rpcsx/rpcs3/Emu/RSX/Common/texture_cache.h
2019-01-25 14:34:22 +03:00

2520 lines
85 KiB
C++

#pragma once
#include "../rsx_cache.h"
#include "../rsx_utils.h"
#include "texture_cache_predictor.h"
#include "texture_cache_utils.h"
#include "TextureUtils.h"
#include <atomic>
extern u64 get_system_time();
namespace rsx
{
template <typename derived_type, typename _traits>
class texture_cache
{
public:
using traits = _traits;
using commandbuffer_type = typename traits::commandbuffer_type;
using section_storage_type = typename traits::section_storage_type;
using image_resource_type = typename traits::image_resource_type;
using image_view_type = typename traits::image_view_type;
using image_storage_type = typename traits::image_storage_type;
using texture_format = typename traits::texture_format;
using predictor_type = texture_cache_predictor<traits>;
using ranged_storage = rsx::ranged_storage<traits>;
using ranged_storage_block = typename ranged_storage::block_type;
private:
static_assert(std::is_base_of<rsx::cached_texture_section<section_storage_type, traits>, section_storage_type>::value, "section_storage_type must derive from rsx::cached_texture_section");
/**
* Helper structs/enums
*/
// Keep track of cache misses to pre-emptively flush some addresses
struct framebuffer_memory_characteristics
{
u32 misses;
texture_format format;
};
public:
//Struct to hold data on sections to be paged back onto cpu memory
struct thrashed_set
{
bool violation_handled = false;
bool flushed = false;
invalidation_cause cause;
std::vector<section_storage_type*> sections_to_flush; // Sections to be flushed
std::vector<section_storage_type*> sections_to_unprotect; // These sections are to be unpotected and discarded by caller
std::vector<section_storage_type*> sections_to_exclude; // These sections are do be excluded from protection manipulation (subtracted from other sections)
u32 num_flushable = 0;
u64 cache_tag = 0;
address_range fault_range;
address_range invalidate_range;
void clear_sections()
{
sections_to_flush = {};
sections_to_unprotect = {};
sections_to_exclude = {};
num_flushable = 0;
}
bool empty() const
{
return sections_to_flush.empty() && sections_to_unprotect.empty() && sections_to_exclude.empty();
}
bool is_flushed() const
{
return flushed || sections_to_flush.empty();
}
#ifdef TEXTURE_CACHE_DEBUG
void check_pre_sanity() const
{
size_t flush_and_unprotect_count = sections_to_flush.size() + sections_to_unprotect.size();
size_t exclude_count = sections_to_exclude.size();
//-------------------------
// It is illegal to have only exclusions except when reading from a range with only RO sections
ASSERT(flush_and_unprotect_count > 0 || exclude_count == 0 || cause.is_read());
if (flush_and_unprotect_count == 0 && exclude_count > 0)
{
// double-check that only RO sections exists
for (auto *tex : sections_to_exclude)
ASSERT(tex->get_protection() == utils::protection::ro);
}
//-------------------------
// Check that the number of sections we "found" matches the sections known to be in the fault range
const auto min_overlap_fault_no_ro = tex_cache_checker.get_minimum_number_of_sections(fault_range);
const auto min_overlap_invalidate_no_ro = tex_cache_checker.get_minimum_number_of_sections(invalidate_range);
const u16 min_overlap_fault = min_overlap_fault_no_ro.first + (cause.is_read() ? 0 : min_overlap_fault_no_ro.second);
const u16 min_overlap_invalidate = min_overlap_invalidate_no_ro.first + (cause.is_read() ? 0 : min_overlap_invalidate_no_ro.second);
AUDIT(min_overlap_fault <= min_overlap_invalidate);
const u16 min_flush_or_unprotect = min_overlap_fault;
// we must flush or unprotect *all* sections that partially overlap the fault range
ASSERT(flush_and_unprotect_count >= min_flush_or_unprotect);
// result must contain *all* sections that overlap (completely or partially) the invalidation range
ASSERT(flush_and_unprotect_count + exclude_count >= min_overlap_invalidate);
}
void check_post_sanity() const
{
AUDIT(is_flushed());
// Check that the number of sections we "found" matches the sections known to be in the fault range
tex_cache_checker.check_unprotected(fault_range, cause.is_read() && invalidation_keep_ro_during_read, true);
// Check that the cache has the correct protections
tex_cache_checker.verify();
}
#endif // TEXTURE_CACHE_DEBUG
};
struct intersecting_set
{
std::vector<section_storage_type*> sections = {};
address_range invalidate_range = {};
bool has_flushables = false;
};
struct copy_region_descriptor
{
image_resource_type src;
u16 src_x;
u16 src_y;
u16 dst_x;
u16 dst_y;
u16 dst_z;
u16 w;
u16 h;
};
enum deferred_request_command : u32
{
copy_image_static,
copy_image_dynamic,
cubemap_gather,
cubemap_unwrap,
atlas_gather,
_3d_gather,
_3d_unwrap
};
using texture_channel_remap_t = std::pair<std::array<u8, 4>, std::array<u8, 4>>;
struct deferred_subresource
{
image_resource_type external_handle = 0;
std::vector<copy_region_descriptor> sections_to_copy;
texture_channel_remap_t remap;
deferred_request_command op;
u32 base_address = 0;
u32 gcm_format = 0;
u16 x = 0;
u16 y = 0;
u16 width = 0;
u16 height = 0;
u16 depth = 1;
deferred_subresource()
{}
deferred_subresource(image_resource_type _res, deferred_request_command _op, u32 _addr, u32 _fmt, u16 _x, u16 _y, u16 _w, u16 _h, u16 _d, const texture_channel_remap_t& _remap) :
external_handle(_res), op(_op), base_address(_addr), gcm_format(_fmt), x(_x), y(_y), width(_w), height(_h), depth(_d), remap(_remap)
{}
};
struct blit_op_result
{
bool succeeded = false;
bool is_depth = false;
u32 real_dst_address = 0;
u32 real_dst_size = 0;
blit_op_result(bool success) : succeeded(success)
{}
inline address_range to_address_range() const
{
return address_range::start_length(real_dst_address, real_dst_size);
}
};
struct sampled_image_descriptor : public sampled_image_descriptor_base
{
image_view_type image_handle = 0;
deferred_subresource external_subresource_desc = {};
bool flag = false;
sampled_image_descriptor()
{}
sampled_image_descriptor(image_view_type handle, texture_upload_context ctx, bool is_depth, f32 x_scale, f32 y_scale, rsx::texture_dimension_extended type)
{
image_handle = handle;
upload_context = ctx;
is_depth_texture = is_depth;
scale_x = x_scale;
scale_y = y_scale;
image_type = type;
}
sampled_image_descriptor(image_resource_type external_handle, deferred_request_command reason, u32 base_address, u32 gcm_format,
u16 x_offset, u16 y_offset, u16 width, u16 height, u16 depth, texture_upload_context ctx, bool is_depth, f32 x_scale, f32 y_scale,
rsx::texture_dimension_extended type, const texture_channel_remap_t& remap)
{
external_subresource_desc = { external_handle, reason, base_address, gcm_format, x_offset, y_offset, width, height, depth, remap };
image_handle = 0;
upload_context = ctx;
is_depth_texture = is_depth;
scale_x = x_scale;
scale_y = y_scale;
image_type = type;
}
u32 encoded_component_map() const override
{
if (image_handle)
{
return image_handle->encoded_component_map();
}
return 0;
}
};
protected:
/**
* Variable declarations
*/
shared_mutex m_cache_mutex;
ranged_storage m_storage;
std::unordered_multimap<u32, std::pair<deferred_subresource, image_view_type>> m_temporary_subresource_cache;
predictor_type m_predictor;
std::atomic<u64> m_cache_update_tag = {0};
address_range read_only_range;
address_range no_access_range;
//Map of messages to only emit once
std::unordered_set<std::string> m_once_only_messages_set;
//Set when a shader read-only texture data suddenly becomes contested, usually by fbo memory
bool read_only_tex_invalidate = false;
//Store of all objects in a flush_always state. A lazy readback is attempted every draw call
std::unordered_map<address_range, section_storage_type*> m_flush_always_cache;
u64 m_flush_always_update_timestamp = 0;
//Memory usage
const u32 m_max_zombie_objects = 64; //Limit on how many texture objects to keep around for reuse after they are invalidated
//Other statistics
std::atomic<u32> m_flushes_this_frame = { 0 };
std::atomic<u32> m_misses_this_frame = { 0 };
std::atomic<u32> m_speculations_this_frame = { 0 };
std::atomic<u32> m_unavoidable_hard_faults_this_frame = { 0 };
static const u32 m_predict_max_flushes_per_frame = 50; // Above this number the predictions are disabled
// Invalidation
static const bool invalidation_ignore_unsynchronized = true; // If true, unsynchronized sections don't get forcefully flushed unless they overlap the fault range
static const bool invalidation_keep_ro_during_read = true; // If true, RO sections are not invalidated during read faults
/**
* Virtual Methods
*/
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_resource_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_storage_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h, const texture_channel_remap_t& remap_vector) = 0;
virtual section_storage_type* create_new_texture(commandbuffer_type&, const address_range &rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, u32 gcm_format,
rsx::texture_upload_context context, rsx::texture_dimension_extended type, texture_create_flags flags) = 0;
virtual section_storage_type* upload_image_from_cpu(commandbuffer_type&, const address_range &rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, u32 gcm_format, texture_upload_context context,
const std::vector<rsx_subresource_layout>& subresource_layout, rsx::texture_dimension_extended type, bool swizzled) = 0;
virtual void enforce_surface_creation_type(section_storage_type& section, u32 gcm_format, texture_create_flags expected) = 0;
