rpcsx/rpcs3/Emu/RSX/VK/VKRenderTargets.cpp

1047 lines
33 KiB
C++

#include "VKRenderTargets.h"
#include "VKResourceManager.h"
namespace vk
{
void surface_cache::destroy()
{
invalidate_all();
invalidated_resources.clear();
}
u64 surface_cache::get_surface_cache_memory_quota(u64 total_device_memory)
{
total_device_memory /= 0x100000;
u64 quota = 0;
if (total_device_memory >= 2048)
{
quota = std::min<u64>(6144, (total_device_memory * 40) / 100);
}
else if (total_device_memory >= 1024)
{
quota = 768;
}
else if (total_device_memory >= 768)
{
quota = 256;
}
else
{
// Remove upto 128MB but at least aim for half of available VRAM
quota = std::min<u64>(128, total_device_memory / 2);
}
return quota * 0x100000;
}
bool surface_cache::can_collapse_surface(const std::unique_ptr<vk::render_target>& surface, rsx::problem_severity severity)
{
if (surface->samples() == 1)
{
// No internal allocations needed for non-MSAA images
return true;
}
if (severity < rsx::problem_severity::fatal &&
vk::vmm_determine_memory_load_severity() < rsx::problem_severity::fatal)
{
// We may be able to allocate what we need.
return true;
}
// Check if we need to do any allocations. Do not collapse in such a situation otherwise
if (!surface->resolve_surface)
{
return false;
}
else
{
// Resolve target does exist. Scan through the entire collapse chain
for (auto& region : surface->old_contents)
{
if (region.source->samples() == 1)
{
// Not MSAA
continue;
}
if (vk::as_rtt(region.source)->resolve_surface)
{
// Has a resolve target.
continue;
}
return false;
}
}
return true;
}
bool surface_cache::handle_memory_pressure(vk::command_buffer& cmd, rsx::problem_severity severity)
{
bool any_released = rsx::surface_store<surface_cache_traits>::handle_memory_pressure(cmd, severity);
if (severity >= rsx::problem_severity::fatal)
{
std::vector<std::unique_ptr<vk::viewable_image>> resolve_target_cache;
std::vector<vk::render_target*> deferred_spills;
auto gc = vk::get_resource_manager();
// Drop MSAA resolve/unresolve caches. Only trigger when a hard sync is guaranteed to follow else it will cause even more problems!
// 2-pass to ensure resources are available where they are most needed
auto relieve_memory_pressure = [&](auto& list, const utils::address_range& range)
{
for (auto it = list.begin_range(range); it != list.end(); ++it)
{
auto& rtt = it->second;
if (!rtt->spill_request_tag || rtt->spill_request_tag < rtt->last_rw_access_tag)
{
// We're not going to be spilling into system RAM. If a MSAA resolve target exists, remove it to save memory.
if (rtt->resolve_surface)
{
resolve_target_cache.emplace_back(std::move(rtt->resolve_surface));
rtt->msaa_flags |= rsx::surface_state_flags::require_resolve;
any_released |= true;
}
rtt->spill_request_tag = 0;
continue;
}
if (rtt->resolve_surface || rtt->samples() == 1)
{
// Can spill immediately. Do it.
ensure(rtt->spill(cmd, resolve_target_cache));
any_released |= true;
continue;
}
deferred_spills.push_back(rtt.get());
}
};
// 1. Spill an strip any 'invalidated resources'. At this point it doesn't matter and we donate to the resolve cache which is a plus.
for (auto& surface : invalidated_resources)
{
if (!surface->value)
{
ensure(!surface->resolve_surface);
continue;
}
// Only spill anything with references. Other surfaces already marked for removal should be inevitably deleted when it is time to free_invalidated
if (surface->has_refs() && (surface->resolve_surface || surface->samples() == 1))
{
ensure(surface->spill(cmd, resolve_target_cache));
any_released |= true;
}
else if (surface->resolve_surface)
{
ensure(!surface->has_refs());
resolve_target_cache.emplace_back(std::move(surface->resolve_surface));
surface->msaa_flags |= rsx::surface_state_flags::require_resolve;
any_released |= true;
}
else if (surface->has_refs())
{
deferred_spills.push_back(surface.get());
}
}
// 2. Scan the list and spill resources that can be spilled immediately if requested. Also gather resources from those that don't need it.
