rpcsx/rpcs3/Emu/RSX/VK/vkutils/swapchain.cpp

355 lines
12 KiB
C++

#include "stdafx.h"
#include "swapchain.h"
namespace vk
{
// Swapchain image RPCS3
swapchain_image_RPCS3::swapchain_image_RPCS3(render_device& dev, const memory_type_mapping& memory_map, u32 width, u32 height)
:image(dev, memory_map.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_IMAGE_TYPE_2D, VK_FORMAT_B8G8R8A8_UNORM, width, height, 1, 1, 1,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, VMM_ALLOCATION_POOL_SWAPCHAIN)
{
m_width = width;
m_height = height;
current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
m_dma_buffer = std::make_unique<buffer>(dev, m_width * m_height * 4, memory_map.host_visible_coherent,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0, VMM_ALLOCATION_POOL_SWAPCHAIN);
}
void swapchain_image_RPCS3::do_dma_transfer(command_buffer& cmd)
{
VkBufferImageCopy copyRegion = {};
copyRegion.bufferOffset = 0;
copyRegion.bufferRowLength = m_width;
copyRegion.bufferImageHeight = m_height;
copyRegion.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.imageOffset = {};
copyRegion.imageExtent = { m_width, m_height, 1 };
change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vkCmdCopyImageToBuffer(cmd, value, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_dma_buffer->value, 1, &copyRegion);
change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
u32 swapchain_image_RPCS3::get_required_memory_size() const
{
return m_width * m_height * 4;
}
void* swapchain_image_RPCS3::get_pixels()
{
return m_dma_buffer->map(0, VK_WHOLE_SIZE);
}
void swapchain_image_RPCS3::free_pixels()
{
m_dma_buffer->unmap();
}
// swapchain BASE
swapchain_base::swapchain_base(physical_device& gpu, u32 present_queue, u32 graphics_queue, u32 transfer_queue, VkFormat format)
{
dev.create(gpu, graphics_queue, present_queue, transfer_queue);
m_surface_format = format;
}
// NATIVE swapchain base
VkResult native_swapchain_base::acquire_next_swapchain_image(VkSemaphore /*semaphore*/, u64 /*timeout*/, u32* result)
{
u32 index = 0;
for (auto& p : swapchain_images)
{
if (!p.first)
{
p.first = true;
*result = index;
return VK_SUCCESS;
}
++index;
}
return VK_NOT_READY;
}
void native_swapchain_base::init_swapchain_images(render_device& dev, u32 preferred_count)
{
swapchain_images.resize(preferred_count);
for (auto& img : swapchain_images)
{
img.second = std::make_unique<swapchain_image_RPCS3>(dev, dev.get_memory_mapping(), m_width, m_height);
img.first = false;
}
}
// WSI implementation
void swapchain_WSI::init_swapchain_images(render_device& dev, u32 /*preferred_count*/)
{
u32 nb_swap_images = 0;
_vkGetSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, nullptr);
if (!nb_swap_images) fmt::throw_exception("Driver returned 0 images for swapchain");
std::vector<VkImage> vk_images;
vk_images.resize(nb_swap_images);
_vkGetSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, vk_images.data());
swapchain_images.resize(nb_swap_images);
for (u32 i = 0; i < nb_swap_images; ++i)
{
swapchain_images[i].value = vk_images[i];
}
}
swapchain_WSI::swapchain_WSI(vk::physical_device& gpu, u32 present_queue, u32 graphics_queue, u32 transfer_queue, VkFormat format, VkSurfaceKHR surface, VkColorSpaceKHR color_space, bool force_wm_reporting_off)
: WSI_swapchain_base(gpu, present_queue, graphics_queue, transfer_queue, format)
{
_vkCreateSwapchainKHR = reinterpret_cast<PFN_vkCreateSwapchainKHR>(vkGetDeviceProcAddr(dev, "vkCreateSwapchainKHR"));
_vkDestroySwapchainKHR = reinterpret_cast<PFN_vkDestroySwapchainKHR>(vkGetDeviceProcAddr(dev, "vkDestroySwapchainKHR"));
_vkGetSwapchainImagesKHR = reinterpret_cast<PFN_vkGetSwapchainImagesKHR>(vkGetDeviceProcAddr(dev, "vkGetSwapchainImagesKHR"));
_vkAcquireNextImageKHR = reinterpret_cast<PFN_vkAcquireNextImageKHR>(vkGetDeviceProcAddr(dev, "vkAcquireNextImageKHR"));