virtual void insert_texture_barrier(commandbuffer_type&, image_storage_type* tex) = 0;
virtual image_view_type generate_cubemap_from_images(commandbuffer_type&, u32 gcm_format, u16 size, const std::vector<copy_region_descriptor>& sources, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type generate_3d_from_2d_images(commandbuffer_type&, u32 gcm_format, u16 width, u16 height, u16 depth, const std::vector<copy_region_descriptor>& sources, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type generate_atlas_from_images(commandbuffer_type&, u32 gcm_format, u16 width, u16 height, const std::vector<copy_region_descriptor>& sections_to_copy, const texture_channel_remap_t& remap_vector) = 0;
virtual void update_image_contents(commandbuffer_type&, image_view_type dst, image_resource_type src, u16 width, u16 height) = 0;
virtual bool render_target_format_is_compatible(image_storage_type* tex, u32 gcm_format) = 0;
public:
virtual void destroy() = 0;
virtual bool is_depth_texture(u32, u32) = 0;
virtual void on_section_destroyed(section_storage_type& /*section*/)
{}
protected:
/**
* Helpers
*/
inline void update_cache_tag()
{
m_cache_update_tag++;
}
template <typename... Args>
void emit_once(bool error, const char* fmt, const Args&... params)
{
const auto result = m_once_only_messages_set.emplace(fmt::format(fmt, params...));
if (!result.second)
return;
if (error)
LOG_ERROR(RSX, "%s", *result.first);
else
LOG_WARNING(RSX, "%s", *result.first);
}
template <typename... Args>
void err_once(const char* fmt, const Args&... params)
{
logs::RSX.error(fmt, params...);
}
template <typename... Args>
void warn_once(const char* fmt, const Args&... params)
{
logs::RSX.warning(fmt, params...);
}
/**
* Internal implementation methods and helpers
*/
inline bool region_intersects_cache(const address_range &test_range, bool is_writing)
{
AUDIT(test_range.valid());
// Quick range overlaps with cache tests
if (!is_writing)
{
if (!no_access_range.valid() || !test_range.overlaps(no_access_range))
return false;
}
else
{
if (!read_only_range.valid() || !test_range.overlaps(read_only_range))
{
//Doesnt fall in the read_only textures range; check render targets
if (!no_access_range.valid() || !test_range.overlaps(no_access_range))
return false;
}
}
// Check that there is at least one valid (locked) section in the test_range
reader_lock lock(m_cache_mutex);
if (m_storage.range_begin(test_range, locked_range, true) == m_storage.range_end())
return false;
// We do intersect the cache
return true;
}
/**
* Section invalidation
*/
private:
template <typename ...Args>
void flush_set(commandbuffer_type& cmd, thrashed_set& data, Args&&... extras)
{
AUDIT(!data.flushed);
if (data.sections_to_flush.size() > 1)
{
// Sort with oldest data first
// Ensures that new data tramples older data
std::sort(data.sections_to_flush.begin(), data.sections_to_flush.end(), [](const auto& a, const auto& b)
{
return (a->last_write_tag < b->last_write_tag);
});
}
for (auto &surface : data.sections_to_flush)
{
if (surface->get_memory_read_flags() == rsx::memory_read_flags::flush_always)
{
// This region is set to always read from itself (unavoidable hard sync)
const auto ROP_timestamp = rsx::get_current_renderer()->ROP_sync_timestamp;
if (surface->is_synchronized() && ROP_timestamp > surface->get_sync_timestamp())
{
surface->copy_texture(cmd, true, std::forward<Args>(extras)...);
}
}
surface->flush(cmd, std::forward<Args>(extras)...);
// Exclude this region when flushing other sections that should not trample it
// If we overlap an excluded RO, set it as dirty
for (auto &other : data.sections_to_exclude)
{
AUDIT(other != surface);
if (!other->is_flushable())
{
if (other->overlaps(*surface, section_bounds::full_range))
{
other->set_dirty(true);
}
}
else if(surface->last_write_tag > other->last_write_tag)
{
other->add_flush_exclusion(surface->get_confirmed_range());
}
}
}
data.flushed = true;
}
// Merges the protected ranges of the sections in "sections" into "result"
void merge_protected_ranges(address_range_vector &result, const std::vector<section_storage_type*> &sections)
{
result.reserve(result.size() + sections.size());
// Copy ranges to result, merging them if possible
for (const auto &section : sections)
{
const auto &new_range = section->get_locked_range();
AUDIT(new_range.is_page_range());
result.merge(new_range);
}
}
// NOTE: It is *very* important that data contains exclusions for *all* sections that overlap sections_to_unprotect/flush
// Otherwise the page protections will end up incorrect and things will break!
void unprotect_set(thrashed_set& data)
{
auto protect_ranges = [this](address_range_vector& _set, utils::protection _prot)
{
u32 count = 0;
for (auto &range : _set)
{
if (range.valid())
{
rsx::memory_protect(range, _prot);
count++;
}
}
//LOG_ERROR(RSX, "Set protection of %d blocks to 0x%x", count, static_cast<u32>(prot));
};
auto discard_set = [this](std::vector<section_storage_type*>& _set)
{
for (auto* section : _set)
{
verify(HERE), section->is_flushed() || section->is_dirty();
section->discard(/*set_dirty*/ false);
}
};
// Sanity checks
AUDIT(data.fault_range.is_page_range());
AUDIT(data.invalidate_range.is_page_range());
AUDIT(data.is_flushed());
// Merge ranges to unprotect
address_range_vector ranges_to_unprotect;
address_range_vector ranges_to_protect_ro;
ranges_to_unprotect.reserve(data.sections_to_unprotect.size() + data.sections_to_flush.size() + data.sections_to_exclude.size());
merge_protected_ranges(ranges_to_unprotect, data.sections_to_unprotect);
merge_protected_ranges(ranges_to_unprotect, data.sections_to_flush);
AUDIT(!ranges_to_unprotect.empty());
// Apply exclusions and collect ranges of excluded pages that need to be reprotected RO (i.e. only overlap RO regions)
if (!data.sections_to_exclude.empty())
{
ranges_to_protect_ro.reserve(data.sections_to_exclude.size());
u32 no_access_count = 0;
for (const auto &excluded : data.sections_to_exclude)
{
address_range exclusion_range = excluded->get_locked_range();
// We need to make sure that the exclusion range is *inside* invalidate range
exclusion_range.intersect(data.invalidate_range);
// Sanity checks
AUDIT(exclusion_range.is_page_range());
AUDIT(data.cause.is_read() && !excluded->is_flushable() || data.cause == invalidation_cause::superseded_by_fbo || !exclusion_range.overlaps(data.fault_range));
// Apply exclusion
ranges_to_unprotect.exclude(exclusion_range);
// Keep track of RO exclusions
// TODO ruipin: Bug here, we cannot add the whole exclusion range to ranges_to_reprotect, only the part inside invalidate_range
utils::protection prot = excluded->get_protection();
if (prot == utils::protection::ro)
{
ranges_to_protect_ro.merge(exclusion_range);
}
else if (prot == utils::protection::no)
{
no_access_count++;
}
else
{
fmt::throw_exception("Unreachable" HERE);
}
}
// Exclude NA ranges from ranges_to_reprotect_ro
if (no_access_count > 0 && !ranges_to_protect_ro.empty())
{
for (auto &exclusion : data.sections_to_exclude)
{
if (exclusion->get_protection() != utils::protection::ro)
{
ranges_to_protect_ro.exclude(exclusion->get_locked_range());
}
}
}
}
AUDIT(!ranges_to_unprotect.empty());
// Exclude the fault range if told to do so (this means the fault_range got unmapped or is otherwise invalid)
if (data.cause.keep_fault_range_protection())
{
ranges_to_unprotect.exclude(data.fault_range);
ranges_to_protect_ro.exclude(data.fault_range);
AUDIT(!ranges_to_unprotect.overlaps(data.fault_range));
AUDIT(!ranges_to_protect_ro.overlaps(data.fault_range));
}
else
{
AUDIT(ranges_to_unprotect.inside(data.invalidate_range));
AUDIT(ranges_to_protect_ro.inside(data.invalidate_range));
}
AUDIT(!ranges_to_protect_ro.overlaps(ranges_to_unprotect));
// Unprotect and discard
protect_ranges(ranges_to_unprotect, utils::protection::rw);
protect_ranges(ranges_to_protect_ro, utils::protection::ro);
discard_set(data.sections_to_unprotect);
discard_set(data.sections_to_flush);
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache looks sane
data.check_post_sanity();
#endif // TEXTURE_CACHE_DEBUG
}
// Return a set containing all sections that should be flushed/unprotected/reprotected
std::atomic<u64> m_last_section_cache_tag = 0;
intersecting_set get_intersecting_set(const address_range &fault_range)
{
AUDIT(fault_range.is_page_range());
const u64 cache_tag = ++m_last_section_cache_tag;
intersecting_set result = {};
address_range &invalidate_range = result.invalidate_range;
invalidate_range = fault_range; // Sections fully inside this range will be invalidated, others will be deemed false positives
// Loop through cache and find pages that overlap the invalidate_range
u32 last_dirty_block = UINT32_MAX;
bool repeat_loop = false;
// Not having full-range protections means some textures will check the confirmed range and not the locked range
const bool not_full_range_protected = (buffered_section::guard_policy != protection_policy::protect_policy_full_range);
section_bounds range_it_bounds = not_full_range_protected ? confirmed_range : locked_range;
auto It = m_storage.range_begin(invalidate_range, range_it_bounds, true); // will iterate through locked sections only
while (It != m_storage.range_end())
{
const u32 base = It.get_block().get_start();
// On the last loop, we stop once we're done with the last dirty block
if (!repeat_loop && base > last_dirty_block) // note: blocks are iterated in order from lowest to highest base address
break;
auto &tex = *It;
AUDIT(tex.is_locked()); // we should be iterating locked sections only, but just to make sure...
