rpcsx/rpcs3/Emu/RSX/VK/VKGSRender.cpp
2019-08-14 19:24:42 +02:00

3653 lines
124 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/vm.h"
#include "Emu/System.h"
#include "VKGSRender.h"
#include "../rsx_methods.h"
#include "../rsx_utils.h"
#include "../Common/BufferUtils.h"
#include "VKFormats.h"
#include "VKCommonDecompiler.h"
#include "VKRenderPass.h"
#include "VKResourceManager.h"
namespace
{
u32 get_max_depth_value(rsx::surface_depth_format format)
{
switch (format)
{
case rsx::surface_depth_format::z16: return 0xFFFF;
case rsx::surface_depth_format::z24s8: return 0xFFFFFF;
default:
ASSUME(0);
break;
}
fmt::throw_exception("Unknown depth format" HERE);
}
u8 get_pixel_size(rsx::surface_depth_format format)
{
switch (format)
{
case rsx::surface_depth_format::z16: return 2;
case rsx::surface_depth_format::z24s8: return 4;
default:
ASSUME(0);
break;
}
fmt::throw_exception("Unknown depth format" HERE);
}
}
namespace vk
{
VkCompareOp get_compare_func(rsx::comparison_function op, bool reverse_direction = false)
{
switch (op)
{
case rsx::comparison_function::never: return VK_COMPARE_OP_NEVER;
case rsx::comparison_function::greater: return reverse_direction ? VK_COMPARE_OP_LESS: VK_COMPARE_OP_GREATER;
case rsx::comparison_function::less: return reverse_direction ? VK_COMPARE_OP_GREATER: VK_COMPARE_OP_LESS;
case rsx::comparison_function::less_or_equal: return reverse_direction ? VK_COMPARE_OP_GREATER_OR_EQUAL: VK_COMPARE_OP_LESS_OR_EQUAL;
case rsx::comparison_function::greater_or_equal: return reverse_direction ? VK_COMPARE_OP_LESS_OR_EQUAL: VK_COMPARE_OP_GREATER_OR_EQUAL;
case rsx::comparison_function::equal: return VK_COMPARE_OP_EQUAL;
case rsx::comparison_function::not_equal: return VK_COMPARE_OP_NOT_EQUAL;
case rsx::comparison_function::always: return VK_COMPARE_OP_ALWAYS;
default:
fmt::throw_exception("Unknown compare op: 0x%x" HERE, (u32)op);
}
}
std::pair<VkFormat, VkComponentMapping> get_compatible_surface_format(rsx::surface_color_format color_format)
{
const VkComponentMapping abgr = { VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_A };
const VkComponentMapping o_rgb = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_ONE };
const VkComponentMapping z_rgb = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_ZERO };
const VkComponentMapping o_bgr = { VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_ONE };
const VkComponentMapping z_bgr = { VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_ZERO };
switch (color_format)
{
case rsx::surface_color_format::r5g6b5:
return std::make_pair(VK_FORMAT_R5G6B5_UNORM_PACK16, vk::default_component_map());
case rsx::surface_color_format::a8r8g8b8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, vk::default_component_map());
case rsx::surface_color_format::a8b8g8r8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, abgr);
case rsx::surface_color_format::x8b8g8r8_o8b8g8r8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, o_bgr);
case rsx::surface_color_format::x8b8g8r8_z8b8g8r8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, z_bgr);
case rsx::surface_color_format::x8r8g8b8_z8r8g8b8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, z_rgb);
case rsx::surface_color_format::x8r8g8b8_o8r8g8b8:
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, o_rgb);
case rsx::surface_color_format::w16z16y16x16:
return std::make_pair(VK_FORMAT_R16G16B16A16_SFLOAT, vk::default_component_map());
case rsx::surface_color_format::w32z32y32x32:
return std::make_pair(VK_FORMAT_R32G32B32A32_SFLOAT, vk::default_component_map());
case rsx::surface_color_format::x1r5g5b5_o1r5g5b5:
return std::make_pair(VK_FORMAT_A1R5G5B5_UNORM_PACK16, o_rgb);