relieve_memory_pressure(m_render_targets_storage, m_render_targets_memory_range);
relieve_memory_pressure(m_depth_stencil_storage, m_depth_stencil_memory_range);
// 3. Write to system heap everything marked to spill
for (auto& surface : deferred_spills)
{
any_released |= surface->spill(cmd, resolve_target_cache);
}
// 4. Cleanup; removes all the resources used up here that are no longer needed for the moment
for (auto& data : resolve_target_cache)
{
gc->dispose(data);
}
}
return any_released;
}
void surface_cache::free_invalidated(vk::command_buffer& cmd, rsx::problem_severity memory_pressure)
{
// Do not allow more than 300M of RSX memory to be used by RTTs.
// The actual boundary is 256M but we need to give some overallocation for performance reasons.
if (check_memory_usage(300 * 0x100000))
{
if (!cmd.is_recording())
{
cmd.begin();
}
const auto severity = std::max(memory_pressure, rsx::problem_severity::moderate);
handle_memory_pressure(cmd, severity);
}
const u64 last_finished_frame = vk::get_last_completed_frame_id();
invalidated_resources.remove_if([&](std::unique_ptr<vk::render_target>& rtt)
{
ensure(rtt->frame_tag != 0);
if (rtt->has_refs())
{
// Actively in use, likely for a reading pass.
// Call handle_memory_pressure before calling this method.
return false;
}
if (memory_pressure >= rsx::problem_severity::severe)
{
if (rtt->resolve_surface)
{
// We do not need to keep resolve targets around if things are bad.
vk::get_resource_manager()->dispose(rtt->resolve_surface);
}
}
if (rtt->frame_tag >= last_finished_frame)
{
// RTT itself still in use by the frame.
return false;
}
switch (memory_pressure)
{
case rsx::problem_severity::low:
return (rtt->unused_check_count() >= 2);
case rsx::problem_severity::moderate:
return (rtt->unused_check_count() >= 1);
case rsx::problem_severity::severe:
case rsx::problem_severity::fatal:
// We're almost dead anyway. Remove forcefully.
return true;
default:
fmt::throw_exception("Unreachable");
}
});
}
bool surface_cache::is_overallocated()
{
const auto surface_cache_vram_load = vmm_get_application_pool_usage(VMM_ALLOCATION_POOL_SURFACE_CACHE);
const auto surface_cache_allocation_quota = get_surface_cache_memory_quota(get_current_renderer()->get_memory_mapping().device_local_total_bytes);
return (surface_cache_vram_load > surface_cache_allocation_quota);
}
bool surface_cache::spill_unused_memory()
{
// Determine how much memory we need to save to system RAM if any
const u64 current_surface_cache_memory = vk::vmm_get_application_pool_usage(VMM_ALLOCATION_POOL_SURFACE_CACHE);
const u64 total_device_memory = vk::get_current_renderer()->get_memory_mapping().device_local_total_bytes;
const u64 target_memory = get_surface_cache_memory_quota(total_device_memory);
rsx_log.warning("Surface cache memory usage is %lluM", current_surface_cache_memory / 0x100000);
if (current_surface_cache_memory < target_memory)
{
rsx_log.warning("Surface cache memory usage is very low. Will not spill contents to RAM");
return false;
}
// Very slow, but should only be called when the situation is dire
std::vector<render_target*> sorted_list;
sorted_list.reserve(1024);
auto process_list_function = [&](auto& list, const utils::address_range& range)
{
for (auto it = list.begin_range(range); it != list.end(); ++it)
{
// NOTE: Check if memory is available instead of value in case we ran out of memory during unspill
auto& surface = it->second;
if (surface->memory && !surface->is_bound)
{
sorted_list.push_back(surface.get());
}
}
};
process_list_function(m_render_targets_storage, m_render_targets_memory_range);
process_list_function(m_depth_stencil_storage, m_depth_stencil_memory_range);
std::sort(sorted_list.begin(), sorted_list.end(), [](const auto& a, const auto& b)
{
return a->last_rw_access_tag < b->last_rw_access_tag;
});
// Remove upto target_memory bytes from VRAM
u64 bytes_spilled = 0;
const u64 bytes_to_remove = current_surface_cache_memory - target_memory;
const u64 spill_time = rsx::get_shared_tag();
for (auto& surface : sorted_list)
{
bytes_spilled += surface->memory->size();
surface->spill_request_tag = spill_time;
if (bytes_spilled >= bytes_to_remove)
{
break;
}
}
rsx_log.warning("Surface cache will attempt to spill %llu bytes.", bytes_spilled);
return (bytes_spilled > 0);
}
// Get the linear resolve target bound to this surface. Initialize if none exists
vk::viewable_image* render_target::get_resolve_target_safe(vk::command_buffer& cmd)