AUDIT(tex.cache_tag != cache_tag || last_dirty_block != UINT32_MAX); // cache tag should not match during the first loop
if (tex.cache_tag != cache_tag) //flushable sections can be 'clean' but unlocked. TODO: Handle this better
{
const rsx::section_bounds bounds = tex.get_overlap_test_bounds();
if (range_it_bounds == bounds || tex.overlaps(invalidate_range, bounds))
{
const auto new_range = tex.get_min_max(invalidate_range, bounds).to_page_range();
AUDIT(new_range.is_page_range() && invalidate_range.inside(new_range));
// The various chaining policies behave differently
bool extend_invalidate_range = tex.overlaps(fault_range, bounds);
// Extend the various ranges
if (extend_invalidate_range && new_range != invalidate_range)
{
if (new_range.end > invalidate_range.end)
It.set_end(new_range.end);
invalidate_range = new_range;
repeat_loop = true; // we will need to repeat the loop again
last_dirty_block = base; // stop the repeat loop once we finish this block
}
// Add texture to result, and update its cache tag
tex.cache_tag = cache_tag;
result.sections.push_back(&tex);
if (tex.is_flushable())
{
result.has_flushables = true;
}
}
}
// Iterate
It++;
// repeat_loop==true means some blocks are still dirty and we need to repeat the loop again
if (repeat_loop && It == m_storage.range_end())
{
It = m_storage.range_begin(invalidate_range, range_it_bounds, true);
repeat_loop = false;
}
}
AUDIT(result.invalidate_range.is_page_range());
#ifdef TEXTURE_CACHE_DEBUG
// naive check that sections are not duplicated in the results
for (auto &section1 : result.sections)
{
size_t count = 0;
for (auto &section2 : result.sections)
{
if (section1 == section2) count++;
}
verify(HERE), count == 1;
}
#endif //TEXTURE_CACHE_DEBUG
return result;
}
//Invalidate range base implementation
template <typename ...Args>
thrashed_set invalidate_range_impl_base(commandbuffer_type& cmd, const address_range &fault_range_in, invalidation_cause cause, Args&&... extras)
{
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache has the correct protections
tex_cache_checker.verify();
#endif // TEXTURE_CACHE_DEBUG
AUDIT(cause.valid());
AUDIT(fault_range_in.valid());
address_range fault_range = fault_range_in.to_page_range();
intersecting_set trampled_set = std::move(get_intersecting_set(fault_range));
thrashed_set result = {};
result.cause = cause;
result.fault_range = fault_range;
result.invalidate_range = trampled_set.invalidate_range;
// Fast code-path for keeping the fault range protection when not flushing anything
if (cause.keep_fault_range_protection() && cause.skip_flush() && !trampled_set.sections.empty())
{
// We discard all sections fully inside fault_range
for (auto &obj : trampled_set.sections)
{
auto &tex = *obj;
if (tex.overlaps(fault_range, section_bounds::locked_range))
{
if (cause == invalidation_cause::superseded_by_fbo &&
tex.get_context() == texture_upload_context::framebuffer_storage &&
tex.get_section_base() != fault_range_in.start)
{
// HACK: When being superseded by an fbo, we preserve other overlapped fbos unless the start addresses match
continue;
}
else if (tex.inside(fault_range, section_bounds::locked_range))
{
// Discard - this section won't be needed any more
tex.discard(/* set_dirty */ true);
}
else if (g_cfg.video.strict_texture_flushing && tex.is_flushable())
{
tex.add_flush_exclusion(fault_range);
}
else
{
tex.set_dirty(true);
}
}
}
#ifdef TEXTURE_CACHE_DEBUG
// Notify the checker that fault_range got discarded
tex_cache_checker.discard(fault_range);
#endif
// If invalidate_range is fault_range, we can stop now
const address_range invalidate_range = trampled_set.invalidate_range;
if (invalidate_range == fault_range)
{
result.violation_handled = true;
#ifdef TEXTURE_CACHE_DEBUG
// Post-check the result
result.check_post_sanity();
#endif
return result;
}
AUDIT(fault_range.inside(invalidate_range));
}
// Decide which sections to flush, unprotect, and exclude
if (!trampled_set.sections.empty())
{
update_cache_tag();
for (auto &obj : trampled_set.sections)
{
auto &tex = *obj;
if (!tex.is_locked())
continue;
const rsx::section_bounds bounds = tex.get_overlap_test_bounds();
const bool overlaps_fault_range = tex.overlaps(fault_range, bounds);
if (
// RO sections during a read invalidation can be ignored (unless there are flushables in trampled_set, since those could overwrite RO data)
(invalidation_keep_ro_during_read && !trampled_set.has_flushables && cause.is_read() && !tex.is_flushable()) ||
// Sections that are not fully contained in invalidate_range can be ignored
!tex.inside(trampled_set.invalidate_range, bounds) ||
// Unsynchronized sections (or any flushable when skipping flushes) that do not overlap the fault range directly can also be ignored
(invalidation_ignore_unsynchronized && tex.is_flushable() && (cause.skip_flush() || !tex.is_synchronized()) && !overlaps_fault_range) ||
// HACK: When being superseded by an fbo, we preserve other overlapped fbos unless the start addresses match
(overlaps_fault_range && cause == invalidation_cause::superseded_by_fbo && tex.get_context() == texture_upload_context::framebuffer_storage && tex.get_section_base() != fault_range_in.start)
)
{
// False positive
result.sections_to_exclude.push_back(&tex);
continue;
}
if (tex.is_flushable())
{
// Write if and only if no one else has trashed section memory already
// TODO: Proper section management should prevent this from happening
// TODO: Blit engine section merge support and/or partial texture memory buffering
if (tex.is_dirty() || !tex.test_memory_head() || !tex.test_memory_tail())
{
// Contents clobbered, destroy this
if (!tex.is_dirty())
{
tex.set_dirty(true);
}
result.sections_to_unprotect.push_back(&tex);
}
else
{
result.sections_to_flush.push_back(&tex);
}
continue;
}
else
{
// deferred_flush = true and not synchronized
if (!tex.is_dirty())
{
AUDIT(tex.get_memory_read_flags() != memory_read_flags::flush_always);
tex.set_dirty(true);
}
result.sections_to_unprotect.push_back(&tex);
continue;
}
fmt::throw_exception("Unreachable " HERE);
}
result.violation_handled = true;
#ifdef TEXTURE_CACHE_DEBUG
// Check that result makes sense
result.check_pre_sanity();
#endif // TEXTURE_CACHE_DEBUG
const bool has_flushables = !result.sections_to_flush.empty();
const bool has_unprotectables = !result.sections_to_unprotect.empty();
if (cause.deferred_flush() && has_flushables)
{
// There is something to flush, but we've been asked to defer it
result.num_flushable = static_cast<int>(result.sections_to_flush.size());
result.cache_tag = m_cache_update_tag.load(std::memory_order_consume);
return result;
}
else if (has_flushables || has_unprotectables)
{
AUDIT(!has_flushables || !cause.deferred_flush());
// We have something to flush and are allowed to flush now
// or there is nothing to flush but we have something to unprotect
if (has_flushables && !cause.skip_flush())
{
flush_set(cmd, result, std::forward<Args>(extras)...);
}
unprotect_set(result);
// Everything has been handled
result.clear_sections();
}
else
{
// This is a read and all overlapping sections were RO and were excluded (except for cause == superseded_by_fbo)
AUDIT(cause == invalidation_cause::superseded_by_fbo || cause.is_read() && !result.sections_to_exclude.empty());
// We did not handle this violation
result.clear_sections();
result.violation_handled = false;
}
#ifdef TEXTURE_CACHE_DEBUG
// Post-check the result
result.check_post_sanity();
#endif // TEXTURE_CACHE_DEBUG
return result;
}
return {};
}
protected:
inline bool is_hw_blit_engine_compatible(u32 format) const
{
switch (format)
{
case CELL_GCM_TEXTURE_A8R8G8B8:
case CELL_GCM_TEXTURE_R5G6B5:
case CELL_GCM_TEXTURE_DEPTH16:
case CELL_GCM_TEXTURE_DEPTH24_D8:
return true;
default:
return false;
}
}
/**
* Scaling helpers
* - get_native_dimensions() returns w and h for the native texture given rsx dimensions
* on rsx a 512x512 texture with 4x AA is treated as a 1024x1024 texture for example
* - get_rsx_dimensions() inverse, return rsx w and h given a real texture w and h
* - get_internal_scaling_x/y() returns a scaling factor to be multiplied by 1/size
* when sampling with unnormalized coordinates. tcoords passed to rsx will be in rsx dimensions
*/
template <typename T, typename U>
inline void get_native_dimensions(T &width, T &height, U surface)
{
switch (surface->read_aa_mode)
{
case rsx::surface_antialiasing::center_1_sample:
return;
case rsx::surface_antialiasing::diagonal_centered_2_samples:
width /= 2;
return;
case rsx::surface_antialiasing::square_centered_4_samples:
case rsx::surface_antialiasing::square_rotated_4_samples:
width /= 2;
height /= 2;
return;
}
}
template <typename T, typename U>
inline void get_rsx_dimensions(T &width, T &height, U surface)
{
switch (surface->read_aa_mode)
{
case rsx::surface_antialiasing::center_1_sample:
return;
case rsx::surface_antialiasing::diagonal_centered_2_samples:
width *= 2;
return;
case rsx::surface_antialiasing::square_centered_4_samples:
case rsx::surface_antialiasing::square_rotated_4_samples:
width *= 2;
height *= 2;
return;
}
}
template <typename T>
inline f32 get_internal_scaling_x(T surface)
{
switch (surface->read_aa_mode)
{
default:
case rsx::surface_antialiasing::center_1_sample:
return 1.f;
case rsx::surface_antialiasing::diagonal_centered_2_samples:
case rsx::surface_antialiasing::square_centered_4_samples:
case rsx::surface_antialiasing::square_rotated_4_samples:
return 0.5f;
}
}
template <typename T>
inline f32 get_internal_scaling_y(T surface)
{
switch (surface->read_aa_mode)
{
default:
case rsx::surface_antialiasing::center_1_sample:
case rsx::surface_antialiasing::diagonal_centered_2_samples:
return 1.f;
case rsx::surface_antialiasing::square_centered_4_samples:
case rsx::surface_antialiasing::square_rotated_4_samples:
return 0.5f;
}
}
public:
texture_cache() : m_storage(this), m_predictor(this) {}
~texture_cache() {}
void clear()
{
m_storage.clear();
m_predictor.clear();
}
virtual void on_frame_end()
{
m_temporary_subresource_cache.clear();
m_predictor.on_frame_end();
reset_frame_statistics();
}
std::vector<section_storage_type*> find_texture_from_range(const address_range &test_range)
{
std::vector<section_storage_type*> results;
for (auto It = m_storage.range_begin(test_range, full_range); It != m_storage.range_end(); It++)
{
auto &tex = *It;
// TODO ruipin: Removed as a workaround for a bug, will need to be fixed by kd-11
//if (tex.get_section_base() > test_range.start)
// continue;
if (!tex.is_dirty())
results.push_back(&tex);
}
return results;
}
section_storage_type *find_texture_from_dimensions(u32 rsx_address, u16 width = 0, u16 height = 0, u16 depth = 0, u16 mipmaps = 0)
{
auto &block = m_storage.block_for(rsx_address);
for (auto &tex : block)
{
if (tex.matches(rsx_address, width, height, depth, mipmaps) && !tex.is_dirty())
{
return &tex;
}
}
return nullptr;
}
section_storage_type* find_cached_texture(const address_range &range, bool create_if_not_found, bool confirm_dimensions, u16 width = 0, u16 height = 0, u16 depth = 0, u16 mipmaps = 0)
{
auto &block = m_storage.block_for(range);
section_storage_type *dimensions_mismatch = nullptr;
section_storage_type *best_fit = nullptr;
section_storage_type *reuse = nullptr;
#ifdef TEXTURE_CACHE_DEBUG
section_storage_type *res = nullptr;
#endif
// Try to find match in block
for (auto &tex : block)
{
if (tex.matches(range))
{
if (!tex.is_dirty())
{
if (!confirm_dimensions || tex.matches_dimensions(width, height, depth, mipmaps))
{
#ifndef TEXTURE_CACHE_DEBUG
return &tex;
#else
ASSERT(res == nullptr);
res = &tex;
#endif
}
else if (dimensions_mismatch == nullptr)
{
dimensions_mismatch = &tex;
}
}
else if (best_fit == nullptr && tex.can_be_reused())
{
//By grabbing a ref to a matching entry, duplicates are avoided
best_fit = &tex;
}
}
else if (reuse == nullptr && tex.can_be_reused())
{
reuse = &tex;
}
}
#ifdef TEXTURE_CACHE_DEBUG
if (res != nullptr)
return res;
#endif
if (dimensions_mismatch != nullptr)
{
auto &tex = *dimensions_mismatch;
