rpcsx/kernel/cellos/src/sys_mmapper.cpp

806 lines
20 KiB
C++

#include "stdafx.h"
#include "sys_mmapper.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Memory/vm_var.h"
#include "cellos/sys_event.h"
#include "sys_memory.h"
#include "sys_process.h"
#include "sys_sync.h"
#include <span>
#include "util/vm.hpp"
LOG_CHANNEL(sys_mmapper);
template <>
void fmt_class_string<lv2_mem_container_id>::format(std::string &out, u64 arg) {
format_enum(out, arg, [](auto value) {
switch (value) {
case SYS_MEMORY_CONTAINER_ID_INVALID:
return "Global";
}
// Resort to hex formatting for other values
return unknown;
});
}
lv2_memory::lv2_memory(u32 size, u32 align, u64 flags, u64 key, bool pshared,
lv2_memory_container *ct)
: size(size), align(align), flags(flags), key(key), pshared(pshared),
ct(ct), shm(std::make_shared<utils::shm>(size, 1 /* shareable flag */)) {
#ifndef _WIN32
// Optimization that's useless on Windows :puke:
utils::memory_lock(shm->map_self(), size);
#endif
}
lv2_memory::lv2_memory(utils::serial &ar)
: size(ar), align(ar), flags(ar), key(ar), pshared(ar),
ct(lv2_memory_container::search(ar.pop<u32>())), shm([&](u32 addr) {
if (addr) {
return ensure(vm::get(vm::any, addr)->peek(addr).second);
}
const auto _shm = std::make_shared<utils::shm>(size, 1);
ar(std::span(_shm->map_self(), size));
return _shm;
}(ar.pop<u32>())),
counter(ar) {
#ifndef _WIN32
// Optimization that's useless on Windows :puke:
utils::memory_lock(shm->map_self(), size);
#endif
}
CellError lv2_memory::on_id_create() {
if (!exists && !ct->take(size)) {
sys_mmapper.error("lv2_memory::on_id_create(): Cannot allocate 0x%x bytes "
"(0x%x available)",
size, ct->size - ct->used);
return CELL_ENOMEM;
}
exists++;
return {};
}
std::function<void(void *)> lv2_memory::load(utils::serial &ar) {
auto mem = make_shared<lv2_memory>(exact_t<utils::serial &>(ar));
mem->exists++; // Disable on_id_create()
auto func = load_func(mem, +mem->pshared);
mem->exists--;
return func;
}
void lv2_memory::save(utils::serial &ar) {
USING_SERIALIZATION_VERSION(lv2_memory);
ar(size, align, flags, key, pshared, ct->id);
ar(counter ? vm::get_shm_addr(shm) : 0);
if (!counter) {
ar(std::span(shm->map_self(), size));
}
ar(counter);
}
page_fault_notification_entries::page_fault_notification_entries(
utils::serial &ar) {
ar(entries);
}
void page_fault_notification_entries::save(utils::serial &ar) { ar(entries); }
template <bool exclusive = false>
error_code create_lv2_shm(bool pshared, u64 ipc_key, u64 size, u32 align,
u64 flags, lv2_memory_container *ct) {
const u32 _pshared =
pshared ? SYS_SYNC_PROCESS_SHARED : SYS_SYNC_NOT_PROCESS_SHARED;
if (!pshared) {
ipc_key = 0;
}
if (auto error = lv2_obj::create<lv2_memory>(
_pshared, ipc_key,
exclusive ? SYS_SYNC_NEWLY_CREATED : SYS_SYNC_NOT_CARE,
[&]() {
return make_shared<lv2_memory>(static_cast<u32>(size), align, flags,
ipc_key, pshared, ct);
},
false)) {
return error;
}
return CELL_OK;
}
error_code sys_mmapper_allocate_address(ppu_thread &ppu, u64 size, u64 flags,
u64 alignment,
vm::ptr<u32> alloc_addr) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_allocate_address(size=0x%x, flags=0x%x, "
"alignment=0x%x, alloc_addr=*0x%x)",
size, flags, alignment, alloc_addr);
if (size % 0x10000000) {
return CELL_EALIGN;
}
if (size > u32{umax}) {
return CELL_ENOMEM;
}
// This is a workaround for psl1ght, which gives us an alignment of 0, which
