rpcsx/kernel/cellos/src/sys_lwcond.cpp
2025-10-05 19:28:03 +03:00

566 lines
14 KiB
C++

#include "stdafx.h"
#include "sys_lwcond.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_lwmutex.h"
#include "rx/asm.hpp"
LOG_CHANNEL(sys_lwcond);
lv2_lwcond::lv2_lwcond(utils::serial &ar)
: name(ar.pop<be_t<u64>>()), lwid(ar), protocol(ar),
control(ar.pop<decltype(control)>()) {}
void lv2_lwcond::save(utils::serial &ar) {
USING_SERIALIZATION_VERSION(lv2_sync);
ar(name, lwid, protocol, control);
}
error_code _sys_lwcond_create(ppu_thread &ppu, vm::ptr<u32> lwcond_id,
u32 lwmutex_id, vm::ptr<sys_lwcond_t> control,
u64 name) {
ppu.state += cpu_flag::wait;
sys_lwcond.trace(u8"_sys_lwcond_create(lwcond_id=*0x%x, lwmutex_id=0x%x, "
u8"control=*0x%x, name=0x%llx (“%s”))",
lwcond_id, lwmutex_id, control, name,
lv2_obj::name_64{std::bit_cast<be_t<u64>>(name)});
u32 protocol;
// Extract protocol from lwmutex
if (!idm::check<lv2_obj, lv2_lwmutex>(
lwmutex_id,
[&protocol](lv2_lwmutex &mutex) { protocol = mutex.protocol; })) {
return CELL_ESRCH;
}
if (protocol == SYS_SYNC_RETRY) {
// Lwcond can't have SYS_SYNC_RETRY protocol
protocol = SYS_SYNC_PRIORITY;
}
if (const u32 id =
idm::make<lv2_obj, lv2_lwcond>(name, lwmutex_id, protocol, control)) {
ppu.check_state();
*lwcond_id = id;
return CELL_OK;
}
return CELL_EAGAIN;
}
error_code _sys_lwcond_destroy(ppu_thread &ppu, u32 lwcond_id) {
ppu.state += cpu_flag::wait;
sys_lwcond.trace("_sys_lwcond_destroy(lwcond_id=0x%x)", lwcond_id);
shared_ptr<lv2_lwcond> _cond;
while (true) {
s32 old_val = 0;
auto [ptr, ret] = idm::withdraw<lv2_obj, lv2_lwcond>(
lwcond_id, [&](lv2_lwcond &cond) -> CellError {
// Ignore check on first iteration
if (_cond && std::addressof(cond) != _cond.get()) {
// Other thread has destroyed the lwcond earlier
return CELL_ESRCH;
}
std::lock_guard lock(cond.mutex);
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
return CELL_EBUSY;
}
old_val = cond.lwmutex_waiters.or_fetch(smin);
if (old_val != smin) {
// De-schedule if waiters were found
lv2_obj::sleep(ppu);
// Repeat loop: there are lwmutex waiters inside
// _sys_lwcond_queue_wait
return CELL_EAGAIN;
}
return {};
});
if (!ptr) {
return CELL_ESRCH;
}
if (ret) {
if (ret != CELL_EAGAIN) {
return ret;
}
} else {
break;
}
_cond = std::move(ptr);
// Wait for all lwcond waiters to quit
while (old_val + 0u > 1u << 31) {
thread_ctrl::wait_on(_cond->lwmutex_waiters, old_val);
if (ppu.is_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
old_val = _cond->lwmutex_waiters;
}
// Wake up from sleep
ppu.check_state();
}
return CELL_OK;
}
error_code _sys_lwcond_signal(ppu_thread &ppu, u32 lwcond_id, u32 lwmutex_id,
u64 ppu_thread_id, u32 mode) {
ppu.state += cpu_flag::wait;
sys_lwcond.trace("_sys_lwcond_signal(lwcond_id=0x%x, lwmutex_id=0x%x, "
"ppu_thread_id=0x%llx, mode=%d)",
lwcond_id, lwmutex_id, ppu_thread_id, mode);
// Mode 1: lwmutex was initially owned by the calling thread
// Mode 2: lwmutex was not owned by the calling thread and waiter hasn't been
// increased Mode 3: lwmutex was forcefully owned by the calling thread
if (mode < 1 || mode > 3) {
fmt::throw_exception("Unknown mode (%d)", mode);
}
while (true) {
if (ppu.test_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
bool finished = true;
ppu.state += cpu_flag::wait;
const auto cond = idm::check<lv2_obj, lv2_lwcond>(
lwcond_id,
[&, notify = lv2_obj::notify_all_t()](lv2_lwcond &cond) -> int {
ppu_thread *cpu = nullptr;
if (ppu_thread_id != u32{umax}) {
cpu = idm::check_unlocked<named_thread<ppu_thread>>(
static_cast<u32>(ppu_thread_id));
if (!cpu) {
return -1;