case rsx::surface_color_format::x1r5g5b5_z1r5g5b5:
return std::make_pair(VK_FORMAT_A1R5G5B5_UNORM_PACK16, z_rgb);
case rsx::surface_color_format::b8:
{
VkComponentMapping no_alpha = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_ONE };
return std::make_pair(VK_FORMAT_R8_UNORM, no_alpha);
}
case rsx::surface_color_format::g8b8:
{
VkComponentMapping gb_rg = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G };
return std::make_pair(VK_FORMAT_R8G8_UNORM, gb_rg);
}
case rsx::surface_color_format::x32:
return std::make_pair(VK_FORMAT_R32_SFLOAT, vk::default_component_map());
default:
LOG_ERROR(RSX, "Surface color buffer: Unsupported surface color format (0x%x)", (u32)color_format);
return std::make_pair(VK_FORMAT_B8G8R8A8_UNORM, vk::default_component_map());
}
}
std::pair<u32, bool> get_compatible_gcm_format(rsx::surface_color_format color_format)
{
switch (color_format)
{
case rsx::surface_color_format::r5g6b5:
return{ CELL_GCM_TEXTURE_R5G6B5, false };
case rsx::surface_color_format::a8r8g8b8:
return{ CELL_GCM_TEXTURE_A8R8G8B8, true }; //verified
case rsx::surface_color_format::a8b8g8r8:
return{ CELL_GCM_TEXTURE_A8R8G8B8, false };
case rsx::surface_color_format::x8b8g8r8_o8b8g8r8:
case rsx::surface_color_format::x8b8g8r8_z8b8g8r8:
return{ CELL_GCM_TEXTURE_A8R8G8B8, true };
case rsx::surface_color_format::x8r8g8b8_z8r8g8b8:
case rsx::surface_color_format::x8r8g8b8_o8r8g8b8:
return{ CELL_GCM_TEXTURE_A8R8G8B8, false };
case rsx::surface_color_format::w16z16y16x16:
return{ CELL_GCM_TEXTURE_W16_Z16_Y16_X16_FLOAT, true };
case rsx::surface_color_format::w32z32y32x32:
return{ CELL_GCM_TEXTURE_W32_Z32_Y32_X32_FLOAT, true };
case rsx::surface_color_format::x1r5g5b5_o1r5g5b5:
case rsx::surface_color_format::x1r5g5b5_z1r5g5b5:
return{ CELL_GCM_TEXTURE_A1R5G5B5, false };
case rsx::surface_color_format::b8:
return{ CELL_GCM_TEXTURE_B8, false };
case rsx::surface_color_format::g8b8:
return{ CELL_GCM_TEXTURE_G8B8, true };
case rsx::surface_color_format::x32:
return{ CELL_GCM_TEXTURE_X32_FLOAT, true }; //verified
default:
return{ CELL_GCM_TEXTURE_A8R8G8B8, false };
}
}
VkLogicOp get_logic_op(rsx::logic_op op)
{
switch (op)
{
case rsx::logic_op::logic_clear: return VK_LOGIC_OP_CLEAR;
case rsx::logic_op::logic_and: return VK_LOGIC_OP_AND;
case rsx::logic_op::logic_and_reverse: return VK_LOGIC_OP_AND_REVERSE;
case rsx::logic_op::logic_copy: return VK_LOGIC_OP_COPY;
case rsx::logic_op::logic_and_inverted: return VK_LOGIC_OP_AND_INVERTED;
case rsx::logic_op::logic_noop: return VK_LOGIC_OP_NO_OP;
case rsx::logic_op::logic_xor: return VK_LOGIC_OP_XOR;
case rsx::logic_op::logic_or : return VK_LOGIC_OP_OR;
case rsx::logic_op::logic_nor: return VK_LOGIC_OP_NOR;
case rsx::logic_op::logic_equiv: return VK_LOGIC_OP_EQUIVALENT;
case rsx::logic_op::logic_invert: return VK_LOGIC_OP_INVERT;
case rsx::logic_op::logic_or_reverse: return VK_LOGIC_OP_OR_REVERSE;
case rsx::logic_op::logic_copy_inverted: return VK_LOGIC_OP_COPY_INVERTED;
case rsx::logic_op::logic_or_inverted: return VK_LOGIC_OP_OR_INVERTED;
case rsx::logic_op::logic_nand: return VK_LOGIC_OP_NAND;
case rsx::logic_op::logic_set: return VK_LOGIC_OP_SET;
default:
fmt::throw_exception("Unknown logic op 0x%x" HERE, (u32)op);
}
}
VkBlendFactor get_blend_factor(rsx::blend_factor factor)
{
switch (factor)
{
case rsx::blend_factor::one: return VK_BLEND_FACTOR_ONE;
case rsx::blend_factor::zero: return VK_BLEND_FACTOR_ZERO;
case rsx::blend_factor::src_alpha: return VK_BLEND_FACTOR_SRC_ALPHA;
case rsx::blend_factor::dst_alpha: return VK_BLEND_FACTOR_DST_ALPHA;
case rsx::blend_factor::src_color: return VK_BLEND_FACTOR_SRC_COLOR;
case rsx::blend_factor::dst_color: return VK_BLEND_FACTOR_DST_COLOR;