{
if (!resolve_surface)
{
// Create a resolve surface
const auto resolve_w = width() * samples_x;
const auto resolve_h = height() * samples_y;
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
usage |= (this->info.usage & (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
resolve_surface.reset(new vk::viewable_image(
*g_render_device,
g_render_device->get_memory_mapping().device_local,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
VK_IMAGE_TYPE_2D,
format(),
resolve_w, resolve_h, 1, 1, 1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_TILING_OPTIMAL,
usage,
0,
VMM_ALLOCATION_POOL_SURFACE_CACHE,
format_class()));
resolve_surface->native_component_map = native_component_map;
resolve_surface->change_layout(cmd, VK_IMAGE_LAYOUT_GENERAL);
}
return resolve_surface.get();
}
// Resolve the planar MSAA data into a linear block
void render_target::resolve(vk::command_buffer& cmd)
{
VkImageSubresourceRange range = { aspect(), 0, 1, 0, 1 };
// NOTE: This surface can only be in the ATTACHMENT_OPTIMAL layout
// The resolve surface can be in any type of access, but we have to assume it is likely in read-only mode like shader read-only
if (!is_depth_surface()) [[likely]]
{
// This is the source; finish writing before reading
vk::insert_image_memory_barrier(
cmd, this->value,
this->current_layout, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
range);
// This is the target; finish reading before writing
vk::insert_image_memory_barrier(
cmd, resolve_surface->value,
resolve_surface->current_layout, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
range);
this->current_layout = VK_IMAGE_LAYOUT_GENERAL;
resolve_surface->current_layout = VK_IMAGE_LAYOUT_GENERAL;
}
else
{
this->push_layout(cmd, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
resolve_surface->change_layout(cmd, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
vk::resolve_image(cmd, resolve_surface.get(), this);
if (!is_depth_surface()) [[likely]]
{
vk::insert_image_memory_barrier(
cmd, this->value,
this->current_layout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
range);
vk::insert_image_memory_barrier(
cmd, resolve_surface->value,
VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
range);
this->current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
resolve_surface->current_layout = VK_IMAGE_LAYOUT_GENERAL;
}
else
{
this->pop_layout(cmd);
resolve_surface->change_layout(cmd, VK_IMAGE_LAYOUT_GENERAL);
}
msaa_flags &= ~(rsx::surface_state_flags::require_resolve);
}
// Unresolve the linear data into planar MSAA data
void render_target::unresolve(vk::command_buffer& cmd)
{
ensure(!(msaa_flags & rsx::surface_state_flags::require_resolve));
VkImageSubresourceRange range = { aspect(), 0, 1, 0, 1 };
if (!is_depth_surface()) [[likely]]
{
ensure(current_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// This is the dest; finish reading before writing
vk::insert_image_memory_barrier(
cmd, this->value,
this->current_layout, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
range);
// This is the source; finish writing before reading
vk::insert_image_memory_barrier(
cmd, resolve_surface->value,
resolve_surface->current_layout, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
range);
this->current_layout = VK_IMAGE_LAYOUT_GENERAL;
resolve_surface->current_layout = VK_IMAGE_LAYOUT_GENERAL;
}
else
{
this->push_layout(cmd, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
resolve_surface->change_layout(cmd, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
vk::unresolve_image(cmd, this, resolve_surface.get());
if (!is_depth_surface()) [[likely]]
{
vk::insert_image_memory_barrier(
cmd, this->value,
this->current_layout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT,
range);
vk::insert_image_memory_barrier(
cmd, resolve_surface->value,
VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
range);
this->current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
resolve_surface->current_layout = VK_IMAGE_LAYOUT_GENERAL;
}
else
{
this->pop_layout(cmd);
resolve_surface->change_layout(cmd, VK_IMAGE_LAYOUT_GENERAL);
}
msaa_flags &= ~(rsx::surface_state_flags::require_unresolve);
}
// Default-initialize memory without loading
void render_target::clear_memory(vk::command_buffer& cmd, vk::image* surface)
{
const auto optimal_layout = (surface->current_layout == VK_IMAGE_LAYOUT_GENERAL) ?