}
}
lv2_lwmutex *mutex = nullptr;
if (mode != 2) {
mutex = idm::check_unlocked<lv2_obj, lv2_lwmutex>(lwmutex_id);
if (!mutex) {
return -1;
}
}
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
std::lock_guard lock(cond.mutex);
if (ppu.state & cpu_flag::suspend) {
// Test if another signal caused the current thread to be
// suspended, in which case it needs to wait until the thread
// wakes up (otherwise the signal may cause unexpected results)
finished = false;
return 0;
}
if (cpu) {
if (static_cast<ppu_thread *>(cpu)->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return 0;
}
}
auto result =
cpu ? cond.unqueue(cond.sq, cpu)
: cond.schedule<ppu_thread>(cond.sq, cond.protocol);
if (result) {
if (static_cast<ppu_thread *>(result)->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return 0;
}
if (mode == 2) {
static_cast<ppu_thread *>(result)->gpr[3] = CELL_EBUSY;
} else if (mode == 3 && mutex->load_sq()) [[unlikely]] {
std::lock_guard lock(mutex->mutex);
// Respect ordering of the sleep queue
mutex->try_own(result, true);
auto result2 = mutex->reown<ppu_thread>();
if (result2->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return 0;
}
if (result2 != result) {
cond.awake(result2);
result = nullptr;
}
} else if (mode == 1) {
mutex->try_own(result, true);
result = nullptr;
}
if (result) {
cond.awake(result);
}
return 1;
}
} else {
cond.mutex.lock_unlock();
if (ppu.state & cpu_flag::suspend) {
finished = false;
return 0;
}
}
return 0;
});
if (!finished) {
continue;
}
if (!cond || cond.ret == -1) {
return CELL_ESRCH;
}
if (!cond.ret) {
if (ppu_thread_id == u32{umax}) {
if (mode == 3) {
return not_an_error(CELL_ENOENT);
} else if (mode == 2) {
return CELL_OK;
}
}
return not_an_error(CELL_EPERM);
}
return CELL_OK;
}
}
error_code _sys_lwcond_signal_all(ppu_thread &ppu, u32 lwcond_id,
u32 lwmutex_id, u32 mode) {
ppu.state += cpu_flag::wait;
sys_lwcond.trace(
"_sys_lwcond_signal_all(lwcond_id=0x%x, lwmutex_id=0x%x, mode=%d)",
lwcond_id, lwmutex_id, mode);
// Mode 1: lwmutex was initially owned by the calling thread
// Mode 2: lwmutex was not owned by the calling thread and waiter hasn't been
// increased
if (mode < 1 || mode > 2) {
fmt::throw_exception("Unknown mode (%d)", mode);
}
while (true) {
if (ppu.test_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
bool finished = true;
ppu.state += cpu_flag::wait;
const auto cond = idm::check<lv2_obj, lv2_lwcond>(
lwcond_id,
[&, notify = lv2_obj::notify_all_t()](lv2_lwcond &cond) -> int {
lv2_lwmutex *mutex{};
if (mode != 2) {
mutex = idm::check_unlocked<lv2_obj, lv2_lwmutex>(lwmutex_id);
if (!mutex) {
return -1;
}
}
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
std::lock_guard lock(cond.mutex);
if (ppu.state & cpu_flag::suspend) {
// Test if another signal caused the current thread to be
// suspended, in which case it needs to wait until the thread
// wakes up (otherwise the signal may cause unexpected results)
finished = false;
return 0;
}
u32 result = 0;
for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu) {
if (cpu->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return 0;
}
}
auto sq = cond.sq;
atomic_storage<ppu_thread *>::release(cond.sq, nullptr);
while (const auto cpu =
cond.schedule<ppu_thread>(sq, cond.protocol)) {
if (mode == 2) {
static_cast<ppu_thread *>(cpu)->gpr[3] = CELL_EBUSY;
}
if (mode == 1) {
mutex->try_own(cpu, true);
} else {
lv2_obj::append(cpu);
}
result++;
}
if (result && mode == 2) {
lv2_obj::awake_all();
}
return result;
} else {
cond.mutex.lock_unlock();
if (ppu.state & cpu_flag::suspend) {
finished = false;
