rpcsx/kernel/cellos/src/sys_cond.cpp

510 lines
13 KiB
C++

#include "stdafx.h"
#include "Emu/IdManager.h"
#include "Emu/System.h"
#include "util/serialization.hpp"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_cond.h"
#include "util/asm.hpp"
LOG_CHANNEL(sys_cond);
lv2_cond::lv2_cond(utils::serial &ar) noexcept
: key(ar), name(ar), mtx_id(ar),
mutex(idm::check_unlocked<lv2_obj, lv2_mutex>(mtx_id)),
_mutex(idm::get_unlocked<lv2_obj, lv2_mutex>(mtx_id)) // May be nullptr
{}
lv2_cond::lv2_cond(u64 key, u64 name, u32 mtx_id,
shared_ptr<lv2_obj> mutex0) noexcept
: key(key), name(name), mtx_id(mtx_id),
mutex(static_cast<lv2_mutex *>(mutex0.get())), _mutex(mutex0) {}
CellError lv2_cond::on_id_create() {
exists++;
static auto do_it = [](lv2_cond *_this) -> CellError {
if (lv2_obj::check(_this->mutex)) {
_this->mutex->cond_count++;
return {};
}
// Mutex has been destroyed, cannot create conditional variable
return CELL_ESRCH;
};
if (mutex) {
return do_it(this);
}
ensure(!!Emu.DeserialManager());
Emu.PostponeInitCode([this]() {
if (!mutex) {
_mutex = static_cast<shared_ptr<lv2_obj>>(
ensure(idm::get_unlocked<lv2_obj, lv2_mutex>(mtx_id)));
}
// Defer function
ensure(CellError{} == do_it(this));
});
return {};
}
std::function<void(void *)> lv2_cond::load(utils::serial &ar) {
return load_func(make_shared<lv2_cond>(exact_t<utils::serial &>(ar)));
}
void lv2_cond::save(utils::serial &ar) { ar(key, name, mtx_id); }
error_code sys_cond_create(ppu_thread &ppu, vm::ptr<u32> cond_id, u32 mutex_id,
vm::ptr<sys_cond_attribute_t> attr) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_create(cond_id=*0x%x, mutex_id=0x%x, attr=*0x%x)",
cond_id, mutex_id, attr);
auto mutex = idm::get_unlocked<lv2_obj, lv2_mutex>(mutex_id);
if (!mutex) {
return CELL_ESRCH;
}
const auto _attr = *attr;
const u64 ipc_key = lv2_obj::get_key(_attr);
if (ipc_key) {
sys_cond.warning("sys_cond_create(cond_id=*0x%x, attr=*0x%x): IPC=0x%016x",
cond_id, attr, ipc_key);
}
if (const auto error =
lv2_obj::create<lv2_cond>(_attr.pshared, ipc_key, _attr.flags, [&] {
return make_single<lv2_cond>(ipc_key, _attr.name_u64, mutex_id,
std::move(mutex));
})) {
return error;
}
ppu.check_state();
*cond_id = idm::last_id();
return CELL_OK;
}
error_code sys_cond_destroy(ppu_thread &ppu, u32 cond_id) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_destroy(cond_id=0x%x)", cond_id);
const auto cond = idm::withdraw<lv2_obj, lv2_cond>(
cond_id, [&](lv2_cond &cond) -> CellError {
std::lock_guard lock(cond.mutex->mutex);
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
return CELL_EBUSY;
}
cond.mutex->cond_count--;
lv2_obj::on_id_destroy(cond, cond.key);
return {};
});
if (!cond) {
return CELL_ESRCH;
}
if (cond->key) {
sys_cond.warning("sys_cond_destroy(cond_id=0x%x): IPC=0x%016x", cond_id,
cond->key);
}
if (cond.ret) {
return cond.ret;
}
return CELL_OK;
}
error_code sys_cond_signal(ppu_thread &ppu, u32 cond_id) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal(cond_id=0x%x)", cond_id);
while (true) {
if (ppu.test_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
bool finished = true;
ppu.state += cpu_flag::wait;
const auto cond = idm::check<lv2_obj, lv2_cond>(
cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond &cond) {
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
std::lock_guard lock(cond.mutex->mutex);
if (ppu.state & cpu_flag::suspend) {
// Test if another signal caused the current thread to be
// suspended, in which case it needs to wait until the thread
// wakes up (otherwise the signal may cause unexpected results)
finished = false;
return;
}
if (const auto cpu =
cond.schedule<ppu_thread>(cond.sq, cond.mutex->protocol)) {
if (static_cast<ppu_thread *>(cpu)->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return;
}
// TODO: Is EBUSY returned after reqeueing, on sys_cond_destroy?