LOG_WARNING(RSX, "Cached object for address 0x%X was found, but it does not match stored parameters (width=%d vs %d; height=%d vs %d; depth=%d vs %d; mipmaps=%d vs %d)",
range.start, width, tex.get_width(), height, tex.get_height(), depth, tex.get_depth(), mipmaps, tex.get_mipmaps());
}
if (!create_if_not_found)
return nullptr;
// If found, use the best fitting section
if (best_fit != nullptr)
{
if (best_fit->exists())
{
best_fit->destroy();
}
return best_fit;
}
// Return the first dirty section found, if any
if (reuse != nullptr)
{
if (reuse->exists())
{
reuse->destroy();
}
return reuse;
}
// Create and return a new section
update_cache_tag();
auto tex = &block.create_section();
return tex;
}
section_storage_type* find_flushable_section(const address_range &memory_range)
{
auto &block = m_storage.block_for(memory_range);
for (auto &tex : block)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable() && !tex.is_flushed()) continue;
if (tex.matches(memory_range))
return &tex;
}
return nullptr;
}
template <typename ...FlushArgs, typename ...Args>
void lock_memory_region(commandbuffer_type& cmd, image_storage_type* image, const address_range &rsx_range, u32 width, u32 height, u32 pitch, std::tuple<FlushArgs...>&& flush_extras, Args&&... extras)
{
AUDIT(g_cfg.video.write_color_buffers || g_cfg.video.write_depth_buffer); // this method is only called when either WCB or WDB are enabled
std::lock_guard lock(m_cache_mutex);
// Find a cached section to use
section_storage_type& region = *find_cached_texture(rsx_range, true, true, width, height);
// Prepare and initialize fbo region
if (region.exists() && region.get_context() != texture_upload_context::framebuffer_storage)
{
//This space was being used for other purposes other than framebuffer storage
//Delete used resources before attaching it to framebuffer memory
read_only_tex_invalidate = true;
}
if (!region.is_locked() || region.get_context() != texture_upload_context::framebuffer_storage)
{
// Invalidate sections from surface cache occupying same address range
std::apply(&texture_cache::invalidate_range_impl_base<FlushArgs...>, std::tuple_cat(
std::forward_as_tuple(this, cmd, rsx_range, invalidation_cause::superseded_by_fbo),
std::forward<std::tuple<FlushArgs...> >(flush_extras)
));
}
if (!region.is_locked() || region.can_be_reused())
{
// New region, we must prepare it
region.reset(rsx_range);
no_access_range = region.get_min_max(no_access_range, rsx::section_bounds::locked_range);
region.set_context(texture_upload_context::framebuffer_storage);
region.set_image_type(rsx::texture_dimension_extended::texture_dimension_2d);
}
else
{
// Re-using clean fbo region
ASSERT(region.matches(rsx_range));
ASSERT(region.get_context() == texture_upload_context::framebuffer_storage);
ASSERT(region.get_image_type() == rsx::texture_dimension_extended::texture_dimension_2d);
}
region.create(width, height, 1, 1, image, pitch, false, std::forward<Args>(extras)...);
region.reprotect(utils::protection::no, { 0, rsx_range.length() });
region.set_dirty(false);
region.touch(m_cache_update_tag);
// Add to flush always cache
if (region.get_memory_read_flags() != memory_read_flags::flush_always)
{
region.set_memory_read_flags(memory_read_flags::flush_always, false);
update_flush_always_cache(region, true);
}
else
{
AUDIT(m_flush_always_cache.find(region.get_section_range()) != m_flush_always_cache.end());
}
update_cache_tag();
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache makes sense
tex_cache_checker.verify();
#endif // TEXTURE_CACHE_DEBUG
}
void set_memory_read_flags(const address_range &memory_range, memory_read_flags flags)
{
std::lock_guard lock(m_cache_mutex);
auto* region_ptr = find_cached_texture(memory_range, false, false);
if (region_ptr == nullptr)
{
AUDIT(m_flush_always_cache.find(memory_range) == m_flush_always_cache.end());
LOG_ERROR(RSX, "set_memory_flags(0x%x, 0x%x, %d): region_ptr == nullptr", memory_range.start, memory_range.end, static_cast<u32>(flags));
return;
}
auto& region = *region_ptr;
if (!region.exists() || region.is_dirty() || region.get_context() != texture_upload_context::framebuffer_storage)
{
#ifdef TEXTURE_CACHE_DEBUG
if (!region.is_dirty())
{
if (flags == memory_read_flags::flush_once)
verify(HERE), m_flush_always_cache.find(memory_range) == m_flush_always_cache.end();
else
verify(HERE), m_flush_always_cache[memory_range] == &region;
}
#endif // TEXTURE_CACHE_DEBUG
return;
}
update_flush_always_cache(region, flags == memory_read_flags::flush_always);
region.set_memory_read_flags(flags, false);
}
virtual void on_memory_read_flags_changed(section_storage_type &section, rsx::memory_read_flags flags)
{
#ifdef TEXTURE_CACHE_DEBUG
const auto &memory_range = section.get_section_range();
if (flags == memory_read_flags::flush_once)
verify(HERE), m_flush_always_cache[memory_range] == &section;
else
verify(HERE), m_flush_always_cache.find(memory_range) == m_flush_always_cache.end();
#endif
update_flush_always_cache(section, flags == memory_read_flags::flush_always);
}
private:
inline void update_flush_always_cache(section_storage_type &section, bool add)
{
const address_range& range = section.get_section_range();
if (add)
{
// Add to m_flush_always_cache
AUDIT(m_flush_always_cache.find(range) == m_flush_always_cache.end());
m_flush_always_cache[range] = &section;
}
else
{
// Remove from m_flush_always_cache
AUDIT(m_flush_always_cache[range] == &section);
m_flush_always_cache.erase(range);
}
}
public:
template <typename ...Args>
bool load_memory_from_cache(const address_range &memory_range, Args&&... extras)
{
reader_lock lock(m_cache_mutex);
section_storage_type *region = find_flushable_section(memory_range);
if (region && !region->is_dirty())
{
region->fill_texture(std::forward<Args>(extras)...);
return true;
}
//No valid object found in cache
return false;
}
template <typename ...Args>
thrashed_set invalidate_address(commandbuffer_type& cmd, u32 address, invalidation_cause cause, Args&&... extras)
{
//Test before trying to acquire the lock
const auto range = page_for(address);
if (!region_intersects_cache(range, !cause.is_read()))
return{};
std::lock_guard lock(m_cache_mutex);
return invalidate_range_impl_base(cmd, range, cause, std::forward<Args>(extras)...);
}
template <typename ...Args>
thrashed_set invalidate_range(commandbuffer_type& cmd, const address_range &range, invalidation_cause cause, Args&&... extras)
{
//Test before trying to acquire the lock
if (!region_intersects_cache(range, !cause.is_read()))
return {};
std::lock_guard lock(m_cache_mutex);
return invalidate_range_impl_base(cmd, range, cause, std::forward<Args>(extras)...);
}
template <typename ...Args>
bool flush_all(commandbuffer_type& cmd, thrashed_set& data, Args&&... extras)
{
std::lock_guard lock(m_cache_mutex);
AUDIT(data.cause.deferred_flush());
AUDIT(!data.flushed);
if (m_cache_update_tag.load(std::memory_order_consume) == data.cache_tag)
{
//1. Write memory to cpu side
flush_set(cmd, data, std::forward<Args>(extras)...);
//2. Release all obsolete sections
unprotect_set(data);
}
else
{
// The cache contents have changed between the two readings. This means the data held is useless
invalidate_range_impl_base(cmd, data.fault_range, data.cause.undefer(), std::forward<Args>(extras)...);
}
return true;
}
template <typename ...Args>
bool flush_if_cache_miss_likely(commandbuffer_type& cmd, const address_range &range, Args&&... extras)
{
u32 cur_flushes_this_frame = (m_flushes_this_frame + m_speculations_this_frame);
if (cur_flushes_this_frame > m_predict_max_flushes_per_frame)
return false;
auto& block = m_storage.block_for(range);
if (block.empty())
return false;
reader_lock lock(m_cache_mutex);
// Try to find matching regions
bool result = false;
for (auto &region : block)
{
if (region.is_dirty() || region.is_synchronized() || !region.is_flushable())
continue;
if (!region.matches(range))
continue;
if (!region.tracked_by_predictor())
continue;
if (!m_predictor.predict(region))
continue;
lock.upgrade();
region.copy_texture(cmd, false, std::forward<Args>(extras)...);
result = true;
cur_flushes_this_frame++;
if (cur_flushes_this_frame > m_predict_max_flushes_per_frame)
return result;
}
return result;
}
void purge_unreleased_sections()
{
std::lock_guard lock(m_cache_mutex);
m_storage.purge_unreleased_sections();
}
image_view_type create_temporary_subresource(commandbuffer_type &cmd, deferred_subresource& desc)
{
const auto found = m_temporary_subresource_cache.equal_range(desc.base_address);
for (auto It = found.first; It != found.second; ++It)
{
const auto& found_desc = It->second.first;
if (found_desc.external_handle != desc.external_handle ||
found_desc.op != desc.op ||
found_desc.x != desc.x || found_desc.y != desc.y ||
found_desc.width != desc.width || found_desc.height != desc.height)
continue;
if (desc.op == deferred_request_command::copy_image_dynamic)
update_image_contents(cmd, It->second.second, desc.external_handle, desc.width, desc.height);
return It->second.second;
}
image_view_type result = 0;
switch (desc.op)
{
case deferred_request_command::cubemap_gather:
{
result = generate_cubemap_from_images(cmd, desc.gcm_format, desc.width, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::cubemap_unwrap:
{
std::vector<copy_region_descriptor> sections(6);
for (u16 n = 0; n < 6; ++n)
{
sections[n] = { desc.external_handle, 0, (u16)(desc.height * n), 0, 0, n, desc.width, desc.height };
}
result = generate_cubemap_from_images(cmd, desc.gcm_format, desc.width, sections, desc.remap);
break;
}
case deferred_request_command::_3d_gather:
{
result = generate_3d_from_2d_images(cmd, desc.gcm_format, desc.width, desc.height, desc.depth, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::_3d_unwrap:
{
std::vector<copy_region_descriptor> sections;
sections.resize(desc.depth);
for (u16 n = 0; n < desc.depth; ++n)
{
sections[n] = { desc.external_handle, 0, (u16)(desc.height * n), 0, 0, n, desc.width, desc.height };
}
result = generate_3d_from_2d_images(cmd, desc.gcm_format, desc.width, desc.height, desc.depth, sections, desc.remap);
break;
}
case deferred_request_command::atlas_gather:
{
result = generate_atlas_from_images(cmd, desc.gcm_format, desc.width, desc.height, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::copy_image_static:
case deferred_request_command::copy_image_dynamic:
{
result = create_temporary_subresource_view(cmd, &desc.external_handle, desc.gcm_format, desc.x, desc.y, desc.width, desc.height, desc.remap);
break;
}
default:
{
//Throw
fmt::throw_exception("Invalid deferred command op 0x%X" HERE, (u32)desc.op);
}
}
if (result)
{
m_temporary_subresource_cache.insert({ desc.base_address,{ desc, result } });
}
return result;
}
void notify_surface_changed(u32 base_address)
{
m_temporary_subresource_cache.erase(base_address);
}
template<typename surface_store_type>
std::vector<copy_region_descriptor> gather_texture_slices_from_framebuffers(commandbuffer_type& cmd,
u32 texaddr, u16 slice_w, u16 slice_h, u16 pitch, u16 count, u8 bpp, surface_store_type& m_rtts)
{
std::vector<copy_region_descriptor> surfaces;
u32 current_address = texaddr;
u32 slice_size = (pitch * slice_h);
bool unsafe = false;
for (u16 slice = 0; slice < count; ++slice)
{
auto overlapping = m_rtts.get_merged_texture_memory_region(current_address, slice_w, slice_h, pitch, bpp);
current_address += (pitch * slice_h);
if (overlapping.empty())
{
unsafe = true;
surfaces.push_back({});
}
else
{
for (auto &section : overlapping)
{
section.surface->read_barrier(cmd);
surfaces.push_back
({
section.surface->get_surface(),
rsx::apply_resolution_scale(section.src_x, true),
rsx::apply_resolution_scale(section.src_y, true),
rsx::apply_resolution_scale(section.dst_x, true),
rsx::apply_resolution_scale(section.dst_y, true),
slice,
rsx::apply_resolution_scale(section.width, true),
rsx::apply_resolution_scale(section.height, true)
});
}
}
}
if (unsafe)
{
//TODO: Gather remaining sides from the texture cache or upload from cpu (too slow?)