case rsx::blend_factor::constant_color: return VK_BLEND_FACTOR_CONSTANT_COLOR;
case rsx::blend_factor::constant_alpha: return VK_BLEND_FACTOR_CONSTANT_ALPHA;
case rsx::blend_factor::one_minus_src_color: return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
case rsx::blend_factor::one_minus_dst_color: return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
case rsx::blend_factor::one_minus_src_alpha: return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
case rsx::blend_factor::one_minus_dst_alpha: return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA;
case rsx::blend_factor::one_minus_constant_alpha: return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA;
case rsx::blend_factor::one_minus_constant_color: return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR;
case rsx::blend_factor::src_alpha_saturate: return VK_BLEND_FACTOR_SRC_ALPHA_SATURATE;
default:
fmt::throw_exception("Unknown blend factor 0x%x" HERE, (u32)factor);
}
}
VkBlendOp get_blend_op(rsx::blend_equation op)
{
switch (op)
{
case rsx::blend_equation::add_signed:
LOG_TRACE(RSX, "blend equation add_signed used. Emulating using FUNC_ADD");
case rsx::blend_equation::add:
return VK_BLEND_OP_ADD;
case rsx::blend_equation::substract: return VK_BLEND_OP_SUBTRACT;
case rsx::blend_equation::reverse_substract_signed:
LOG_TRACE(RSX, "blend equation reverse_subtract_signed used. Emulating using FUNC_REVERSE_SUBTRACT");
case rsx::blend_equation::reverse_substract: return VK_BLEND_OP_REVERSE_SUBTRACT;
case rsx::blend_equation::min: return VK_BLEND_OP_MIN;
case rsx::blend_equation::max: return VK_BLEND_OP_MAX;
default:
fmt::throw_exception("Unknown blend op: 0x%x" HERE, (u32)op);
}
}
VkStencilOp get_stencil_op(rsx::stencil_op op)
{
switch (op)
{
case rsx::stencil_op::keep: return VK_STENCIL_OP_KEEP;
case rsx::stencil_op::zero: return VK_STENCIL_OP_ZERO;
case rsx::stencil_op::replace: return VK_STENCIL_OP_REPLACE;
case rsx::stencil_op::incr: return VK_STENCIL_OP_INCREMENT_AND_CLAMP;
case rsx::stencil_op::decr: return VK_STENCIL_OP_DECREMENT_AND_CLAMP;
case rsx::stencil_op::invert: return VK_STENCIL_OP_INVERT;
case rsx::stencil_op::incr_wrap: return VK_STENCIL_OP_INCREMENT_AND_WRAP;
case rsx::stencil_op::decr_wrap: return VK_STENCIL_OP_DECREMENT_AND_WRAP;
default:
fmt::throw_exception("Unknown stencil op: 0x%x" HERE, (u32)op);
}
}
VkFrontFace get_front_face(rsx::front_face ffv)
{
switch (ffv)
{
case rsx::front_face::cw: return VK_FRONT_FACE_CLOCKWISE;
case rsx::front_face::ccw: return VK_FRONT_FACE_COUNTER_CLOCKWISE;
default:
fmt::throw_exception("Unknown front face value: 0x%x" HERE, (u32)ffv);
}
}
VkCullModeFlags get_cull_face(rsx::cull_face cfv)
{
switch (cfv)
{
case rsx::cull_face::back: return VK_CULL_MODE_BACK_BIT;
case rsx::cull_face::front: return VK_CULL_MODE_FRONT_BIT;
case rsx::cull_face::front_and_back: return VK_CULL_MODE_FRONT_AND_BACK;
default:
fmt::throw_exception("Unknown cull face value: 0x%x" HERE, (u32)cfv);
}
}
}
namespace
{
std::tuple<VkPipelineLayout, VkDescriptorSetLayout> get_shared_pipeline_layout(VkDevice dev)
{
std::array<VkDescriptorSetLayoutBinding, VK_NUM_DESCRIPTOR_BINDINGS> bindings = {};
size_t idx = 0;
// Vertex stream, one stream for cacheable data, one stream for transient data
for (int i = 0; i < 3; i++)
{
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[idx].binding = VERTEX_BUFFERS_FIRST_BIND_SLOT + i;
idx++;
}
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[idx].binding = FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT;
idx++;
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[idx].binding = FRAGMENT_STATE_BIND_SLOT;
idx++;