VK_IMAGE_LAYOUT_GENERAL :
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
surface->push_layout(cmd, optimal_layout);
VkImageSubresourceRange range{ surface->aspect(), 0, 1, 0, 1 };
if (surface->aspect() & VK_IMAGE_ASPECT_COLOR_BIT)
{
VkClearColorValue color = { {0.f, 0.f, 0.f, 1.f} };
vkCmdClearColorImage(cmd, surface->value, surface->current_layout, &color, 1, &range);
}
else
{
VkClearDepthStencilValue clear{ 1.f, 255 };
vkCmdClearDepthStencilImage(cmd, surface->value, surface->current_layout, &clear, 1, &range);
}
surface->pop_layout(cmd);
if (surface == this)
{
state_flags &= ~rsx::surface_state_flags::erase_bkgnd;
}
}
std::vector<VkBufferImageCopy> render_target::build_spill_transfer_descriptors(vk::image* target)
{
std::vector<VkBufferImageCopy> result;
result.reserve(2);
result.push_back({});
auto& rgn = result.back();
rgn.imageExtent.width = target->width();
rgn.imageExtent.height = target->height();
rgn.imageExtent.depth = 1;
rgn.imageSubresource.aspectMask = target->aspect();
rgn.imageSubresource.layerCount = 1;
if (aspect() == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))
{
result.push_back(rgn);
rgn.imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
result.back().imageSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
result.back().bufferOffset = target->width() * target->height() * 4;
}
return result;
}
bool render_target::spill(vk::command_buffer& cmd, std::vector<std::unique_ptr<vk::viewable_image>>& resolve_cache)
{
ensure(value);
u64 element_size;
switch (const auto fmt = format())
{
case VK_FORMAT_D32_SFLOAT:
element_size = 4;
break;
case VK_FORMAT_D32_SFLOAT_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
element_size = 5;
break;
default:
element_size = get_format_texel_width(fmt);
break;
}
vk::viewable_image* src = nullptr;
if (samples() == 1) [[likely]]
{
src = this;
}
else if (resolve_surface)
{
src = resolve_surface.get();
}
else
{
const auto transfer_w = width() * samples_x;
const auto transfer_h = height() * samples_y;
for (auto& surface : resolve_cache)
{
if (surface->format() == format() &&
surface->width() == transfer_w &&
surface->height() == transfer_h)
{
src = surface.get();
break;
}
}
if (!src)
{
if (vmm_determine_memory_load_severity() <= rsx::problem_severity::moderate)
{
// We have some freedom to allocate something. Add to the shared cache
src = get_resolve_target_safe(cmd);
}
else
{
// TODO: Spill to DMA buf
// For now, just skip this one if we don't have the capacity for it
rsx_log.warning("Could not spill memory due to resolve failure. Will ignore spilling for the moment.");
return false;
}
}
msaa_flags |= rsx::surface_state_flags::require_resolve;
}
// If a resolve is requested, move data to the target
if (msaa_flags & rsx::surface_state_flags::require_resolve)
{
ensure(samples() > 1);
const bool borrowed = [&]()
{
if (src != resolve_surface.get())
{
ensure(!resolve_surface);
resolve_surface.reset(src);
return true;
}
return false;
}();
resolve(cmd);
if (borrowed)
{
resolve_surface.release();
}
}
const auto pdev = vk::get_current_renderer();
const auto alloc_size = element_size * src->width() * src->height();
m_spilled_mem = std::make_unique<vk::buffer>(*pdev, alloc_size, pdev->get_memory_mapping().host_visible_coherent,
0, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, 0, VMM_ALLOCATION_POOL_UNDEFINED);
const auto regions = build_spill_transfer_descriptors(src);
src->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vkCmdCopyImageToBuffer(cmd, src->value, src->current_layout, m_spilled_mem->value, ::size32(regions), regions.data());
// Destroy this object through a cloned object
auto obj = std::unique_ptr<viewable_image>(clone());
vk::get_resource_manager()->dispose(obj);
if (resolve_surface)
{
// Just add to the resolve cache and move on
resolve_cache.emplace_back(std::move(resolve_surface));
}
ensure(!memory && !value && views.empty() && !resolve_surface);
spill_request_tag = 0ull;
return true;
}
void render_target::unspill(vk::command_buffer& cmd)
{
// Recreate the image
const auto pdev = vk::get_current_renderer();
create_impl(*pdev, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, pdev->get_memory_mapping().device_local, VMM_ALLOCATION_POOL_SURFACE_CACHE);
