upgrade torch==2.7.1 --index-url https://download.pytorch.org/whl/cu128" + if gpu_choice == "NVIDIA_CUDA128": + return f"{base_cmd} --index-url https://download.pytorch.org/whl/cu128" elif gpu_choice == "AMD": return f"{base_cmd} --index-url https://download.pytorch.org/whl/rocm6.2.4" elif gpu_choice in ["APPLE", "NONE"]: @@ -176,16 +171,14 @@ def get_requirements_file(gpu_choice): """Get requirements file path based on GPU choice""" requirements_base = os.path.join("requirements", "full") - if gpu_choice == "AMD": + if gpu_choice == "NVIDIA_CUDA128": + file_name = f"requirements{'_noavx2' if not cpu_has_avx2() else ''}.txt" + elif gpu_choice == "AMD": file_name = f"requirements_amd{'_noavx2' if not cpu_has_avx2() else ''}.txt" elif gpu_choice == "APPLE": file_name = f"requirements_apple_{'intel' if is_x86_64() else 'silicon'}.txt" elif gpu_choice in ["INTEL", "NONE"]: file_name = f"requirements_cpu_only{'_noavx2' if not cpu_has_avx2() else ''}.txt" - elif gpu_choice == "NVIDIA": - file_name = f"requirements{'_noavx2' if not cpu_has_avx2() else ''}.txt" - elif gpu_choice == "NVIDIA_CUDA128": - file_name = f"requirements_cuda128{'_noavx2' if not cpu_has_avx2() else ''}.txt" else: raise ValueError(f"Unknown GPU choice: {gpu_choice}") @@ -331,8 +324,6 @@ def install_webui(): cmd_flags_file.write("\n--cpu\n") # Handle CUDA version display - elif any((is_windows(), is_linux())) and gpu_choice == "NVIDIA": - print("CUDA: 12.4") elif any((is_windows(), is_linux())) and gpu_choice == "NVIDIA_CUDA128": print("CUDA: 12.8") @@ -368,6 +359,19 @@ def update_requirements(initial_installation=False, pull=True): assert_success=True ) + # Check for outdated CUDA 12.4 installs and refuse to update + state = load_state() + if state.get('gpu_choice') == 'NVIDIA': + print_big_message( + "Your current installation uses CUDA 12.4, which has been removed.\n" + "To update to the new default (CUDA 12.8), a clean installation is required.\n\n" + "INSTRUCTIONS:\n" + "1. Delete the 'installer_files' folder in your text-generation-webui directory.\n" + "2. Run the start script again (e.g., start_windows.bat).\n\n" + "This will create a fresh environment with the latest software." + ) + sys.exit(0) + current_commit = get_current_commit() wheels_changed = not os.path.exists(state_file) if not wheels_changed: @@ -404,7 +408,7 @@ def update_requirements(initial_installation=False, pull=True): with open(requirements_file, 'r') as f: after_pull_whl_lines = [line for line in f if '.whl' in line] - wheels_changed = wheels_changed or (before_pull_whl_lines != after_pull_whl_lines) + wheels_changed = wheels_changed or (before_pull_whl_lines != after_pull_whl_lines) # Check for changes to installer files for file in files_to_check: diff --git a/requirements/full/requirements.txt b/requirements/full/requirements.txt index f17cae8a..9f906b26 100644 --- a/requirements/full/requirements.txt +++ b/requirements/full/requirements.txt @@ -24,7 +24,7 @@ scipy sentencepiece tensorboard transformers==4.55.* -triton-windows==3.2.0.post19; platform_system == "Windows" +triton-windows==3.3.1.post19; platform_system == "Windows" tqdm wandb @@ -34,12 +34,12 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/kingbri1/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.7cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" diff --git a/requirements/full/requirements_amd.txt b/requirements/full/requirements_amd.txt index 51f4571f..70e031b8 100644 --- a/requirements/full/requirements_amd.txt +++ b/requirements/full/requirements_amd.txt @@ -33,7 +33,7 @@ sse-starlette==1.6.5 tiktoken # AMD wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64" diff --git a/requirements/full/requirements_amd_noavx2.txt b/requirements/full/requirements_amd_noavx2.txt index 37021c77..81556326 100644 --- a/requirements/full/requirements_amd_noavx2.txt +++ b/requirements/full/requirements_amd_noavx2.txt @@ -33,7 +33,7 @@ sse-starlette==1.6.5 tiktoken # AMD wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64" diff --git a/requirements/full/requirements_apple_intel.txt b/requirements/full/requirements_apple_intel.txt index f54ae191..7b9d3650 100644 --- a/requirements/full/requirements_apple_intel.txt +++ b/requirements/full/requirements_apple_intel.txt @@ -33,7 +33,7 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5-py3-none-any.whl +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" +https://github.com/oobabooga/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6-py3-none-any.whl https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl diff --git a/requirements/full/requirements_apple_silicon.txt b/requirements/full/requirements_apple_silicon.txt index 7d7925b7..ca135e30 100644 --- a/requirements/full/requirements_apple_silicon.txt +++ b/requirements/full/requirements_apple_silicon.txt @@ -34,8 +34,8 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5-py3-none-any.whl +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11" +https://github.com/oobabooga/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6-py3-none-any.whl https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl diff --git a/requirements/full/requirements_cpu_only.txt b/requirements/full/requirements_cpu_only.txt index 72847534..3565a994 100644 --- a/requirements/full/requirements_cpu_only.txt +++ b/requirements/full/requirements_cpu_only.txt @@ -33,5 +33,5 @@ sse-starlette==1.6.5 tiktoken # llama.cpp (CPU only, AVX2) -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" diff --git a/requirements/full/requirements_cpu_only_noavx2.txt b/requirements/full/requirements_cpu_only_noavx2.txt index ed641a24..64c17416 100644 --- a/requirements/full/requirements_cpu_only_noavx2.txt +++ b/requirements/full/requirements_cpu_only_noavx2.txt @@ -33,5 +33,5 @@ sse-starlette==1.6.5 tiktoken # llama.cpp (CPU only, no AVX2) -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" diff --git a/requirements/full/requirements_cuda128.txt b/requirements/full/requirements_cuda128.txt deleted file mode 100644 index d7fe735b..00000000 --- a/requirements/full/requirements_cuda128.txt +++ /dev/null @@ -1,45 +0,0 @@ -accelerate==1.8.* -bitsandbytes==0.46.* -colorama -datasets -einops -fastapi==0.112.4 -gradio==4.37.* -html2text==2025.4.15 -jinja2==3.1.6 -markdown -numpy==2.2.* -pandas -peft==0.16.* -Pillow>=9.5.0 -psutil -pydantic==2.8.2 -PyPDF2==3.0.1 -python-docx==1.1.2 -pyyaml -requests -rich -safetensors==0.5.* -scipy -sentencepiece -tensorboard -transformers==4.55.* -triton-windows==3.3.1.post19; platform_system == "Windows" -tqdm -wandb - -# API -flask_cloudflared==0.0.14 -sse-starlette==1.6.5 -tiktoken - -# CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" diff --git a/requirements/full/requirements_cuda128_noavx2.txt b/requirements/full/requirements_cuda128_noavx2.txt deleted file mode 100644 index cb71f74b..00000000 --- a/requirements/full/requirements_cuda128_noavx2.txt +++ /dev/null @@ -1,45 +0,0 @@ -accelerate==1.8.* -bitsandbytes==0.46.* -colorama -datasets -einops -fastapi==0.112.4 -gradio==4.37.* -html2text==2025.4.15 -jinja2==3.1.6 -markdown -numpy==2.2.* -pandas -peft==0.16.* -Pillow>=9.5.0 -psutil -pydantic==2.8.2 -PyPDF2==3.0.1 -python-docx==1.1.2 -pyyaml -requests -rich -safetensors==0.5.* -scipy -sentencepiece -tensorboard -transformers==4.55.* -triton-windows==3.3.1.post19; platform_system == "Windows" -tqdm -wandb - -# API -flask_cloudflared==0.0.14 -sse-starlette==1.6.5 -tiktoken - -# CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" diff --git a/requirements/full/requirements_noavx2.txt b/requirements/full/requirements_noavx2.txt index d6bed576..2b162308 100644 --- a/requirements/full/requirements_noavx2.txt +++ b/requirements/full/requirements_noavx2.txt @@ -24,7 +24,7 @@ scipy sentencepiece tensorboard transformers==4.55.