_vkQueuePresentKHR = reinterpret_cast<PFN_vkQueuePresentKHR>(vkGetDeviceProcAddr(dev, "vkQueuePresentKHR"));
m_surface = surface;
m_color_space = color_space;
if (!force_wm_reporting_off)
{
switch (gpu.get_driver_vendor())
{
case driver_vendor::AMD:
case driver_vendor::INTEL:
case driver_vendor::RADV:
case driver_vendor::MVK:
break;
case driver_vendor::ANV:
case driver_vendor::NVIDIA:
m_wm_reports_flag = true;
break;
default:
break;
}
}
}
void swapchain_WSI::destroy(bool)
{
if (VkDevice pdev = dev)
{
if (m_vk_swapchain)
{
_vkDestroySwapchainKHR(pdev, m_vk_swapchain, nullptr);
}
dev.destroy();
}
}
std::pair<VkSurfaceCapabilitiesKHR, bool> swapchain_WSI::init_surface_capabilities()
{
#ifdef _WIN32
if (g_cfg.video.vk.exclusive_fullscreen_mode != vk_exclusive_fs_mode::unspecified && dev.get_surface_capabilities_2_support())
{
HMONITOR hmonitor = MonitorFromWindow(window_handle, MONITOR_DEFAULTTOPRIMARY);
if (hmonitor)
{
VkSurfaceCapabilities2KHR pSurfaceCapabilities = {};
pSurfaceCapabilities.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR;
VkPhysicalDeviceSurfaceInfo2KHR pSurfaceInfo = {};
pSurfaceInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR;
pSurfaceInfo.surface = m_surface;
VkSurfaceCapabilitiesFullScreenExclusiveEXT full_screen_exclusive_capabilities = {};
VkSurfaceFullScreenExclusiveWin32InfoEXT full_screen_exclusive_win32_info = {};
full_screen_exclusive_capabilities.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT;
pSurfaceCapabilities.pNext = &full_screen_exclusive_capabilities;
full_screen_exclusive_win32_info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT;
full_screen_exclusive_win32_info.hmonitor = hmonitor;
pSurfaceInfo.pNext = &full_screen_exclusive_win32_info;
auto getPhysicalDeviceSurfaceCapabilities2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR>(
vkGetInstanceProcAddr(dev.gpu(), "vkGetPhysicalDeviceSurfaceCapabilities2KHR")
);
ensure(getPhysicalDeviceSurfaceCapabilities2KHR);
CHECK_RESULT(getPhysicalDeviceSurfaceCapabilities2KHR(dev.gpu(), &pSurfaceInfo, &pSurfaceCapabilities));
return { pSurfaceCapabilities.surfaceCapabilities, !!full_screen_exclusive_capabilities.fullScreenExclusiveSupported };
}
else
{
rsx_log.warning("Swapchain: failed to get monitor for the window");
}
}
#endif
VkSurfaceCapabilitiesKHR surface_descriptors = {};
CHECK_RESULT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(dev.gpu(), m_surface, &surface_descriptors));
return { surface_descriptors, false };
}
bool swapchain_WSI::init()
{
if (dev.get_present_queue() == VK_NULL_HANDLE)
{
rsx_log.error("Cannot create WSI swapchain without a present queue");
return false;
}
VkSwapchainKHR old_swapchain = m_vk_swapchain;
vk::physical_device& gpu = const_cast<vk::physical_device&>(dev.gpu());
auto [surface_descriptors, should_specify_exclusive_full_screen_mode] = init_surface_capabilities();
if (surface_descriptors.maxImageExtent.width < m_width ||
surface_descriptors.maxImageExtent.height < m_height)
{
rsx_log.error("Swapchain: Swapchain creation failed because dimensions cannot fit. Max = %d, %d, Requested = %d, %d",
surface_descriptors.maxImageExtent.width, surface_descriptors.maxImageExtent.height, m_width, m_height);
return false;
}
if (surface_descriptors.currentExtent.width != umax)
{
if (surface_descriptors.currentExtent.width == 0 || surface_descriptors.currentExtent.height == 0)
{
rsx_log.warning("Swapchain: Current surface extent is a null region. Is the window minimized?");
return false;
}
m_width = surface_descriptors.currentExtent.width;
m_height = surface_descriptors.currentExtent.height;
}
u32 nb_available_modes = 0;
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, nullptr));
std::vector<VkPresentModeKHR> present_modes(nb_available_modes);