change_layout(cmd, is_depth_surface() ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Load image from host-visible buffer
ensure(m_spilled_mem);
// Data transfer can be skipped if an erase command is being served
if (!(state_flags & rsx::surface_state_flags::erase_bkgnd))
{
// Warn. Ideally this should never happen if you have enough resources
rsx_log.warning("[PERFORMANCE WARNING] Loading spilled memory back to the GPU. You may want to lower your resolution scaling.");
vk::image* dst = (samples() > 1) ? get_resolve_target_safe(cmd) : this;
const auto regions = build_spill_transfer_descriptors(dst);
dst->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(cmd, m_spilled_mem->value, dst->value, dst->current_layout, ::size32(regions), regions.data());
if (samples() > 1)
{
msaa_flags &= ~rsx::surface_state_flags::require_resolve;
msaa_flags |= rsx::surface_state_flags::require_unresolve;
}
}
// Delete host-visible buffer
vk::get_resource_manager()->dispose(m_spilled_mem);
}
// Load memory from cell and use to initialize the surface
void render_target::load_memory(vk::command_buffer& cmd)
{
auto& upload_heap = *vk::get_upload_heap();
const bool is_swizzled = (raster_type == rsx::surface_raster_type::swizzle);
rsx::subresource_layout subres{};
subres.width_in_block = subres.width_in_texel = surface_width * samples_x;
subres.height_in_block = subres.height_in_texel = surface_height * samples_y;
subres.pitch_in_block = rsx_pitch / get_bpp();
subres.depth = 1;
subres.data = { vm::get_super_ptr<const std::byte>(base_addr), static_cast<std::span<const std::byte>::size_type>(rsx_pitch * surface_height * samples_y) };
if (g_cfg.video.resolution_scale_percent == 100 && spp == 1) [[likely]]
{
push_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vk::upload_image(cmd, this, { subres }, get_gcm_format(), is_swizzled, 1, aspect(), upload_heap, rsx_pitch, upload_contents_inline);
pop_layout(cmd);
}
else
{
vk::image* content = nullptr;
vk::image* final_dst = (samples() > 1) ? get_resolve_target_safe(cmd) : this;
// Prepare dst image
final_dst->push_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
if (final_dst->width() == subres.width_in_block && final_dst->height() == subres.height_in_block)
{
// Possible if MSAA is enabled with 100% resolution scale or
// surface dimensions are less than resolution scale threshold and no MSAA.
// Writethrough.
content = final_dst;
}
else
{
content = vk::get_typeless_helper(format(), format_class(), subres.width_in_block, subres.height_in_block);
content->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
// Load Cell data into temp buffer
vk::upload_image(cmd, content, { subres }, get_gcm_format(), is_swizzled, 1, aspect(), upload_heap, rsx_pitch, upload_contents_inline);
// Write into final image
if (content != final_dst)
{
// Avoid layout push/pop on scratch memory by setting explicit layout here
content->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vk::copy_scaled_image(cmd, content, final_dst,
{ 0, 0, subres.width_in_block, subres.height_in_block },
{ 0, 0, static_cast<s32>(final_dst->width()), static_cast<s32>(final_dst->height()) },
1, true, aspect() == VK_IMAGE_ASPECT_COLOR_BIT ? VK_FILTER_LINEAR : VK_FILTER_NEAREST);
}
final_dst->pop_layout(cmd);
if (samples() > 1)
{
// Trigger unresolve
msaa_flags = rsx::surface_state_flags::require_unresolve;
}
}
state_flags &= ~rsx::surface_state_flags::erase_bkgnd;
}
void render_target::initialize_memory(vk::command_buffer& cmd, rsx::surface_access access)
{
const bool is_depth = is_depth_surface();
const bool should_read_buffers = is_depth ? !!g_cfg.video.read_depth_buffer : !!g_cfg.video.read_color_buffers;
if (!should_read_buffers)
{
clear_memory(cmd, this);
if (samples() > 1 && access.is_transfer_or_read())
{
// Only clear the resolve surface if reading from it, otherwise it's a waste
clear_memory(cmd, get_resolve_target_safe(cmd));
}
msaa_flags = rsx::surface_state_flags::ready;
}
else
{
load_memory(cmd);
}
}
vk::viewable_image* render_target::get_surface(rsx::surface_access access_type)
{
last_rw_access_tag = rsx::get_shared_tag();
if (samples() == 1 || !access_type.is_transfer())
{
return this;
}
// A read barrier should have been called before this!
