rpcsx/rpcs3/Emu/RSX/Program/ProgramStateCache.h

461 lines
14 KiB
C++

#pragma once
#include "RSXFragmentProgram.h"
#include "RSXVertexProgram.h"
#include "Utilities/mutex.h"
#include "util/logs.hpp"
#include "util/fnv_hash.hpp"
#include "util/v128.hpp"
#include <util/bless.hpp>
#include <span>
#include <unordered_map>
enum class SHADER_TYPE
{
SHADER_TYPE_VERTEX,
SHADER_TYPE_FRAGMENT
};
namespace program_hash_util
{
struct vertex_program_utils
{
struct vertex_program_metadata
{
std::bitset<rsx::max_vertex_program_instructions> instruction_mask;
u32 ucode_length;
u32 referenced_textures_mask;
u16 referenced_inputs_mask;
u16 reserved;
};
static usz get_vertex_program_ucode_hash(const RSXVertexProgram &program);
static vertex_program_metadata analyse_vertex_program(const u32* data, u32 entry, RSXVertexProgram& dst_prog);
};
struct vertex_program_storage_hash
{
usz operator()(const RSXVertexProgram &program) const;
};
struct vertex_program_compare
{
bool operator()(const RSXVertexProgram &binary1, const RSXVertexProgram &binary2) const;
};
struct fragment_program_utils
{
struct fragment_program_metadata
{
u32 program_start_offset;
u32 program_ucode_length;
u32 program_constants_buffer_length;
u16 referenced_textures_mask;
bool has_pack_instructions;
bool has_branch_instructions;
bool is_nop_shader; // Does this affect Z-pass testing???
};
/**
* returns true if the given source Operand is a constant
*/
static bool is_any_src_constant(v128 sourceOperand);
static usz get_fragment_program_ucode_size(const void* ptr);
static fragment_program_metadata analyse_fragment_program(const void* ptr);
static usz get_fragment_program_ucode_hash(const RSXFragmentProgram &program);
};
struct fragment_program_storage_hash
{
usz operator()(const RSXFragmentProgram &program) const;
};
struct fragment_program_compare
{
bool operator()(const RSXFragmentProgram &binary1, const RSXFragmentProgram &binary2) const;
static bool config_only(const RSXFragmentProgram &binary1, const RSXFragmentProgram &binary2);
};
}
namespace rsx
{
struct program_cache_hint_t
{
template <typename T>
T* get_fragment_program() const
{
return utils::bless<T>(cached_fragment_program);
}
template <typename T>
T* get_vertex_program() const
{
return utils::bless<T>(cached_vertex_program);
}
bool has_vertex_program() const
{
return cached_vertex_program != nullptr;
}
bool has_fragment_program() const
{
return cached_fragment_program != nullptr;
}
void invalidate(u32 flags);
static inline void cache_vertex_program(program_cache_hint_t* cache, void* vertex_program)
{
if (cache) cache->cached_vertex_program = vertex_program;
}
static inline void cache_fragment_program(program_cache_hint_t* cache, void* fragment_program)
{
if (cache) cache->cached_fragment_program = fragment_program;
}
protected:
void* cached_fragment_program = nullptr;
void* cached_vertex_program = nullptr;
};
void write_fragment_constants_to_buffer(const std::span<f32>& buffer, const RSXFragmentProgram& rsx_prog, const std::vector<usz>& offsets_cache, bool sanitize = true);
}
/**
* Cache for program help structure (blob, string...)
* The class is responsible for creating the object so the state only has to call getGraphicPipelineState
* Template argument is a struct which has the following type declaration :
* - a typedef VertexProgramData to a type that encapsulate vertex program info. It should provide an Id member.
* - a typedef FragmentProgramData to a types that encapsulate fragment program info. It should provide an Id member and a fragment constant offset vector.
* - a typedef PipelineData encapsulating monolithic program.
* - a typedef pipeline_properties to a type that encapsulate various state info relevant to program compilation (alpha test, primitive type,...)
* - a typedef ExtraData type that will be passed to the buildProgram function.