LOG_ERROR(RSX, "Could not gather all required slices for cubemap/3d generation");
}
return surfaces;
}
template <typename render_target_type, typename surface_store_type>
sampled_image_descriptor process_framebuffer_resource(commandbuffer_type& cmd, render_target_type texptr, u32 texaddr, u32 gcm_format, surface_store_type& m_rtts,
u16 tex_width, u16 tex_height, u16 tex_depth, u16 tex_pitch, rsx::texture_dimension_extended extended_dimension, bool is_depth, bool is_bound, u32 encoded_remap, const texture_channel_remap_t& decoded_remap)
{
const u32 format = gcm_format & ~(CELL_GCM_TEXTURE_UN | CELL_GCM_TEXTURE_LN);
const auto surface_width = texptr->get_surface_width();
const auto surface_height = texptr->get_surface_height();
u32 internal_width = tex_width;
u32 internal_height = tex_height;
get_native_dimensions(internal_width, internal_height, texptr);
texptr->read_barrier(cmd);
if (extended_dimension != rsx::texture_dimension_extended::texture_dimension_2d &&
extended_dimension != rsx::texture_dimension_extended::texture_dimension_1d)
{
if (extended_dimension == rsx::texture_dimension_extended::texture_dimension_cubemap)
{
const auto scaled_size = rsx::apply_resolution_scale(internal_width, true);
if (surface_height == (surface_width * 6))
{
return{ texptr->get_surface(), deferred_request_command::cubemap_unwrap, texaddr, format, 0, 0,
scaled_size, scaled_size, 1,
texture_upload_context::framebuffer_storage, is_depth, 1.f, 1.f,
rsx::texture_dimension_extended::texture_dimension_cubemap, decoded_remap };
}
sampled_image_descriptor desc = { texptr->get_surface(), deferred_request_command::cubemap_gather, texaddr, format, 0, 0,
scaled_size, scaled_size, 1,
texture_upload_context::framebuffer_storage, is_depth, 1.f, 1.f,
rsx::texture_dimension_extended::texture_dimension_cubemap, decoded_remap };
auto bpp = get_format_block_size_in_bytes(format);
desc.external_subresource_desc.sections_to_copy = std::move(gather_texture_slices_from_framebuffers(cmd, texaddr, tex_width, tex_height, tex_pitch, 6, bpp, m_rtts));
return desc;
}
else if (extended_dimension == rsx::texture_dimension_extended::texture_dimension_3d && tex_depth > 1)
{
auto minimum_height = (tex_height * tex_depth);
auto scaled_w = rsx::apply_resolution_scale(internal_width, true);
auto scaled_h = rsx::apply_resolution_scale(internal_height, true);
if (surface_height >= minimum_height && surface_width >= tex_width)
{
return{ texptr->get_surface(), deferred_request_command::_3d_unwrap, texaddr, format, 0, 0,
scaled_w, scaled_h, tex_depth,
texture_upload_context::framebuffer_storage, is_depth, 1.f, 1.f,
rsx::texture_dimension_extended::texture_dimension_3d, decoded_remap };
}
sampled_image_descriptor desc = { texptr->get_surface(), deferred_request_command::_3d_gather, texaddr, format, 0, 0,
scaled_w, scaled_h, tex_depth,
texture_upload_context::framebuffer_storage, is_depth, 1.f, 1.f,
rsx::texture_dimension_extended::texture_dimension_3d, decoded_remap };
const auto bpp = get_format_block_size_in_bytes(format);
desc.external_subresource_desc.sections_to_copy = std::move(gather_texture_slices_from_framebuffers(cmd, texaddr, tex_width, tex_height, tex_pitch, tex_depth, bpp, m_rtts));
return desc;
}
}
const bool unnormalized = (gcm_format & CELL_GCM_TEXTURE_UN) != 0;
f32 scale_x = (unnormalized)? (1.f / tex_width) : 1.f;
f32 scale_y = (unnormalized)? (1.f / tex_height) : 1.f;
if (extended_dimension == rsx::texture_dimension_extended::texture_dimension_1d)
{
internal_height = 1;
scale_y = 0.f;
}
auto bpp = get_format_block_size_in_bytes(format);
auto overlapping = m_rtts.get_merged_texture_memory_region(texaddr, tex_width, tex_height, tex_pitch, bpp);
bool requires_merging = false;
AUDIT(!overlapping.empty());
if (overlapping.size() > 1)
{
// The returned values are sorted with oldest first and newest last
// This allows newer data to overwrite older memory when merging the list
if (overlapping.back().surface == texptr)
{
// The texture 'proposed' by the previous lookup is the newest one
// If it occupies the entire requested region, just use it as-is
requires_merging = (internal_width > surface_width || internal_height > surface_height);
}
else
{
requires_merging = true;
}
}
if (requires_merging)
{
const auto w = rsx::apply_resolution_scale(internal_width, true);
const auto h = rsx::apply_resolution_scale(internal_height, true);
sampled_image_descriptor result = { texptr->get_surface(), deferred_request_command::atlas_gather,
texaddr, format, 0, 0, w, h, 1, texture_upload_context::framebuffer_storage, is_depth,
scale_x, scale_y, rsx::texture_dimension_extended::texture_dimension_2d, decoded_remap };
result.external_subresource_desc.sections_to_copy.reserve(overlapping.size());
for (auto &section : overlapping)
{
section.surface->read_barrier(cmd);
result.external_subresource_desc.sections_to_copy.push_back
({
section.surface->get_surface(),
rsx::apply_resolution_scale(section.src_x, true),
rsx::apply_resolution_scale(section.src_y, true),
rsx::apply_resolution_scale(section.dst_x, true),
rsx::apply_resolution_scale(section.dst_y, true),
0,
rsx::apply_resolution_scale(section.width, true),
rsx::apply_resolution_scale(section.height, true)
});
}
return result;
}
bool requires_processing = surface_width > internal_width || surface_height > internal_height;
bool update_subresource_cache = false;
if (!requires_processing)
{
//NOTE: The scale also accounts for sampling outside the RTT region, e.g render to one quadrant but send whole texture for sampling
//In these cases, internal dimensions will exceed available surface dimensions. Account for the missing information using scaling (missing data will result in border color)
//TODO: Proper gather and stitching without performance loss
if (internal_width > surface_width)
scale_x *= ((f32)internal_width / surface_width);
if (internal_height > surface_height)
scale_y *= ((f32)internal_height / surface_height);
if (is_bound)
{
if (g_cfg.video.strict_rendering_mode)
{
LOG_TRACE(RSX, "Attempting to sample a currently bound %s target @ 0x%x", is_depth? "depth" : "color", texaddr);
requires_processing = true;
update_subresource_cache = true;
}
else
{
// Issue a texture barrier to ensure previous writes are visible
insert_texture_barrier(cmd, texptr);
}
}
}
if (!requires_processing)
{
//Check if we need to do anything about the formats
requires_processing = !render_target_format_is_compatible(texptr, format);
}
if (requires_processing)
{
const auto w = rsx::apply_resolution_scale(std::min<u16>(internal_width, surface_width), true);
const auto h = rsx::apply_resolution_scale(std::min<u16>(internal_height, surface_height), true);
auto command = update_subresource_cache ? deferred_request_command::copy_image_dynamic : deferred_request_command::copy_image_static;
return { texptr->get_surface(), command, texaddr, format, 0, 0, w, h, 1,
texture_upload_context::framebuffer_storage, is_depth, scale_x, scale_y,
rsx::texture_dimension_extended::texture_dimension_2d, decoded_remap };
}
return{ texptr->get_view(encoded_remap, decoded_remap), texture_upload_context::framebuffer_storage,
is_depth, scale_x, scale_y, rsx::texture_dimension_extended::texture_dimension_2d };
}
template <typename RsxTextureType, typename surface_store_type, typename ...Args>
sampled_image_descriptor upload_texture(commandbuffer_type& cmd, RsxTextureType& tex, surface_store_type& m_rtts, Args&&... extras)
{
const u32 texaddr = rsx::get_address(tex.offset(), tex.location());
const u32 tex_size = (u32)get_texture_size(tex);
const address_range tex_range = address_range::start_length(texaddr, tex_size);
const u32 format = tex.format() & ~(CELL_GCM_TEXTURE_LN | CELL_GCM_TEXTURE_UN);
const bool is_compressed_format = (format == CELL_GCM_TEXTURE_COMPRESSED_DXT1 || format == CELL_GCM_TEXTURE_COMPRESSED_DXT23 || format == CELL_GCM_TEXTURE_COMPRESSED_DXT45);
const auto extended_dimension = tex.get_extended_texture_dimension();
const u16 tex_width = tex.width();
u16 tex_height = tex.height();
u16 tex_pitch = (u16)tex.pitch();