if (cond.mutex->try_own(*cpu)) {
cond.awake(cpu);
}
}
} else {
cond.mutex->mutex.lock_unlock();
if (ppu.state & cpu_flag::suspend) {
finished = false;
}
}
});
if (!finished) {
continue;
}
if (!cond) {
return CELL_ESRCH;
}
return CELL_OK;
}
}
error_code sys_cond_signal_all(ppu_thread &ppu, u32 cond_id) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal_all(cond_id=0x%x)", cond_id);
while (true) {
if (ppu.test_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
bool finished = true;
ppu.state += cpu_flag::wait;
const auto cond = idm::check<lv2_obj, lv2_cond>(
cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond &cond) {
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
std::lock_guard lock(cond.mutex->mutex);
if (ppu.state & cpu_flag::suspend) {
// Test if another signal caused the current thread to be
// suspended, in which case it needs to wait until the thread
// wakes up (otherwise the signal may cause unexpected results)
finished = false;
return;
}
for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu) {
if (cpu->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return;
}
}
cpu_thread *result = nullptr;
auto sq = cond.sq;
atomic_storage<ppu_thread *>::release(cond.sq, nullptr);
while (const auto cpu =
cond.schedule<ppu_thread>(sq, SYS_SYNC_PRIORITY)) {
if (cond.mutex->try_own(*cpu)) {
ensure(!std::exchange(result, cpu));
}
}
if (result) {
cond.awake(result);
}
} else {
cond.mutex->mutex.lock_unlock();
if (ppu.state & cpu_flag::suspend) {
finished = false;
}
}
});
if (!finished) {
continue;
}
if (!cond) {
return CELL_ESRCH;
}
return CELL_OK;
}
}
error_code sys_cond_signal_to(ppu_thread &ppu, u32 cond_id, u32 thread_id) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal_to(cond_id=0x%x, thread_id=0x%x)", cond_id,
thread_id);
while (true) {
if (ppu.test_stopped()) {
ppu.state += cpu_flag::again;
return {};
}
bool finished = true;
ppu.state += cpu_flag::wait;
const auto cond = idm::check<lv2_obj, lv2_cond>(
cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond &cond) {
if (!idm::check_unlocked<named_thread<ppu_thread>>(thread_id)) {
return -1;
}
if (atomic_storage<ppu_thread *>::load(cond.sq)) {
std::lock_guard lock(cond.mutex->mutex);
if (ppu.state & cpu_flag::suspend) {
// Test if another signal caused the current thread to be
// suspended, in which case it needs to wait until the thread
// wakes up (otherwise the signal may cause unexpected results)
finished = false;
return 0;
}
for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu) {
if (cpu->id == thread_id) {
if (static_cast<ppu_thread *>(cpu)->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return 0;
}
ensure(cond.unqueue(cond.sq, cpu));
if (cond.mutex->try_own(*cpu)) {
cond.awake(cpu);
}
return 1;
}
}
} else {
cond.mutex->mutex.lock_unlock();
if (ppu.state & cpu_flag::suspend) {
finished = false;
return 0;
}
}
return 0;
});
if (!finished) {
continue;
}
if (!cond || cond.ret == -1) {
return CELL_ESRCH;
}
if (!cond.ret) {
return not_an_error(CELL_EPERM);
}
return CELL_OK;
}
}
error_code sys_cond_wait(ppu_thread &ppu, u32 cond_id, u64 timeout) {