// is technically invalid, but apparently is allowed on actual ps3
// https://github.com/ps3dev/PSL1GHT/blob/534e58950732c54dc6a553910b653c99ba6e9edc/ppu/librt/sbrk.c#L71
if (!alignment) {
alignment = 0x10000000;
}
switch (alignment) {
case 0x10000000:
case 0x20000000:
case 0x40000000:
case 0x80000000: {
if (const auto area =
vm::find_map(static_cast<u32>(size), static_cast<u32>(alignment),
flags & SYS_MEMORY_PAGE_SIZE_MASK)) {
sys_mmapper.warning(
"sys_mmapper_allocate_address(): Found VM 0x%x area (vsize=0x%x)",
area->addr, size);
ppu.check_state();
*alloc_addr = area->addr;
return CELL_OK;
}
return CELL_ENOMEM;
}
}
return CELL_EALIGN;
}
error_code sys_mmapper_allocate_fixed_address(ppu_thread &ppu) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_allocate_fixed_address()");
if (!vm::map(0xB0000000, 0x10000000, SYS_MEMORY_PAGE_SIZE_1M)) {
return CELL_EEXIST;
}
return CELL_OK;
}
error_code sys_mmapper_allocate_shared_memory(ppu_thread &ppu, u64 ipc_key,
u64 size, u64 flags,
vm::ptr<u32> mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_allocate_shared_memory(ipc_key=0x%x, "
"size=0x%x, flags=0x%x, mem_id=*0x%x)",
ipc_key, size, flags, mem_id);
if (size == 0) {
return CELL_EALIGN;
}
// Check page granularity
switch (flags & SYS_MEMORY_GRANULARITY_MASK) {
case 0:
case SYS_MEMORY_GRANULARITY_1M: {
if (size % 0x100000) {
return CELL_EALIGN;
}
break;
}
case SYS_MEMORY_GRANULARITY_64K: {
if (size % 0x10000) {
return CELL_EALIGN;
}
break;
}
default: {
return CELL_EINVAL;
}
}
// Get "default" memory container
auto &dct = g_fxo->get<lv2_memory_container>();
if (auto error = create_lv2_shm(
ipc_key != SYS_MMAPPER_NO_SHM_KEY, ipc_key, size,
flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000, flags, &dct)) {
return error;
}
ppu.check_state();
*mem_id = idm::last_id();
return CELL_OK;
}
error_code
sys_mmapper_allocate_shared_memory_from_container(ppu_thread &ppu, u64 ipc_key,
u64 size, u32 cid, u64 flags,
vm::ptr<u32> mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning(
"sys_mmapper_allocate_shared_memory_from_container(ipc_key=0x%x, "
"size=0x%x, cid=0x%x, flags=0x%x, mem_id=*0x%x)",
ipc_key, size, cid, flags, mem_id);
if (size == 0) {
return CELL_EALIGN;
}
// Check page granularity.
switch (flags & SYS_MEMORY_GRANULARITY_MASK) {
case 0:
case SYS_MEMORY_GRANULARITY_1M: {
if (size % 0x100000) {
return CELL_EALIGN;
}
break;
}
case SYS_MEMORY_GRANULARITY_64K: {
if (size % 0x10000) {
return CELL_EALIGN;
}
break;
}
default: {
return CELL_EINVAL;
}
}
const auto ct = idm::get_unlocked<lv2_memory_container>(cid);
if (!ct) {
return CELL_ESRCH;
}
if (auto error =
create_lv2_shm(ipc_key != SYS_MMAPPER_NO_SHM_KEY, ipc_key, size,
flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000,
flags, ct.get())) {
return error;
}
ppu.check_state();
*mem_id = idm::last_id();
return CELL_OK;
}
error_code sys_mmapper_allocate_shared_memory_ext(
ppu_thread &ppu, u64 ipc_key, u64 size, u32 flags,
vm::ptr<mmapper_unk_entry_struct0> entries, s32 entry_count,
vm::ptr<u32> mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.todo(
"sys_mmapper_allocate_shared_memory_ext(ipc_key=0x%x, size=0x%x, "
"flags=0x%x, entries=*0x%x, entry_count=0x%x, mem_id=*0x%x)",
ipc_key, size, flags, entries, entry_count, mem_id);
if (size == 0) {
return CELL_EALIGN;
}
switch (flags & SYS_MEMORY_GRANULARITY_MASK) {
case SYS_MEMORY_GRANULARITY_1M:
case 0: {
if (size % 0x100000) {
return CELL_EALIGN;
}
break;
}
case SYS_MEMORY_GRANULARITY_64K: {
if (size % 0x10000) {
return CELL_EALIGN;
}
break;
}
default: {
return CELL_EINVAL;
}
}
if (flags & ~SYS_MEMORY_PAGE_SIZE_MASK) {
return CELL_EINVAL;
}
if (entry_count <= 0 || entry_count > 0x10) {
return CELL_EINVAL;
}
if constexpr (bool to_perm_check = false; true) {
for (s32 i = 0; i < entry_count; i++) {
const u64 type = entries[i].type;
// The whole structure contents are unknown
sys_mmapper.todo(
"sys_mmapper_allocate_shared_memory_ext(): entry type = 0x%x", type);
switch (type) {
case 0:
case 1:
case 3: {
break;
}
case 5: {
to_perm_check = true;
break;
}
default: {
return CELL_EPERM;
}
}
}
if (to_perm_check) {
if (flags != SYS_MEMORY_PAGE_SIZE_64K ||
!g_ps3_process_info.debug_or_root()) {
return CELL_EPERM;
}
}
}
// Get "default" memory container
auto &dct = g_fxo->get<lv2_memory_container>();
if (auto error = create_lv2_shm<true>(
true, ipc_key, size,
flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000, flags, &dct)) {
return error;
}
ppu.check_state();
*mem_id = idm::last_id();
return CELL_OK;
}
error_code sys_mmapper_allocate_shared_memory_from_container_ext(
ppu_thread &ppu, u64 ipc_key, u64 size, u64 flags, u32 cid,
vm::ptr<mmapper_unk_entry_struct0> entries, s32 entry_count,
vm::ptr<u32> mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.todo("sys_mmapper_allocate_shared_memory_from_container_ext(ipc_"
"key=0x%x, size=0x%x, flags=0x%x, cid=0x%x, entries=*0x%x, "
"entry_count=0x%x, mem_id=*0x%x)",
ipc_key, size, flags, cid, entries, entry_count, mem_id);
switch (flags & SYS_MEMORY_PAGE_SIZE_MASK) {
case SYS_MEMORY_PAGE_SIZE_1M:
case 0: {
if (size % 0x100000) {
return CELL_EALIGN;
}
break;
}
case SYS_MEMORY_PAGE_SIZE_64K: {
if (size % 0x10000) {
return CELL_EALIGN;
}
break;
}
default: {
return CELL_EINVAL;
}
}
if (flags & ~SYS_MEMORY_PAGE_SIZE_MASK) {
return CELL_EINVAL;
}
if (entry_count <= 0 || entry_count > 0x10) {
return CELL_EINVAL;
}
if constexpr (bool to_perm_check = false; true) {
for (s32 i = 0; i < entry_count; i++) {
const u64 type = entries[i].type;
sys_mmapper.todo("sys_mmapper_allocate_shared_memory_from_container_ext()"
": entry type = 0x%x",
type);
switch (type) {
case 0:
case 1:
case 3: {
break;
}
case 5: {
to_perm_check = true;
break;
}
default: {
return CELL_EPERM;
}
}
}
if (to_perm_check) {
if (flags != SYS_MEMORY_PAGE_SIZE_64K ||
!g_ps3_process_info.debug_or_root()) {
return CELL_EPERM;
}
}
}
const auto ct = idm::get_unlocked<lv2_memory_container>(cid);
if (!ct) {
return CELL_ESRCH;
}
if (auto error = create_lv2_shm<true>(
true, ipc_key, size,
flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000, flags,
ct.get())) {
return error;
}
ppu.check_state();
*mem_id = idm::last_id();
return CELL_OK;
}
error_code sys_mmapper_change_address_access_right(ppu_thread &ppu, u32 addr,
u64 flags) {
ppu.state += cpu_flag::wait;
sys_mmapper.todo(
"sys_mmapper_change_address_access_right(addr=0x%x, flags=0x%x)", addr,
flags);
return CELL_OK;
}
error_code sys_mmapper_free_address(ppu_thread &ppu, u32 addr) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_free_address(addr=0x%x)", addr);
if (addr < 0x20000000 || addr >= 0xC0000000) {
return {CELL_EINVAL, addr};
}
// If page fault notify exists and an address in this area is faulted, we
// can't free the memory.