if (tex_pitch == 0) tex_pitch = get_format_packed_pitch(format, tex_width);
u16 depth;
switch (extended_dimension)
{
case rsx::texture_dimension_extended::texture_dimension_1d:
depth = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_2d:
depth = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_cubemap:
depth = 6;
break;
case rsx::texture_dimension_extended::texture_dimension_3d:
depth = tex.depth();
break;
}
if (!is_compressed_format)
{
// Check for sampleable rtts from previous render passes
// TODO: When framebuffer Y compression is properly handled, this section can be removed. A more accurate framebuffer storage check exists below this block
if (auto texptr = m_rtts.get_texture_from_render_target_if_applicable(texaddr))
{
if (const bool is_active = m_rtts.address_is_bound(texaddr, false);
is_active || texptr->test())
{
return process_framebuffer_resource(cmd, texptr, texaddr, tex.format(), m_rtts,
tex_width, tex_height, depth, tex_pitch, extended_dimension, false, is_active,
tex.remap(), tex.decoded_remap());
}
else
{
m_rtts.invalidate_surface_address(texaddr, false);
invalidate_address(cmd, texaddr, invalidation_cause::read, std::forward<Args>(extras)...);
}
}
if (auto texptr = m_rtts.get_texture_from_depth_stencil_if_applicable(texaddr))
{
if (const bool is_active = m_rtts.address_is_bound(texaddr, true);
is_active || texptr->test())
{
return process_framebuffer_resource(cmd, texptr, texaddr, tex.format(), m_rtts,
tex_width, tex_height, depth, tex_pitch, extended_dimension, true, is_active,
tex.remap(), tex.decoded_remap());
}
else
{
m_rtts.invalidate_surface_address(texaddr, true);
invalidate_address(cmd, texaddr, invalidation_cause::read, std::forward<Args>(extras)...);
}
}
}
const bool unnormalized = (tex.format() & CELL_GCM_TEXTURE_UN) != 0;
f32 scale_x = (unnormalized) ? (1.f / tex_width) : 1.f;
f32 scale_y = (unnormalized) ? (1.f / tex_height) : 1.f;
if (extended_dimension == rsx::texture_dimension_extended::texture_dimension_1d)
scale_y = 0.f;
if (!is_compressed_format)
{
// Check if we are re-sampling a subresource of an RTV/DSV texture, bound or otherwise
const auto rsc = m_rtts.get_surface_subresource_if_applicable(texaddr, tex_width, tex_height, tex_pitch);
if (rsc.surface)
{
if (!rsc.surface->test() && !m_rtts.address_is_bound(rsc.base_address, rsc.is_depth_surface))
{
m_rtts.invalidate_surface_address(rsc.base_address, rsc.is_depth_surface);
invalidate_address(cmd, rsc.base_address, invalidation_cause::read, std::forward<Args>(extras)...);
}
else if (extended_dimension != rsx::texture_dimension_extended::texture_dimension_2d &&
extended_dimension != rsx::texture_dimension_extended::texture_dimension_1d)
{
LOG_ERROR(RSX, "Sampling of RTT region as non-2D texture! addr=0x%x, Type=%d, dims=%dx%d",
texaddr, (u8)tex.get_extended_texture_dimension(), tex.width(), tex.height());
}
else
{
u16 internal_width = tex_width;
u16 internal_height = tex_height;
get_native_dimensions(internal_width, internal_height, rsc.surface);
if (!rsc.x && !rsc.y && rsc.w == internal_width && rsc.h == internal_height)
{
//Full sized hit from the surface cache. This should have been already found before getting here
fmt::throw_exception("Unreachable" HERE);
}
internal_width = rsx::apply_resolution_scale(internal_width, true);
internal_height = (extended_dimension == rsx::texture_dimension_extended::texture_dimension_1d)? 1: rsx::apply_resolution_scale(internal_height, true);
return{ rsc.surface->get_surface(), deferred_request_command::copy_image_static, rsc.base_address, format,
rsx::apply_resolution_scale(rsc.x, false), rsx::apply_resolution_scale(rsc.y, false),
internal_width, internal_height, 1, texture_upload_context::framebuffer_storage, rsc.is_depth_surface, scale_x, scale_y,
rsx::texture_dimension_extended::texture_dimension_2d, tex.decoded_remap() };
}
}
}
{
//Search in cache and upload/bind
reader_lock lock(m_cache_mutex);
auto cached_texture = find_texture_from_dimensions(texaddr, tex_width, tex_height, depth);
if (cached_texture)
{
//TODO: Handle invalidated framebuffer textures better. This is awful
if (cached_texture->get_context() == rsx::texture_upload_context::framebuffer_storage)
{
if (!cached_texture->is_locked())
{
lock.upgrade();
cached_texture->set_dirty(true);
}
}
else
{
if (cached_texture->get_image_type() == rsx::texture_dimension_extended::texture_dimension_1d)
scale_y = 0.f;
return{ cached_texture->get_view(tex.remap(), tex.decoded_remap()), cached_texture->get_context(), cached_texture->is_depth_texture(), scale_x, scale_y, cached_texture->get_image_type() };
}
}
if (is_hw_blit_engine_compatible(format))
{
//Find based on range instead
auto overlapping_surfaces = find_texture_from_range(tex_range);
if (!overlapping_surfaces.empty())
{
for (const auto &surface : overlapping_surfaces)
{
if (surface->get_context() != rsx::texture_upload_context::blit_engine_dst ||
!surface->overlaps(tex_range, rsx::section_bounds::confirmed_range))
continue;
if (surface->get_width() >= tex_width && surface->get_height() >= tex_height)
{
u16 offset_x = 0, offset_y = 0;
if (const u32 address_offset = texaddr - surface->get_section_base())
{
const auto bpp = get_format_block_size_in_bytes(format);
offset_y = address_offset / tex_pitch;
offset_x = (address_offset % tex_pitch) / bpp;
}
if ((offset_x + tex_width) <= surface->get_width() &&
(offset_y + tex_height) <= surface->get_height())
{
if (extended_dimension != rsx::texture_dimension_extended::texture_dimension_2d &&
extended_dimension != rsx::texture_dimension_extended::texture_dimension_1d)
{
LOG_ERROR(RSX, "Texture resides in blit engine memory, but requested type is not 2D (%d)", (u32)extended_dimension);
break;
}
auto src_image = surface->get_raw_texture();
return{ src_image, deferred_request_command::copy_image_static, surface->get_section_base(), format, offset_x, offset_y, tex_width, tex_height, 1,
texture_upload_context::blit_engine_dst, surface->is_depth_texture(), scale_x, scale_y, rsx::texture_dimension_extended::texture_dimension_2d,
rsx::default_remap_vector };
}
}
}
}
}
//Do direct upload from CPU as the last resort
const bool is_swizzled = !(tex.format() & CELL_GCM_TEXTURE_LN);
auto subresources_layout = get_subresources_layout(tex);
bool is_depth_format = false;
switch (format)
{
case CELL_GCM_TEXTURE_DEPTH16:
case CELL_GCM_TEXTURE_DEPTH16_FLOAT:
case CELL_GCM_TEXTURE_DEPTH24_D8:
case CELL_GCM_TEXTURE_DEPTH24_D8_FLOAT:
is_depth_format = true;
break;
}
// Upgrade lock
lock.upgrade();
//Invalidate
invalidate_range_impl_base(cmd, tex_range, invalidation_cause::read, std::forward<Args>(extras)...);
//NOTE: SRGB correction is to be handled in the fragment shader; upload as linear RGB
return{ upload_image_from_cpu(cmd, tex_range, tex_width, tex_height, depth, tex.get_exact_mipmap_count(), tex_pitch, format,
texture_upload_context::shader_read, subresources_layout, extended_dimension, is_swizzled)->get_view(tex.remap(), tex.decoded_remap()),
texture_upload_context::shader_read, is_depth_format, scale_x, scale_y, extended_dimension };
}
}
template <typename surface_store_type, typename blitter_type, typename ...Args>
blit_op_result upload_scaled_image(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate, commandbuffer_type& cmd, surface_store_type& m_rtts, blitter_type& blitter, Args&&... extras)
{
//Since we will have dst in vram, we can 'safely' ignore the swizzle flag
//TODO: Verify correct behavior
bool src_is_render_target = false;
bool dst_is_render_target = false;
bool dst_is_argb8 = (dst.format == rsx::blit_engine::transfer_destination_format::a8r8g8b8);
bool src_is_argb8 = (src.format == rsx::blit_engine::transfer_source_format::a8r8g8b8);
typeless_xfer typeless_info = {};
image_resource_type vram_texture = 0;
image_resource_type dest_texture = 0;
const u32 src_address = (u32)((u64)src.pixels - (u64)vm::base(0));
const u32 dst_address = (u32)((u64)dst.pixels - (u64)vm::base(0));
f32 scale_x = dst.scale_x;
f32 scale_y = dst.scale_y;
//Offset in x and y for src is 0 (it is already accounted for when getting pixels_src)
//Reproject final clip onto source...