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_wait(cond_id=0x%x, timeout=%lld)", cond_id, timeout);
// Further function result
ppu.gpr[3] = CELL_OK;
auto &sstate = *ppu.optional_savestate_state;
const auto cond = idm::get<lv2_obj, lv2_cond>(
cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond &cond) -> s64 {
if (!ppu.loaded_from_savestate &&
atomic_storage<u32>::load(cond.mutex->control.raw().owner) !=
ppu.id) {
return -1;
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(cond.mutex->mutex);
const u64 syscall_state = sstate.try_read<u64>().second;
sstate.clear();
if (ppu.loaded_from_savestate) {
if (syscall_state & 1) {
// Mutex sleep
ensure(!cond.mutex->try_own(ppu));
} else {
lv2_obj::emplace(cond.sq, &ppu);
}
cond.sleep(ppu, timeout);
return static_cast<u32>(syscall_state >> 32);
}
// Register waiter
lv2_obj::emplace(cond.sq, &ppu);
// Unlock the mutex
const u32 count = cond.mutex->lock_count.exchange(0);
if (const auto cpu = cond.mutex->reown<ppu_thread>()) {
if (cpu->state & cpu_flag::again) {
ensure(cond.unqueue(cond.sq, &ppu));
ppu.state += cpu_flag::again;
return 0;
}
cond.mutex->append(cpu);
}
// Sleep current thread and schedule mutex waiter
cond.sleep(ppu, timeout);
// Save the recursive value
return count;
});
if (!cond) {
return CELL_ESRCH;
}
if (ppu.state & cpu_flag::again) {
return {};
}
if (cond.ret < 0) {
return CELL_EPERM;
}
while (auto state = +ppu.state) {
if (state & cpu_flag::signal &&
ppu.state.test_and_reset(cpu_flag::signal)) {
break;
}
if (is_stopped(state)) {
std::lock_guard lock(cond->mutex->mutex);
bool mutex_sleep = false;
bool cond_sleep = false;
for (auto cpu = atomic_storage<ppu_thread *>::load(cond->sq); cpu;
cpu = cpu->next_cpu) {
if (cpu == &ppu) {
cond_sleep = true;
break;
}
}
for (auto cpu = atomic_storage<ppu_thread *>::load(
cond->mutex->control.raw().sq);
cpu; cpu = cpu->next_cpu) {
if (cpu == &ppu) {
mutex_sleep = true;
break;
}
}
if (!cond_sleep && !mutex_sleep) {
break;
}
const u64 optional_syscall_state =
u32{mutex_sleep} | (u64{static_cast<u32>(cond.ret)} << 32);
sstate(optional_syscall_state);
ppu.state += cpu_flag::again;
return {};
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++) {
busy_wait(500);
}
if (ppu.state & cpu_flag::signal) {
continue;
}
if (timeout) {
if (lv2_obj::wait_timeout(timeout, &ppu)) {
const u64 start_time = ppu.start_time;
// Wait for rescheduling
if (ppu.check_state()) {
continue;
}
ppu.state += cpu_flag::wait;
std::lock_guard lock(cond->mutex->mutex);
// Try to cancel the waiting
if (cond->unqueue(cond->sq, &ppu)) {
// TODO: Is EBUSY returned after reqeueing, on sys_cond_destroy?
ppu.gpr[3] = CELL_ETIMEDOUT;
// Own or requeue
if (cond->mutex->try_own(ppu)) {
break;
}
} else if (atomic_storage<u32>::load(
cond->mutex->control.raw().owner) == ppu.id) {
break;
}
cond->mutex->sleep(ppu);
ppu.start_time =
start_time; // Restore start time because awake has been called
timeout = 0;
continue;
}
} else {
ppu.state.wait(state);
}
}
// Verify ownership
ensure(atomic_storage<u32>::load(cond->mutex->control.raw().owner) == ppu.id);
// Restore the recursive value
cond->mutex->lock_count.release(static_cast<u32>(cond.ret));
return not_an_error(ppu.gpr[3]);
}