* It should also contains the following function member :
* - static void recompile_fragment_program(RSXFragmentProgram *RSXFP, FragmentProgramData& fragmentProgramData, usz ID);
* - static void recompile_vertex_program(RSXVertexProgram *RSXVP, VertexProgramData& vertexProgramData, usz ID);
* - static PipelineData build_program(VertexProgramData &vertexProgramData, FragmentProgramData &fragmentProgramData, const pipeline_properties &pipeline_properties, const ExtraData& extraData);
* - static void validate_pipeline_properties(const VertexProgramData &vertexProgramData, const FragmentProgramData &fragmentProgramData, pipeline_properties& props);
*/
template<typename backend_traits>
class program_state_cache
{
using pipeline_storage_type = typename backend_traits::pipeline_storage_type;
using pipeline_type = typename backend_traits::pipeline_type;
using pipeline_properties = typename backend_traits::pipeline_properties;
using vertex_program_type = typename backend_traits::vertex_program_type;
using fragment_program_type = typename backend_traits::fragment_program_type;
using binary_to_vertex_program = std::unordered_map<RSXVertexProgram, vertex_program_type, program_hash_util::vertex_program_storage_hash, program_hash_util::vertex_program_compare> ;
using binary_to_fragment_program = std::unordered_map<RSXFragmentProgram, fragment_program_type, program_hash_util::fragment_program_storage_hash, program_hash_util::fragment_program_compare>;
using pipeline_data_type = std::tuple<pipeline_type*, const vertex_program_type*, const fragment_program_type*>;
struct pipeline_key
{
u32 vertex_program_id;
u32 fragment_program_id;
pipeline_properties properties;
};
struct pipeline_key_hash
{
usz operator()(const pipeline_key &key) const
{
usz hashValue = 0;
hashValue ^= rpcs3::hash_base<unsigned>(key.vertex_program_id);
hashValue ^= rpcs3::hash_base<unsigned>(key.fragment_program_id);
hashValue ^= rpcs3::hash_struct<pipeline_properties>(key.properties);
return hashValue;
}
};
struct pipeline_key_compare
{
bool operator()(const pipeline_key &key1, const pipeline_key &key2) const
{
return (key1.vertex_program_id == key2.vertex_program_id) && (key1.fragment_program_id == key2.fragment_program_id) && (key1.properties == key2.properties);
}
};
protected:
using decompiler_callback_t = std::function<void(const pipeline_properties&, const RSXVertexProgram&, const RSXFragmentProgram&)>;
shared_mutex m_vertex_mutex;
shared_mutex m_fragment_mutex;
shared_mutex m_pipeline_mutex;
shared_mutex m_decompiler_mutex;
atomic_t<usz> m_next_id = 0;
bool m_cache_miss_flag; // Set if last lookup did not find any usable cached programs
binary_to_vertex_program m_vertex_shader_cache;
binary_to_fragment_program m_fragment_shader_cache;
std::unordered_map<pipeline_key, pipeline_storage_type, pipeline_key_hash, pipeline_key_compare> m_storage;
decompiler_callback_t notify_pipeline_compiled;
vertex_program_type __null_vertex_program;
fragment_program_type __null_fragment_program;
pipeline_storage_type __null_pipeline_handle;
/// bool here to inform that the program was preexisting.
std::tuple<const vertex_program_type&, bool> search_vertex_program(
rsx::program_cache_hint_t* cache_hint,
const RSXVertexProgram& rsx_vp)
{
if (cache_hint && cache_hint->has_vertex_program())
{
// The caller guarantees that the cached vertex program is correct.
return std::forward_as_tuple(*cache_hint->get_vertex_program<vertex_program_type>(), true);
}
bool recompile = false;
vertex_program_type* new_shader;
{
reader_lock lock(m_vertex_mutex);
const auto& I = m_vertex_shader_cache.find(rsx_vp);
if (I != m_vertex_shader_cache.end())
{
rsx::program_cache_hint_t::cache_vertex_program(cache_hint, &(I->second));
return std::forward_as_tuple(I->second, true);
}
rsx_log.trace("VP not found in buffer!");
lock.upgrade();
auto [it, inserted] = m_vertex_shader_cache.try_emplace(rsx_vp);
new_shader = &(it->second);
recompile = inserted;
}
if (recompile)
{
backend_traits::recompile_vertex_program(rsx_vp, *new_shader, m_next_id++);
}
rsx::program_cache_hint_t::cache_vertex_program(cache_hint, new_shader);
return std::forward_as_tuple(*new_shader, false);
}
/// bool here to inform that the program was preexisting.
std::tuple<const fragment_program_type&, bool> search_fragment_program(rsx::program_cache_hint_t* cache_hint, const RSXFragmentProgram& rsx_fp)
{
if (cache_hint && cache_hint->has_fragment_program())
{
// The caller guarantees that the cached fragemnt program is correct.