* -triton-windows==3.2.0.post19; platform_system == "Windows" +triton-windows==3.3.1.post19; platform_system == "Windows" tqdm wandb @@ -34,12 +34,12 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/exllamav3/releases/download/v0.0.5/exllamav3-0.0.5+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu124.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/turboderp-org/exllamav3/releases/download/v0.0.6/exllamav3-0.0.6+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64" -https://github.com/kingbri1/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/kingbri1/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu128torch2.7.0cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.7cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" diff --git a/requirements/portable/requirements.txt b/requirements/portable/requirements.txt index 1f17dc50..943ea600 100644 --- a/requirements/portable/requirements.txt +++ b/requirements/portable/requirements.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" diff --git a/requirements/portable/requirements_apple_intel.txt b/requirements/portable/requirements_apple_intel.txt index 82254842..394b89b6 100644 --- a/requirements/portable/requirements_apple_intel.txt +++ b/requirements/portable/requirements_apple_intel.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" diff --git a/requirements/portable/requirements_apple_silicon.txt b/requirements/portable/requirements_apple_silicon.txt index fdf1632b..79b26f89 100644 --- a/requirements/portable/requirements_apple_silicon.txt +++ b/requirements/portable/requirements_apple_silicon.txt @@ -19,6 +19,6 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0" and platform_release < "25.0.0" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0-py3-none-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" diff --git a/requirements/portable/requirements_cpu_only.txt b/requirements/portable/requirements_cpu_only.txt index 833e923b..d274e2c8 100644 --- a/requirements/portable/requirements_cpu_only.txt +++ b/requirements/portable/requirements_cpu_only.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # llama.cpp (CPU only, AVX2) -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows" diff --git a/requirements/portable/requirements_cpu_only_noavx2.txt b/requirements/portable/requirements_cpu_only_noavx2.txt index 6a894d49..47ec086e 100644 --- a/requirements/portable/requirements_cpu_only_noavx2.txt +++ b/requirements/portable/requirements_cpu_only_noavx2.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # llama.cpp (CPU only, no AVX2) -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows" diff --git a/requirements/portable/requirements_noavx2.txt b/requirements/portable/requirements_noavx2.txt index 0afb19c2..9a0a3694 100644 --- a/requirements/portable/requirements_noavx2.txt +++ b/requirements/portable/requirements_noavx2.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" diff --git a/requirements/portable/requirements_vulkan.txt b/requirements/portable/requirements_vulkan.txt index a404f50c..45e96da9 100644 --- a/requirements/portable/requirements_vulkan.txt +++ b/requirements/portable/requirements_vulkan.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" diff --git a/requirements/portable/requirements_vulkan_noavx2.txt b/requirements/portable/requirements_vulkan_noavx2.txt index 75176656..9183562e 100644 --- a/requirements/portable/requirements_vulkan_noavx2.txt +++ b/requirements/portable/requirements_vulkan_noavx2.txt @@ -18,5 +18,5 @@ sse-starlette==1.6.5 tiktoken # CUDA wheels -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows" -https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.33.0/llama_cpp_binaries-0.33.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows" +https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.37.0/llama_cpp_binaries-0.37.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" diff --git a/user_data/mmproj/place-your-mmproj-here.txt b/user_data/mmproj/place-your-mmproj-here.txt new file mode 100644 index 00000000..e69de29b