ensure(resolve_surface); // "Read access without explicit barrier"
ensure(!(msaa_flags & rsx::surface_state_flags::require_resolve));
return resolve_surface.get();
}
bool render_target::is_depth_surface() const
{
return !!(aspect() & VK_IMAGE_ASPECT_DEPTH_BIT);
}
void render_target::release_ref(vk::viewable_image* t) const
{
static_cast<vk::render_target*>(t)->release();
}
bool render_target::matches_dimensions(u16 _width, u16 _height) const
{
// Use forward scaling to account for rounding and clamping errors
const auto [scaled_w, scaled_h] = rsx::apply_resolution_scale<true>(_width, _height);
return (scaled_w == width()) && (scaled_h == height());
}
void render_target::texture_barrier(vk::command_buffer& cmd)
{
if (!write_barrier_sync_tag) write_barrier_sync_tag++; // Activate barrier sync
cyclic_reference_sync_tag = write_barrier_sync_tag; // Match tags
vk::insert_texture_barrier(cmd, this, VK_IMAGE_LAYOUT_GENERAL);
}
void render_target::reset_surface_counters()
{
frame_tag = 0;
write_barrier_sync_tag = 0;
}
image_view* render_target::get_view(u32 remap_encoding, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap, VkImageAspectFlags mask)
{
if (remap_encoding == VK_REMAP_VIEW_MULTISAMPLED)
{
// Special remap flag, intercept here
return vk::viewable_image::get_view(VK_REMAP_IDENTITY, remap, mask);
}
return vk::viewable_image::get_view(remap_encoding, remap, mask);
}
void render_target::memory_barrier(vk::command_buffer& cmd, rsx::surface_access access)
{
if (access == rsx::surface_access::gpu_reference)
{
// This barrier only requires that an object is made available for GPU usage.
if (!value)
{
unspill(cmd);
}
spill_request_tag = 0;
return;
}
const bool is_depth = is_depth_surface();
const bool should_read_buffers = is_depth ? !!g_cfg.video.read_depth_buffer : !!g_cfg.video.read_color_buffers;
if (should_read_buffers)
{
// TODO: Decide what to do when memory loads are disabled but the underlying has memory changed
// NOTE: Assume test() is expensive when in a pinch
if (last_use_tag && state_flags == rsx::surface_state_flags::ready && !test())
{
// TODO: Figure out why merely returning and failing the test does not work when reading (TLoU)
// The result should have been the same either way
state_flags |= rsx::surface_state_flags::erase_bkgnd;
}
}
// Unspill here, because erase flag may have been set above.
if (!value)
{
unspill(cmd);
}
if (access == rsx::surface_access::shader_write && write_barrier_sync_tag != 0)
{
if (current_layout == VK_IMAGE_LAYOUT_GENERAL)
{
if (write_barrier_sync_tag != cyclic_reference_sync_tag)
{
// This barrier catches a very specific case where 2 draw calls are executed with general layout (cyclic ref) but no texture barrier in between.
// This happens when a cyclic ref is broken. In this case previous draw must finish drawing before the new one renders to avoid current draw breaking previous one.
VkPipelineStageFlags src_stage, dst_stage;
VkAccessFlags src_access, dst_access;
if (!is_depth_surface()) [[likely]]
{
src_stage = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dst_stage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
src_access = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dst_access = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
else
{
src_stage = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dst_stage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
src_access = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dst_access = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
vk::insert_image_memory_barrier(cmd, value, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
src_stage, dst_stage, src_access, dst_access, { aspect(), 0, 1, 0, 1 });
write_barrier_sync_tag = 0; // Disable for next draw
}
else
{
// Synced externally for this draw
write_barrier_sync_tag++;
}
}
else
{
write_barrier_sync_tag = 0; // Disable
}
}
if (old_contents.empty()) [[likely]]
{
if (state_flags & rsx::surface_state_flags::erase_bkgnd)
{
// NOTE: This step CAN introduce MSAA flags!