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[idx].binding = FRAGMENT_TEXTURE_PARAMS_BIND_SLOT;
idx++;
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[idx].binding = VERTEX_CONSTANT_BUFFERS_BIND_SLOT;
idx++;
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_ALL_GRAPHICS;
bindings[idx].binding = VERTEX_PARAMS_BIND_SLOT;
idx++;
for (int i = 0; i < rsx::limits::fragment_textures_count; i++)
{
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[idx].binding = TEXTURES_FIRST_BIND_SLOT + i;
idx++;
}
for (int i = 0; i < rsx::limits::vertex_textures_count; i++)
{
bindings[idx].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[idx].descriptorCount = 1;
bindings[idx].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[idx].binding = VERTEX_TEXTURES_FIRST_BIND_SLOT + i;
idx++;
}
verify(HERE), idx == VK_NUM_DESCRIPTOR_BINDINGS;
std::array<VkPushConstantRange, 1> push_constants;
push_constants[0].offset = 0;
push_constants[0].size = 16;
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkDescriptorSetLayoutCreateInfo infos = {};
infos.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
infos.pBindings = bindings.data();
infos.bindingCount = static_cast<uint32_t>(bindings.size());
VkDescriptorSetLayout set_layout;
CHECK_RESULT(vkCreateDescriptorSetLayout(dev, &infos, nullptr, &set_layout));
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &set_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants.data();
VkPipelineLayout result;
CHECK_RESULT(vkCreatePipelineLayout(dev, &layout_info, nullptr, &result));
return std::make_tuple(result, set_layout);
}
}
u64 VKGSRender::get_cycles()
{
return thread_ctrl::get_cycles(static_cast<named_thread<VKGSRender>&>(*this));
}
VKGSRender::VKGSRender() : GSRender()
{
u32 instance_handle = m_thread_context.createInstance("RPCS3");
if (instance_handle > 0)
{
m_thread_context.makeCurrentInstance(instance_handle);
m_thread_context.enable_debugging();
}
else
{
LOG_FATAL(RSX, "Could not find a vulkan compatible GPU driver. Your GPU(s) may not support Vulkan, or you need to install the vulkan runtime and drivers");
m_device = VK_NULL_HANDLE;
return;
}
std::vector<vk::physical_device>& gpus = m_thread_context.enumerateDevices();
//Actually confirm that the loader found at least one compatible device
//This should not happen unless something is wrong with the driver setup on the target system
if (gpus.empty())
{
//We can't throw in Emulator::Load, so we show error and return
LOG_FATAL(RSX, "No compatible GPU devices found");
m_device = VK_NULL_HANDLE;
return;
}
bool gpu_found = false;
std::string adapter_name = g_cfg.video.vk.adapter;
display_handle_t display = m_frame->handle();
#if !defined(_WIN32) && !defined(__APPLE__)
std::visit([this](auto&& p) {
using T = std::decay_t<decltype(p)>;
if constexpr (std::is_same_v<T, std::pair<Display*, Window>>)
{
m_display_handle = p.first; XFlush(m_display_handle);
}
}, display);
#endif
for (auto &gpu : gpus)
{
if (gpu.get_name() == adapter_name)
{
m_swapchain.reset(m_thread_context.createSwapChain(display, gpu));
gpu_found = true;
break;
}
}
if (!gpu_found || adapter_name.empty())
{
m_swapchain.reset(m_thread_context.createSwapChain(display, gpus[0]));
}
if (!m_swapchain)
{
m_device = VK_NULL_HANDLE;
LOG_FATAL(RSX, "Could not successfully initialize a swapchain");
return;
}
m_device = (vk::render_device*)(&m_swapchain->get_device());
vk::set_current_thread_ctx(m_thread_context);
vk::set_current_renderer(m_swapchain->get_device());
m_swapchain_dims.width = m_frame->client_width();
m_swapchain_dims.height = m_frame->client_height();
if (!m_swapchain->init(m_swapchain_dims.width, m_swapchain_dims.height))
{
swapchain_unavailable = true;
}
//create command buffer...