u16 src_w = (u16)((f32)dst.clip_width / scale_x);
u16 src_h = (u16)((f32)dst.clip_height / scale_y);
u16 dst_w = dst.clip_width;
u16 dst_h = dst.clip_height;
//Check if src/dst are parts of render targets
auto dst_subres = m_rtts.get_surface_subresource_if_applicable(dst_address, dst.width, dst.clip_height, dst.pitch, true, false, false);
dst_is_render_target = dst_subres.surface != nullptr;
if (dst_is_render_target && dst_subres.surface->get_native_pitch() != dst.pitch)
{
//Surface pitch is invalid if it is less that the rsx pitch (usually set to 64 in such a case)
if (dst_subres.surface->get_rsx_pitch() != dst.pitch ||
dst.pitch < dst_subres.surface->get_native_pitch())
dst_is_render_target = false;
}
//TODO: Handle cases where src or dst can be a depth texture while the other is a color texture - requires a render pass to emulate
auto src_subres = m_rtts.get_surface_subresource_if_applicable(src_address, src_w, src_h, src.pitch, true, false, false);
src_is_render_target = src_subres.surface != nullptr;
if (src_is_render_target && src_subres.surface->get_native_pitch() != src.pitch)
{
//Surface pitch is invalid if it is less that the rsx pitch (usually set to 64 in such a case)
if (src_subres.surface->get_rsx_pitch() != src.pitch ||
src.pitch < src_subres.surface->get_native_pitch())
src_is_render_target = false;
}
if (src_is_render_target && !src_subres.surface->test() && !m_rtts.address_is_bound(src_subres.base_address, src_subres.is_depth_surface))
{
m_rtts.invalidate_surface_address(src_subres.base_address, src_subres.is_depth_surface);
invalidate_address(cmd, src_subres.base_address, invalidation_cause::read, std::forward<Args>(extras)...);
src_is_render_target = false;
}
if (dst_is_render_target && !dst_subres.surface->test() && !m_rtts.address_is_bound(dst_subres.base_address, dst_subres.is_depth_surface))
{
m_rtts.invalidate_surface_address(dst_subres.base_address, dst_subres.is_depth_surface);
invalidate_address(cmd, dst_subres.base_address, invalidation_cause::read, std::forward<Args>(extras)...);
dst_is_render_target = false;
}
//Always use GPU blit if src or dst is in the surface store
if (!g_cfg.video.use_gpu_texture_scaling && !(src_is_render_target || dst_is_render_target))
return false;
if (src_is_render_target)
{
src_subres.surface->read_barrier(cmd);
const auto surf = src_subres.surface;
auto src_bpp = surf->get_native_pitch() / surf->get_surface_width();
auto expected_bpp = src_is_argb8 ? 4 : 2;
if (src_bpp != expected_bpp)
{
//Enable type scaling in src
typeless_info.src_is_typeless = true;
typeless_info.src_is_depth = src_subres.is_depth_surface;
typeless_info.src_scaling_hint = (f32)src_bpp / expected_bpp;
typeless_info.src_gcm_format = src_is_argb8 ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
src_w = (u16)(src_w / typeless_info.src_scaling_hint);
if (!src_subres.is_clipped)
src_subres.w = (u16)(src_subres.w / typeless_info.src_scaling_hint);
else
src_subres = m_rtts.get_surface_subresource_if_applicable(src_address, src_w, src_h, src.pitch, true, false, false);
verify(HERE), src_subres.surface != nullptr;
}
}
if (dst_is_render_target)
{
// Full barrier is required in case of partial transfers
dst_subres.surface->read_barrier(cmd);
auto dst_bpp = dst_subres.surface->get_native_pitch() / dst_subres.surface->get_surface_width();
auto expected_bpp = dst_is_argb8 ? 4 : 2;
if (dst_bpp != expected_bpp)
{
//Enable type scaling in dst
typeless_info.dst_is_typeless = true;
typeless_info.dst_is_depth = dst_subres.is_depth_surface;
typeless_info.dst_scaling_hint = (f32)dst_bpp / expected_bpp;
typeless_info.dst_gcm_format = dst_is_argb8 ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
dst_w = (u16)(dst_w / typeless_info.dst_scaling_hint);
if (!dst_subres.is_clipped)
dst_subres.w = (u16)(dst_subres.w / typeless_info.dst_scaling_hint);
else
dst_subres = m_rtts.get_surface_subresource_if_applicable(dst_address, dst_w, dst_h, dst.pitch, true, false, false);
verify(HERE), dst_subres.surface != nullptr;
}
}
reader_lock lock(m_cache_mutex);
//Check if trivial memcpy can perform the same task
//Used to copy programs to the GPU in some cases
if (!src_is_render_target && !dst_is_render_target && dst_is_argb8 == src_is_argb8 && !dst.swizzled)
{
if ((src.slice_h == 1 && dst.clip_height == 1) ||
(dst.clip_width == src.width && dst.clip_height == src.slice_h && src.pitch == dst.pitch))
{
const u8 bpp = dst_is_argb8 ? 4 : 2;
const u32 memcpy_bytes_length = dst.clip_width * bpp * dst.clip_height;
lock.upgrade();
invalidate_range_impl_base(cmd, address_range::start_length(src_address, memcpy_bytes_length), invalidation_cause::read, std::forward<Args>(extras)...);
invalidate_range_impl_base(cmd, address_range::start_length(dst_address, memcpy_bytes_length), invalidation_cause::write, std::forward<Args>(extras)...);
memcpy(dst.pixels, src.pixels, memcpy_bytes_length);
return true;
}
}
u16 max_dst_width = dst.width;
u16 max_dst_height = dst.height;
areai src_area = { 0, 0, src_w, src_h };
areai dst_area = { 0, 0, dst_w, dst_h };
//1024 height is a hack (for ~720p buffers)
//It is possible to have a large buffer that goes up to around 4kx4k but anything above 1280x720 is rare
//RSX only handles 512x512 tiles so texture 'stitching' will eventually be needed to be completely accurate
//Sections will be submitted as (512x512 + 512x512 + 256x512 + 512x208 + 512x208 + 256x208) to blit a 720p surface to the backbuffer for example
size2i dst_dimensions = { dst.pitch / (dst_is_argb8 ? 4 : 2), dst.height };
if (src_is_render_target)
{
if (dst_dimensions.width == src_subres.surface->get_surface_width())
dst_dimensions.height = std::max(src_subres.surface->get_surface_height(), dst.height);
else if (dst.max_tile_h > dst.height)
dst_dimensions.height = std::min((s32)dst.max_tile_h, 1024);
}
section_storage_type* cached_dest = nullptr;
if (!dst_is_render_target)
{
// Check for any available region that will fit this one
auto overlapping_surfaces = find_texture_from_range(address_range::start_length(dst_address, dst.pitch * dst.clip_height));
for (const auto &surface : overlapping_surfaces)
{
if (surface->get_context() != rsx::texture_upload_context::blit_engine_dst)
continue;
if (surface->get_rsx_pitch() != dst.pitch)
continue;
const auto old_dst_area = dst_area;
if (const u32 address_offset = dst_address - surface->get_section_base())
{
const u16 bpp = dst_is_argb8 ? 4 : 2;
const u16 offset_y = address_offset / dst.pitch;
const u16 offset_x = address_offset % dst.pitch;
const u16 offset_x_in_block = offset_x / bpp;
dst_area.x1 += offset_x_in_block;
dst_area.x2 += offset_x_in_block;
dst_area.y1 += offset_y;
dst_area.y2 += offset_y;
}
// Validate clipping region
if ((unsigned)dst_area.x2 <= surface->get_width() &&
(unsigned)dst_area.y2 <= surface->get_height())
{
cached_dest = surface;
break;
}
dst_area = old_dst_area;
}
if (cached_dest)
{
dest_texture = cached_dest->get_raw_texture();
typeless_info.dst_context = cached_dest->get_context();
max_dst_width = cached_dest->get_width();
max_dst_height = cached_dest->get_height();
}
}
else
{
//TODO: Investigate effects of tile compression
dst_area.x1 = dst_subres.x;
dst_area.y1 = dst_subres.y;
dst_area.x2 += dst_subres.x;
dst_area.y2 += dst_subres.y;
dest_texture = dst_subres.surface->get_surface();
typeless_info.dst_context = texture_upload_context::framebuffer_storage;
max_dst_width = (u16)(dst_subres.surface->get_surface_width() * typeless_info.dst_scaling_hint);
max_dst_height = dst_subres.surface->get_surface_height();
}
//Create source texture if does not exist
if (!src_is_render_target)
{
auto overlapping_surfaces = find_texture_from_range(address_range::start_length(src_address, src.pitch * src.height));
auto old_src_area = src_area;
for (const auto &surface : overlapping_surfaces)
{
//look for any that will fit, unless its a shader read surface or framebuffer_storage
if (surface->get_context() == rsx::texture_upload_context::shader_read ||
surface->get_context() == rsx::texture_upload_context::framebuffer_storage)
continue;
if (surface->get_rsx_pitch() != src.pitch)
continue;
if (const u32 address_offset = src_address - surface->get_section_base())
{
const u16 bpp = src_is_argb8 ? 4 : 2;
const u16 offset_y = address_offset / src.pitch;
const u16 offset_x = address_offset % src.pitch;
const u16 offset_x_in_block = offset_x / bpp;
src_area.x1 += offset_x_in_block;
src_area.x2 += offset_x_in_block;
src_area.y1 += offset_y;
src_area.y2 += offset_y;
}
if (src_area.x2 <= surface->get_width() &&
src_area.y2 <= surface->get_height())
{
vram_texture = surface->get_raw_texture();
typeless_info.src_context = surface->get_context();
break;
}
src_area = old_src_area;
}
if (!vram_texture)
{
lock.upgrade();
const auto rsx_range = address_range::start_length(src_address, src.pitch * src.slice_h);
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::read, std::forward<Args>(extras)...);
const u16 pitch_in_block = src_is_argb8 ? src.pitch >> 2 : src.pitch >> 1;
std::vector<rsx_subresource_layout> subresource_layout;
rsx_subresource_layout subres = {};
subres.width_in_block = src.width;
subres.height_in_block = src.slice_h;
subres.pitch_in_block = pitch_in_block;
subres.depth = 1;
subres.data = { (const gsl::byte*)src.pixels, src.pitch * src.slice_h };
subresource_layout.push_back(subres);
const u32 gcm_format = src_is_argb8 ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
vram_texture = upload_image_from_cpu(cmd, rsx_range, src.width, src.slice_h, 1, 1, src.pitch, gcm_format, texture_upload_context::blit_engine_src,
subresource_layout, rsx::texture_dimension_extended::texture_dimension_2d, dst.swizzled)->get_raw_texture();
typeless_info.src_context = texture_upload_context::blit_engine_src;
}
}
else
{
if (!dst_is_render_target)