return std::forward_as_tuple(*cache_hint->get_fragment_program<fragment_program_type>(), true);
}
bool recompile = false;
typename binary_to_fragment_program::iterator it;
fragment_program_type* new_shader;
{
reader_lock lock(m_fragment_mutex);
const auto& I = m_fragment_shader_cache.find(rsx_fp);
if (I != m_fragment_shader_cache.end())
{
rsx::program_cache_hint_t::cache_fragment_program(cache_hint, &(I->second));
return std::forward_as_tuple(I->second, true);
}
rsx_log.trace("FP not found in buffer!");
lock.upgrade();
std::tie(it, recompile) = m_fragment_shader_cache.try_emplace(rsx_fp);
new_shader = &(it->second);
}
if (recompile)
{
it->first.clone_data();
backend_traits::recompile_fragment_program(rsx_fp, *new_shader, m_next_id++);
}
rsx::program_cache_hint_t::cache_fragment_program(cache_hint, new_shader);
return std::forward_as_tuple(*new_shader, false);
}
public:
struct program_buffer_patch_entry
{
union
{
u32 hex_key;
f32 fp_key;
};
union
{
u32 hex_value;
f32 fp_value;
};
program_buffer_patch_entry() = default;
program_buffer_patch_entry(f32 key, f32 value)
{
fp_key = key;
fp_value = value;
}
program_buffer_patch_entry(u32 key, u32 value)
{
hex_key = key;
hex_value = value;
}
bool test_and_set(f32 value, f32* dst) const
{
u32 hex = std::bit_cast<u32>(value);
if ((hex & 0x7FFFFFFF) == (hex_key & 0x7FFFFFFF))
{
hex = (hex & ~0x7FFFFFF) | hex_value;
*dst = std::bit_cast<f32>(hex);
return true;
}
return false;
}
};
public:
program_state_cache() = default;
~program_state_cache()
{}
template<typename... Args>
pipeline_data_type get_graphics_pipeline(
rsx::program_cache_hint_t* cache_hint,
const RSXVertexProgram& vertex_shader,
const RSXFragmentProgram& fragment_shader,
pipeline_properties& pipeline_properties,
bool compile_async,
bool allow_notification,
Args&& ...args
)
{
const auto& vp_search = search_vertex_program(cache_hint, vertex_shader);
const auto& fp_search = search_fragment_program(cache_hint, fragment_shader);
const bool already_existing_fragment_program = std::get<1>(fp_search);
const bool already_existing_vertex_program = std::get<1>(vp_search);
const vertex_program_type& vertex_program = std::get<0>(vp_search);
const fragment_program_type& fragment_program = std::get<0>(fp_search);
const pipeline_key key = { vertex_program.id, fragment_program.id, pipeline_properties };
m_cache_miss_flag = true;
if (already_existing_vertex_program && already_existing_fragment_program)
{
// There is a high chance the pipeline object was compiled if the two shaders already existed before
backend_traits::validate_pipeline_properties(vertex_program, fragment_program, pipeline_properties);
reader_lock lock(m_pipeline_mutex);
if (const auto I = m_storage.find(key); I != m_storage.end())
{
m_cache_miss_flag = (I->second == __null_pipeline_handle);
return { I->second.get(), &vertex_program, &fragment_program };
}
}
{
std::lock_guard lock(m_pipeline_mutex);
// Check if another submission completed in the mean time
if (const auto I = m_storage.find(key); I != m_storage.end())
{
m_cache_miss_flag = (I->second == __null_pipeline_handle);
return { I->second.get(), &vertex_program, &fragment_program };
}
// Insert a placeholder if the key still doesn't exist to avoid re-linking of the same pipeline
m_storage[key] = std::move(__null_pipeline_handle);
}
rsx_log.notice("Add program (vp id = %d, fp id = %d)", vertex_program.id, fragment_program.id);
std::function<pipeline_type* (pipeline_storage_type&)> callback;
if (allow_notification)
{
callback = [this, vertex_shader, fragment_shader_ = RSXFragmentProgram::clone(fragment_shader), key]
(pipeline_storage_type& pipeline) -> pipeline_type*
{
if (!pipeline)
{
return nullptr;
}
rsx_log.success("Program compiled successfully");
notify_pipeline_compiled(key.properties, vertex_shader, fragment_shader_);
std::lock_guard lock(m_pipeline_mutex);
auto& pipe_result = m_storage[key];
pipe_result = std::move(pipeline);
return pipe_result.get();
};
}
else
{
callback = [this, key](pipeline_storage_type& pipeline) -> pipeline_type*
{
if (!pipeline)
{
return nullptr;
}
std::lock_guard lock(m_pipeline_mutex);
auto& pipe_result = m_storage[key];
pipe_result = std::move(pipeline);
return pipe_result.get();
};
}
auto result = backend_traits::build_pipeline(
vertex_program, // VS, must already be decompiled and recompiled above
fragment_program, // FS, must already be decompiled and recompiled above
pipeline_properties, // Pipeline state
compile_async, // Allow asynchronous compilation
callback, // Insertion and notification callback
std::forward<Args>(args)...); // Other arguments
return { result, &vertex_program, &fragment_program };
}
void fill_fragment_constants_buffer(std::span<f32> dst_buffer, const fragment_program_type& fragment_program, const RSXFragmentProgram& rsx_prog, bool sanitize = false) const
{
if (dst_buffer.size_bytes() < (fragment_program.FragmentConstantOffsetCache.size() * 16))
{
// This can happen if CELL alters the shader after it has been loaded by RSX.
rsx_log.error("Insufficient constants buffer size passed to fragment program! Corrupt shader?");
return;
}
rsx::write_fragment_constants_to_buffer(dst_buffer, rsx_prog, fragment_program.FragmentConstantOffsetCache, sanitize);
}
void clear()
{
std::scoped_lock lock(m_vertex_mutex, m_fragment_mutex, m_decompiler_mutex, m_pipeline_mutex);
notify_pipeline_compiled = {};
m_fragment_shader_cache.clear();
m_vertex_shader_cache.clear();
m_storage.clear();
}
};