auto &pf_events = g_fxo->get<page_fault_event_entries>();
std::lock_guard pf_lock(pf_events.pf_mutex);
const auto mem = vm::get(vm::any, addr);
if (!mem || mem->addr != addr) {
return {CELL_EINVAL, addr};
}
for (const auto &ev : pf_events.events) {
if (addr <= ev.second && ev.second <= addr + mem->size - 1) {
return CELL_EBUSY;
}
}
// Try to unmap area
const auto [area, success] = vm::unmap(addr, true, &mem);
if (!area) {
return {CELL_EINVAL, addr};
}
if (!success) {
return CELL_EBUSY;
}
// If a memory block is freed, remove it from page notification table.
auto &pf_entries = g_fxo->get<page_fault_notification_entries>();
std::lock_guard lock(pf_entries.mutex);
auto ind_to_remove = pf_entries.entries.begin();
for (; ind_to_remove != pf_entries.entries.end(); ++ind_to_remove) {
if (addr == ind_to_remove->start_addr) {
break;
}
}
if (ind_to_remove != pf_entries.entries.end()) {
pf_entries.entries.erase(ind_to_remove);
}
return CELL_OK;
}
error_code sys_mmapper_free_shared_memory(ppu_thread &ppu, u32 mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_free_shared_memory(mem_id=0x%x)", mem_id);
// Conditionally remove memory ID
const auto mem = idm::withdraw<lv2_obj, lv2_memory>(
mem_id, [&](lv2_memory &mem) -> CellError {
if (mem.counter) {
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(mem, mem.key, +mem.pshared);
if (!mem.exists) {
// Return "physical memory" to the memory container
mem.ct->free(mem.size);
}
return {};
});
if (!mem) {
return CELL_ESRCH;
}
if (mem.ret) {
return mem.ret;
}
return CELL_OK;
}
error_code sys_mmapper_map_shared_memory(ppu_thread &ppu, u32 addr, u32 mem_id,
u64 flags) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning(
"sys_mmapper_map_shared_memory(addr=0x%x, mem_id=0x%x, flags=0x%x)", addr,
mem_id, flags);
const auto area = vm::get(vm::any, addr);
if (!area || addr < 0x20000000 || addr >= 0xC0000000) {
return CELL_EINVAL;
}
const auto mem =
idm::get<lv2_obj, lv2_memory>(mem_id, [&](lv2_memory &mem) -> CellError {
const u32 page_alignment =
area->flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000;
if (mem.align < page_alignment) {
return CELL_EINVAL;
}
if (addr % page_alignment) {
return CELL_EALIGN;
}
mem.counter++;
return {};
});
if (!mem) {
return CELL_ESRCH;
}
if (mem.ret) {
return mem.ret;
}
if (!area->falloc(addr, mem->size, &mem->shm,
mem->align == 0x10000 ? SYS_MEMORY_PAGE_SIZE_64K
: SYS_MEMORY_PAGE_SIZE_1M)) {
mem->counter--;
if (!area->is_valid()) {
return {CELL_EINVAL, addr};
}
return CELL_EBUSY;
}
vm::lock_sudo(addr, mem->size);
return CELL_OK;
}
error_code sys_mmapper_search_and_map(ppu_thread &ppu, u32 start_addr,
u32 mem_id, u64 flags,
vm::ptr<u32> alloc_addr) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_search_and_map(start_addr=0x%x, "
"mem_id=0x%x, flags=0x%x, alloc_addr=*0x%x)",
start_addr, mem_id, flags, alloc_addr);
const auto area = vm::get(vm::any, start_addr);
if (!area || start_addr != area->addr || start_addr < 0x20000000 ||
start_addr >= 0xC0000000) {
return {CELL_EINVAL, start_addr};
}
const auto mem =
idm::get<lv2_obj, lv2_memory>(mem_id, [&](lv2_memory &mem) -> CellError {
const u32 page_alignment =
area->flags & SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 : 0x100000;
if (mem.align < page_alignment) {
return CELL_EALIGN;
}
mem.counter++;
return {};
});
if (!mem) {
return CELL_ESRCH;
}
if (mem.ret) {