initialize_memory(cmd, access);
ensure(state_flags == rsx::surface_state_flags::ready);
on_write(rsx::get_shared_tag(), static_cast<rsx::surface_state_flags>(msaa_flags));
}
if (msaa_flags & rsx::surface_state_flags::require_resolve)
{
if (access.is_transfer())
{
// Only do this step when read access is required
get_resolve_target_safe(cmd);
resolve(cmd);
}
}
else if (msaa_flags & rsx::surface_state_flags::require_unresolve)
{
if (access == rsx::surface_access::shader_write)
{
// Only do this step when it is needed to start rendering
ensure(resolve_surface);
unresolve(cmd);
}
}
return;
}
// Memory transfers
vk::image* target_image = (samples() > 1) ? get_resolve_target_safe(cmd) : this;
vk::blitter hw_blitter;
const auto dst_bpp = get_bpp();
unsigned first = prepare_rw_barrier_for_transfer(this);
const bool accept_all = (last_use_tag && test());
bool optimize_copy = true;
u64 newest_tag = 0;
for (auto i = first; i < old_contents.size(); ++i)
{
auto& section = old_contents[i];
auto src_texture = static_cast<vk::render_target*>(section.source);
src_texture->memory_barrier(cmd, rsx::surface_access::transfer_read);
if (!accept_all && !src_texture->test()) [[likely]]
{
// If this surface is intact, accept all incoming data as it is guaranteed to be safe
// If this surface has not been initialized or is dirty, do not add more dirty data to it
continue;
}
const auto src_bpp = src_texture->get_bpp();
rsx::typeless_xfer typeless_info{};
if (src_texture->aspect() != aspect() ||
!formats_are_bitcast_compatible(this, src_texture))
{
typeless_info.src_is_typeless = true;
typeless_info.src_context = rsx::texture_upload_context::framebuffer_storage;
typeless_info.src_native_format_override = static_cast<u32>(info.format);
typeless_info.src_gcm_format = src_texture->get_gcm_format();
typeless_info.src_scaling_hint = f32(src_bpp) / dst_bpp;
}
section.init_transfer(this);
auto src_area = section.src_rect();
auto dst_area = section.dst_rect();
if (g_cfg.video.antialiasing_level != msaa_level::none)
{
src_texture->transform_pixels_to_samples(src_area);
this->transform_pixels_to_samples(dst_area);
}
bool memory_load = true;
if (dst_area.x1 == 0 && dst_area.y1 == 0 &&
unsigned(dst_area.x2) == target_image->width() && unsigned(dst_area.y2) == target_image->height())
{
// Skip a bunch of useless work
state_flags &= ~(rsx::surface_state_flags::erase_bkgnd);
msaa_flags = rsx::surface_state_flags::ready;
memory_load = false;
stencil_init_flags = src_texture->stencil_init_flags;
}
else if (state_flags & rsx::surface_state_flags::erase_bkgnd)
{
// Might introduce MSAA flags
initialize_memory(cmd, rsx::surface_access::memory_write);
ensure(state_flags == rsx::surface_state_flags::ready);
}
if (msaa_flags & rsx::surface_state_flags::require_resolve)
{
// Need to forward resolve this
resolve(cmd);
}
if (samples() > 1)
{
// Ensure a writable surface exists for this surface
get_resolve_target_safe(cmd);
}
if (src_texture->samples() > 1)
{
// Ensure a readable surface exists for the source
src_texture->get_resolve_target_safe(cmd);
}
hw_blitter.scale_image(
cmd,
src_texture->get_surface(rsx::surface_access::transfer_read),
this->get_surface(rsx::surface_access::transfer_write),
src_area,
dst_area,
/*linear?*/false, typeless_info);
optimize_copy = optimize_copy && !memory_load;
newest_tag = src_texture->last_use_tag;
}
if (!newest_tag) [[unlikely]]
{
// Underlying memory has been modified and we could not find valid data to fill it
clear_rw_barrier();
state_flags |= rsx::surface_state_flags::erase_bkgnd;
initialize_memory(cmd, access);
ensure(state_flags == rsx::surface_state_flags::ready);
}
// NOTE: Optimize flag relates to stencil resolve/unresolve for NVIDIA.
on_write_copy(newest_tag, optimize_copy);
if (access == rsx::surface_access::shader_write && samples() > 1)
{
// Write barrier, must initialize
unresolve(cmd);
}
}
}