{
u16 src_subres_w = src_subres.w;
u16 src_subres_h = src_subres.h;
get_rsx_dimensions(src_subres_w, src_subres_h, src_subres.surface);
const int dst_width = (int)(src_subres_w * scale_x * typeless_info.src_scaling_hint);
const int dst_height = (int)(src_subres_h * scale_y);
dst_area.x2 = dst_area.x1 + dst_width;
dst_area.y2 = dst_area.y1 + dst_height;
}
src_area.x2 = src_subres.w;
src_area.y2 = src_subres.h;
src_area.x1 = src_subres.x;
src_area.y1 = src_subres.y;
src_area.x2 += src_subres.x;
src_area.y2 += src_subres.y;
vram_texture = src_subres.surface->get_surface();
typeless_info.src_context = texture_upload_context::framebuffer_storage;
}
const bool src_is_depth = src_subres.is_depth_surface;
const bool dst_is_depth = dst_is_render_target? dst_subres.is_depth_surface :
dest_texture ? cached_dest->is_depth_texture() : src_is_depth;
//Type of blit decided by the source, destination use should adapt on the fly
const bool is_depth_blit = src_is_depth;
bool format_mismatch = (src_is_depth != dst_is_depth);
if (format_mismatch)
{
if (dst_is_render_target)
{
LOG_ERROR(RSX, "Depth<->RGBA blit on a framebuffer requested but not supported");
return false;
}
}
else if (src_is_render_target && cached_dest)
{
switch (cached_dest->get_gcm_format())
{
case CELL_GCM_TEXTURE_A8R8G8B8:
case CELL_GCM_TEXTURE_DEPTH24_D8:
format_mismatch = !dst_is_argb8;
break;
case CELL_GCM_TEXTURE_R5G6B5:
case CELL_GCM_TEXTURE_DEPTH16:
format_mismatch = dst_is_argb8;
break;
default:
format_mismatch = true;
break;
}
}
//TODO: Check for other types of format mismatch
const address_range dst_range = address_range::start_length(dst_address, dst.pitch * dst.height);
AUDIT(cached_dest == nullptr || cached_dest->overlaps(dst_range, section_bounds::full_range));
if (format_mismatch)
{
lock.upgrade();
// Invalidate as the memory is not reusable now
invalidate_range_impl_base(cmd, cached_dest->get_section_range(), invalidation_cause::write, std::forward<Args>(extras)...);
AUDIT(!cached_dest->is_locked());
dest_texture = 0;
cached_dest = nullptr;
}
u32 gcm_format;
if (is_depth_blit)
gcm_format = (dst_is_argb8) ? CELL_GCM_TEXTURE_DEPTH24_D8 : CELL_GCM_TEXTURE_DEPTH16;
else
gcm_format = (dst_is_argb8) ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
if (cached_dest)
{
//Prep surface
auto channel_order = src_is_render_target ? rsx::texture_create_flags::native_component_order :
dst_is_argb8 ? rsx::texture_create_flags::default_component_order :
rsx::texture_create_flags::swapped_native_component_order;
enforce_surface_creation_type(*cached_dest, gcm_format, channel_order);
}
//Validate clipping region
if ((dst.offset_x + dst.clip_x + dst.clip_width) > max_dst_width) dst.clip_x = 0;
if ((dst.offset_y + dst.clip_y + dst.clip_height) > max_dst_height) dst.clip_y = 0;
//Reproject clip offsets onto source to simplify blit
if (dst.clip_x || dst.clip_y)
{
const u16 scaled_clip_offset_x = (const u16)((f32)dst.clip_x / (scale_x * typeless_info.src_scaling_hint));
const u16 scaled_clip_offset_y = (const u16)((f32)dst.clip_y / scale_y);
src_area.x1 += scaled_clip_offset_x;
src_area.x2 += scaled_clip_offset_x;
src_area.y1 += scaled_clip_offset_y;
src_area.y2 += scaled_clip_offset_y;
}
if (dest_texture == 0)
{
verify(HERE), !dst_is_render_target;
// Need to calculate the minium required size that will fit the data, anchored on the rsx_address
// If the application starts off with an 'inseted' section, the guessed dimensions may not fit!
const u32 write_end = dst_address + (dst.pitch * dst.clip_height);
const u32 expected_end = dst.rsx_address + (dst.pitch * dst_dimensions.height);
const u32 section_length = std::max(write_end, expected_end) - dst.rsx_address;
dst_dimensions.height = section_length / dst.pitch;
lock.upgrade();
const auto rsx_range = address_range::start_length(dst.rsx_address, section_length);
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::write, std::forward<Args>(extras)...);
const u16 pitch_in_block = dst_is_argb8 ? dst.pitch >> 2 : dst.pitch >> 1;
std::vector<rsx_subresource_layout> subresource_layout;
rsx_subresource_layout subres = {};
subres.width_in_block = dst_dimensions.width;
subres.height_in_block = dst_dimensions.height;
subres.pitch_in_block = pitch_in_block;
subres.depth = 1;
subres.data = { (const gsl::byte*)dst.pixels, dst.pitch * dst_dimensions.height };
subresource_layout.push_back(subres);
cached_dest = upload_image_from_cpu(cmd, rsx_range, dst_dimensions.width, dst_dimensions.height, 1, 1, dst.pitch,
gcm_format, rsx::texture_upload_context::blit_engine_dst, subresource_layout,
rsx::texture_dimension_extended::texture_dimension_2d, false);
// render target data is already in correct swizzle layout
auto channel_order = src_is_render_target ? rsx::texture_create_flags::native_component_order :
dst_is_argb8 ? rsx::texture_create_flags::default_component_order :
rsx::texture_create_flags::swapped_native_component_order;
enforce_surface_creation_type(*cached_dest, gcm_format, channel_order);
dest_texture = cached_dest->get_raw_texture();
typeless_info.dst_context = texture_upload_context::blit_engine_dst;
}
if (cached_dest)
{
lock.upgrade();
u32 mem_length;
const u32 mem_base = dst_address - cached_dest->get_section_base();
if (dst.clip_height == 1)
{
mem_length = dst.clip_width * (dst_is_argb8 ? 4 : 2);
}
else
{
const u32 mem_excess = mem_base % dst.pitch;
mem_length = (dst.pitch * dst.clip_height) - mem_excess;
}
verify(HERE), (mem_base + mem_length) <= cached_dest->get_section_size();
cached_dest->reprotect(utils::protection::no, { mem_base, mem_length });
cached_dest->touch(m_cache_update_tag);
update_cache_tag();
}
else
{
verify(HERE), dst_is_render_target;
}
if (rsx::get_resolution_scale_percent() != 100)
{
const f32 resolution_scale = rsx::get_resolution_scale();
if (src_is_render_target)
{
if (src_subres.surface->get_surface_width() > g_cfg.video.min_scalable_dimension)
{
src_area.x1 = (u16)(src_area.x1 * resolution_scale);
src_area.x2 = (u16)(src_area.x2 * resolution_scale);
}
if (src_subres.surface->get_surface_height() > g_cfg.video.min_scalable_dimension)
{
src_area.y1 = (u16)(src_area.y1 * resolution_scale);
src_area.y2 = (u16)(src_area.y2 * resolution_scale);
}
}
if (dst_is_render_target)
{
if (dst_subres.surface->get_surface_width() > g_cfg.video.min_scalable_dimension)
{
dst_area.x1 = (u16)(dst_area.x1 * resolution_scale);
dst_area.x2 = (u16)(dst_area.x2 * resolution_scale);
}
if (dst_subres.surface->get_surface_height() > g_cfg.video.min_scalable_dimension)
{
dst_area.y1 = (u16)(dst_area.y1 * resolution_scale);
dst_area.y2 = (u16)(dst_area.y2 * resolution_scale);
}
}
}
typeless_info.analyse();
blitter.scale_image(cmd, vram_texture, dest_texture, src_area, dst_area, interpolate, is_depth_blit, typeless_info);
notify_surface_changed(dst.rsx_address);
blit_op_result result = true;
result.is_depth = is_depth_blit;
if (cached_dest)
{
result.real_dst_address = cached_dest->get_section_base();
result.real_dst_size = cached_dest->get_section_size();
}
else
{
result.real_dst_address = dst.rsx_address;
result.real_dst_size = dst.pitch * dst_dimensions.height;
}
return result;
}
void do_update()
{
if (m_flush_always_cache.size())
{
if (m_cache_update_tag.load(std::memory_order_consume) != m_flush_always_update_timestamp)
{
std::lock_guard lock(m_cache_mutex);
bool update_tag = false;
for (const auto &It : m_flush_always_cache)
{
auto& section = *(It.second);
if (section.get_protection() != utils::protection::no)
{
verify(HERE), section.exists();
AUDIT(section.get_context() == texture_upload_context::framebuffer_storage);
AUDIT(section.get_memory_read_flags() == memory_read_flags::flush_always);
section.reprotect(utils::protection::no);
update_tag = true;
}
}
if (update_tag) update_cache_tag();
m_flush_always_update_timestamp = m_cache_update_tag.load(std::memory_order_consume);
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache has the correct protections
m_storage.verify_protection();
#endif // TEXTURE_CACHE_DEBUG
}
}
}
predictor_type& get_predictor()
{
return m_predictor;
}
/**
* The read only texture invalidate flag is set if a read only texture is trampled by framebuffer memory
* If set, all cached read only textures are considered invalid and should be re-fetched from the texture cache
*/
void clear_ro_tex_invalidate_intr()
{
read_only_tex_invalidate = false;
}
bool get_ro_tex_invalidate_intr() const
{
return read_only_tex_invalidate;
}
/**
* Per-frame statistics
*/
void reset_frame_statistics()
{
m_flushes_this_frame.store(0u);
m_misses_this_frame.store(0u);
m_speculations_this_frame.store(0u);
m_unavoidable_hard_faults_this_frame.store(0u);
}
void on_flush()
{
m_flushes_this_frame++;
}
void on_speculative_flush()
{
m_speculations_this_frame++;
}
void on_misprediction()
{
m_predictor.on_misprediction();
}
void on_miss(const section_storage_type& section)
{
m_misses_this_frame++;
if (section.get_memory_read_flags() == memory_read_flags::flush_always)
{
m_unavoidable_hard_faults_this_frame++;
}
}
virtual const u32 get_unreleased_textures_count() const
{
return m_storage.m_unreleased_texture_objects;
}
const u64 get_texture_memory_in_use() const
{
return m_storage.m_texture_memory_in_use;
}
u32 get_num_flush_requests() const
{
return m_flushes_this_frame;
}
u32 get_num_cache_mispredictions() const
{
return m_predictor.m_mispredictions_this_frame;
}
u32 get_num_cache_speculative_writes() const
{
return m_speculations_this_frame;
}
u32 get_num_cache_misses() const
{
return m_misses_this_frame;
}
u32 get_num_unavoidable_hard_faults() const
{
return m_unavoidable_hard_faults_this_frame;
}
f32 get_cache_miss_ratio() const
{
const auto num_flushes = m_flushes_this_frame.load();
return (num_flushes == 0u) ? 0.f : (f32)m_misses_this_frame.load() / num_flushes;
}
};
}