return mem.ret;
}
const u32 addr = area->alloc(mem->size, &mem->shm, mem->align,
mem->align == 0x10000 ? SYS_MEMORY_PAGE_SIZE_64K
: SYS_MEMORY_PAGE_SIZE_1M);
if (!addr) {
mem->counter--;
if (!area->is_valid()) {
return {CELL_EINVAL, start_addr};
}
return CELL_ENOMEM;
}
sys_mmapper.notice("sys_mmapper_search_and_map(): Found 0x%x address", addr);
vm::lock_sudo(addr, mem->size);
ppu.check_state();
*alloc_addr = addr;
return CELL_OK;
}
error_code sys_mmapper_unmap_shared_memory(ppu_thread &ppu, u32 addr,
vm::ptr<u32> mem_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning(
"sys_mmapper_unmap_shared_memory(addr=0x%x, mem_id=*0x%x)", addr, mem_id);
const auto area = vm::get(vm::any, addr);
if (!area || addr < 0x20000000 || addr >= 0xC0000000) {
return {CELL_EINVAL, addr};
}
const auto shm = area->peek(addr);
if (!shm.second) {
return {CELL_EINVAL, addr};
}
const auto mem =
idm::select<lv2_obj, lv2_memory>([&](u32 id, lv2_memory &mem) -> u32 {
if (mem.shm.get() == shm.second.get()) {
return id;
}
return 0;
});
if (!mem) {
return {CELL_EINVAL, addr};
}
if (!area->dealloc(addr, &shm.second)) {
return {CELL_EINVAL, addr};
}
// Write out the ID
ppu.check_state();
*mem_id = mem.ret;
// Acknowledge
mem->counter--;
return CELL_OK;
}
error_code sys_mmapper_enable_page_fault_notification(ppu_thread &ppu,
u32 start_addr,
u32 event_queue_id) {
ppu.state += cpu_flag::wait;
sys_mmapper.warning("sys_mmapper_enable_page_fault_notification(start_addr="
"0x%x, event_queue_id=0x%x)",
start_addr, event_queue_id);
auto mem = vm::get(vm::any, start_addr);
if (!mem || start_addr != mem->addr || start_addr < 0x20000000 ||
start_addr >= 0xC0000000) {
return {CELL_EINVAL, start_addr};
}
// TODO: Check memory region's flags to make sure the memory can be used for
// page faults.
auto queue = idm::get_unlocked<lv2_obj, lv2_event_queue>(event_queue_id);
if (!queue) { // Can't connect the queue if it doesn't exist.
return CELL_ESRCH;
}
vm::var<u32> port_id(0);
error_code res = sys_event_port_create(ppu, port_id, SYS_EVENT_PORT_LOCAL,
SYS_MEMORY_PAGE_FAULT_EVENT_KEY);
sys_event_port_connect_local(ppu, *port_id, event_queue_id);
if (res + 0u == CELL_EAGAIN) {
// Not enough system resources.
return CELL_EAGAIN;
}
auto &pf_entries = g_fxo->get<page_fault_notification_entries>();
std::unique_lock lock(pf_entries.mutex);
// Return error code if page fault notifications are already enabled
for (const auto &entry : pf_entries.entries) {
if (entry.start_addr == start_addr) {
lock.unlock();
sys_event_port_disconnect(ppu, *port_id);
sys_event_port_destroy(ppu, *port_id);
return CELL_EBUSY;
}
}
page_fault_notification_entry entry{start_addr, event_queue_id,
port_id->value()};
pf_entries.entries.emplace_back(entry);
return CELL_OK;
}
error_code mmapper_thread_recover_page_fault(cpu_thread *cpu) {
// We can only wake a thread if it is being suspended for a page fault.
auto &pf_events = g_fxo->get<page_fault_event_entries>();
{
std::lock_guard pf_lock(pf_events.pf_mutex);
const auto pf_event_ind = pf_events.events.find(cpu);
if (pf_event_ind == pf_events.events.end()) {
// if not found...
return CELL_EINVAL;
}
pf_events.events.erase(pf_event_ind);
if (cpu->get_class() == thread_class::ppu) {
lv2_obj::awake(cpu);
} else {
cpu->state += cpu_flag::signal;
}
}
if (cpu->state & cpu_flag::signal) {
cpu->state.notify_one();
}
return CELL_OK;
}