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, present_modes.data()));
VkPresentModeKHR swapchain_present_mode = VK_PRESENT_MODE_FIFO_KHR;
std::vector<VkPresentModeKHR> preferred_modes;
if (!g_cfg.video.vk.force_fifo)
{
// List of preferred modes in decreasing desirability
// NOTE: Always picks "triple-buffered vsync" types if possible
if (!g_cfg.video.vsync)
{
preferred_modes = { VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_RELAXED_KHR };
}
}
bool mode_found = false;
for (VkPresentModeKHR preferred_mode : preferred_modes)
{
//Search for this mode in supported modes
for (VkPresentModeKHR mode : present_modes)
{
if (mode == preferred_mode)
{
swapchain_present_mode = mode;
mode_found = true;
break;
}
}
if (mode_found)
break;
}
rsx_log.notice("Swapchain: present mode %d in use.", static_cast<int>(swapchain_present_mode));
u32 nb_swap_images = surface_descriptors.minImageCount + 1;
if (surface_descriptors.maxImageCount > 0)
{
//Try to negotiate for a triple buffer setup
//In cases where the front-buffer isnt available for present, its better to have a spare surface
nb_swap_images = std::max(surface_descriptors.minImageCount + 2u, 3u);
if (nb_swap_images > surface_descriptors.maxImageCount)
{
// Application must settle for fewer images than desired:
nb_swap_images = surface_descriptors.maxImageCount;
}
}
VkSurfaceTransformFlagBitsKHR pre_transform = surface_descriptors.currentTransform;
if (surface_descriptors.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
pre_transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
VkSwapchainCreateInfoKHR swap_info = {};
swap_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swap_info.surface = m_surface;
swap_info.minImageCount = nb_swap_images;
swap_info.imageFormat = m_surface_format;
swap_info.imageColorSpace = m_color_space;
swap_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
swap_info.preTransform = pre_transform;
swap_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swap_info.imageArrayLayers = 1;
swap_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swap_info.presentMode = swapchain_present_mode;
swap_info.oldSwapchain = old_swapchain;
swap_info.clipped = true;
swap_info.imageExtent.width = std::max(m_width, surface_descriptors.minImageExtent.width);
swap_info.imageExtent.height = std::max(m_height, surface_descriptors.minImageExtent.height);
#ifdef _WIN32
VkSurfaceFullScreenExclusiveInfoEXT full_screen_exclusive_info = {};
if (should_specify_exclusive_full_screen_mode)
{
vk_exclusive_fs_mode fs_mode = g_cfg.video.vk.exclusive_fullscreen_mode;
ensure(fs_mode == vk_exclusive_fs_mode::enable || fs_mode == vk_exclusive_fs_mode::disable);
full_screen_exclusive_info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_INFO_EXT;
full_screen_exclusive_info.fullScreenExclusive =
fs_mode == vk_exclusive_fs_mode::enable ? VK_FULL_SCREEN_EXCLUSIVE_ALLOWED_EXT : VK_FULL_SCREEN_EXCLUSIVE_DISALLOWED_EXT;
swap_info.pNext = &full_screen_exclusive_info;
}
rsx_log.notice("Swapchain: requesting full screen exclusive mode %d.", static_cast<int>(full_screen_exclusive_info.fullScreenExclusive));
#endif
_vkCreateSwapchainKHR(dev, &swap_info, nullptr, &m_vk_swapchain);
if (old_swapchain)
{
if (!swapchain_images.empty())
{
swapchain_images.clear();
}
_vkDestroySwapchainKHR(dev, old_swapchain, nullptr);
}
init_swapchain_images(dev);
return true;
}
VkResult swapchain_WSI::present(VkSemaphore semaphore, u32 image)
{
VkPresentInfoKHR present = {};
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present.pNext = nullptr;
present.swapchainCount = 1;
present.pSwapchains = &m_vk_swapchain;
present.pImageIndices = &image;
if (semaphore != VK_NULL_HANDLE)
{
present.waitSemaphoreCount = 1;
present.pWaitSemaphores = &semaphore;
}
return _vkQueuePresentKHR(dev.get_present_queue(), &present);
}
}