return 0;
}
}
return 0;
});
if (!finished) {
continue;
}
if (!cond || cond.ret == -1) {
return CELL_ESRCH;
}
if (mode == 1) {
// Mode 1: return the amount of threads (TODO)
return not_an_error(cond.ret);
}
return CELL_OK;
}
}
error_code _sys_lwcond_queue_wait(ppu_thread &ppu, u32 lwcond_id,
u32 lwmutex_id, u64 timeout) {
ppu.state += cpu_flag::wait;
sys_lwcond.trace(
"_sys_lwcond_queue_wait(lwcond_id=0x%x, lwmutex_id=0x%x, timeout=0x%llx)",
lwcond_id, lwmutex_id, timeout);
ppu.gpr[3] = CELL_OK;
shared_ptr<lv2_lwmutex> mutex;
auto &sstate = *ppu.optional_savestate_state;
const auto cond = idm::get<lv2_obj, lv2_lwcond>(
lwcond_id, [&, notify = lv2_obj::notify_all_t()](lv2_lwcond &cond) {
mutex = idm::get_unlocked<lv2_obj, lv2_lwmutex>(lwmutex_id);
if (!mutex) {
return;
}
// Increment lwmutex's lwcond's waiters count
mutex->lwcond_waiters++;
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(cond.mutex);
cond.lwmutex_waiters++;
const bool mutex_sleep = sstate.try_read<bool>().second;
sstate.clear();
if (mutex_sleep) {
// Special: loading state from the point of waiting on lwmutex sleep
// queue
mutex->try_own(&ppu, true);
} else {
// Add a waiter
lv2_obj::emplace(cond.sq, &ppu);
}
if (!ppu.loaded_from_savestate && !mutex->try_unlock(false)) {
std::lock_guard lock2(mutex->mutex);
// Process lwmutex sleep queue
if (const auto cpu = mutex->reown<ppu_thread>()) {
if (static_cast<ppu_thread *>(cpu)->state & cpu_flag::again) {
ensure(cond.unqueue(cond.sq, &ppu));
ppu.state += cpu_flag::again;
return;
}
// Put the current thread to sleep and schedule lwmutex waiter
// atomically
cond.append(cpu);
cond.sleep(ppu, timeout);
return;
}
}
cond.sleep(ppu, timeout);
});
if (!cond || !mutex) {
return CELL_ESRCH;
}
if (ppu.state & cpu_flag::again) {
return CELL_OK;
}
while (auto state = +ppu.state) {
if (state & cpu_flag::signal &&
ppu.state.test_and_reset(cpu_flag::signal)) {
break;
}
if (is_stopped(state)) {
std::scoped_lock lock(cond->mutex, mutex->mutex);
bool mutex_sleep = false;
bool cond_sleep = false;
for (auto cpu = mutex->load_sq(); cpu; cpu = cpu->next_cpu) {
if (cpu == &ppu) {
mutex_sleep = true;
break;
}
}
for (auto cpu = atomic_storage<ppu_thread *>::load(cond->sq); cpu;
cpu = cpu->next_cpu) {
if (cpu == &ppu) {
cond_sleep = true;
break;
}
}
if (!cond_sleep && !mutex_sleep) {
break;
}
sstate(mutex_sleep);
ppu.state += cpu_flag::again;
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++) {
rx::busy_wait(500);
}
if (ppu.state & cpu_flag::signal) {
continue;
}
if (timeout) {
if (lv2_obj::wait_timeout(timeout, &ppu)) {
// Wait for rescheduling
if (ppu.check_state()) {
continue;
}
ppu.state += cpu_flag::wait;
std::lock_guard lock(cond->mutex);
if (cond->unqueue(cond->sq, &ppu)) {
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
std::lock_guard lock2(mutex->mutex);
bool success = false;
mutex->lv2_control.fetch_op([&](lv2_lwmutex::control_data_t &data) {
success = false;
ppu_thread *sq = static_cast<ppu_thread *>(data.sq);
const bool retval = &ppu == sq;
if (!mutex->unqueue<false>(sq, &ppu)) {
return false;
}
success = true;
if (!retval) {
return false;
}
data.sq = sq;
return true;
});
if (success) {
ppu.next_cpu = nullptr;
ppu.gpr[3] = CELL_ETIMEDOUT;
}
break;
}
} else {
ppu.state.wait(state);
}
}
if (--mutex->lwcond_waiters == smin) {
// Notify the thread destroying lwmutex on last waiter
mutex->lwcond_waiters.notify_all();
}
if (--cond->lwmutex_waiters == smin) {
// Notify the thread destroying lwcond on last waiter
cond->lwmutex_waiters.notify_all();
}
// Return cause
return not_an_error(ppu.gpr[3]);
}