m_command_buffer_pool.create((*m_device));
for (auto &cb : m_primary_cb_list)
{
cb.create(m_command_buffer_pool);
cb.init_fence(*m_device);
}
m_current_command_buffer = &m_primary_cb_list[0];
//Create secondary command_buffer for parallel operations
m_secondary_command_buffer_pool.create((*m_device));
m_secondary_command_buffer.create(m_secondary_command_buffer_pool, true);
m_secondary_command_buffer.access_hint = vk::command_buffer::access_type_hint::all;
//Precalculated stuff
std::tie(pipeline_layout, descriptor_layouts) = get_shared_pipeline_layout(*m_device);
//Occlusion
m_occlusion_query_pool.create((*m_device), OCCLUSION_MAX_POOL_SIZE);
m_occlusion_map.resize(occlusion_query_count);
for (u32 n = 0; n < occlusion_query_count; ++n)
m_occlusion_query_data[n].driver_handle = n;
//Generate frame contexts
VkDescriptorPoolSize uniform_buffer_pool = { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 6 * DESCRIPTOR_MAX_DRAW_CALLS };
VkDescriptorPoolSize uniform_texel_pool = { VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER , 2 * DESCRIPTOR_MAX_DRAW_CALLS };
VkDescriptorPoolSize texture_pool = { VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , 20 * DESCRIPTOR_MAX_DRAW_CALLS };
std::vector<VkDescriptorPoolSize> sizes{ uniform_buffer_pool, uniform_texel_pool, texture_pool };
VkSemaphoreCreateInfo semaphore_info = {};
semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
//VRAM allocation
m_attrib_ring_info.create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, VK_ATTRIB_RING_BUFFER_SIZE_M * 0x100000, "attrib buffer", 0x400000);
m_fragment_env_ring_info.create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_UBO_RING_BUFFER_SIZE_M * 0x100000, "fragment env buffer");
m_vertex_env_ring_info.create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_UBO_RING_BUFFER_SIZE_M * 0x100000, "vertex env buffer");
m_fragment_texture_params_ring_info.create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_UBO_RING_BUFFER_SIZE_M * 0x100000, "fragment texture params buffer");
m_vertex_layout_ring_info.create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, VK_UBO_RING_BUFFER_SIZE_M * 0x100000, "vertex layout buffer");
m_fragment_constants_ring_info.create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_UBO_RING_BUFFER_SIZE_M * 0x100000, "fragment constants buffer");
m_transform_constants_ring_info.create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_TRANSFORM_CONSTANTS_BUFFER_SIZE_M * 0x100000, "transform constants buffer");
m_index_buffer_ring_info.create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_INDEX_RING_BUFFER_SIZE_M * 0x100000, "index buffer");
m_texture_upload_buffer_ring_info.create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_TEXTURE_UPLOAD_RING_BUFFER_SIZE_M * 0x100000, "texture upload buffer", 32 * 0x100000);
const auto limits = m_device->gpu().get_limits();
m_texbuffer_view_size = std::min(limits.maxTexelBufferElements, VK_ATTRIB_RING_BUFFER_SIZE_M * 0x100000u);
if (m_texbuffer_view_size < 0x800000)
{
// Warn, only possibly expected on macOS
LOG_WARNING(RSX, "Current driver may crash due to memory limitations (%uk)", m_texbuffer_view_size / 1024);
}
for (auto &ctx : frame_context_storage)
{
vkCreateSemaphore((*m_device), &semaphore_info, nullptr, &ctx.present_wait_semaphore);
vkCreateSemaphore((*m_device), &semaphore_info, nullptr, &ctx.acquire_signal_semaphore);
ctx.descriptor_pool.create(*m_device, sizes.data(), static_cast<uint32_t>(sizes.size()), DESCRIPTOR_MAX_DRAW_CALLS, 1);
}
const auto& memory_map = m_device->get_memory_mapping();
null_buffer = std::make_unique<vk::buffer>(*m_device, 32, memory_map.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, 0);
null_buffer_view = std::make_unique<vk::buffer_view>(*m_device, null_buffer->value, VK_FORMAT_R8_UINT, 0, 32);
vk::initialize_compiler_context();
if (g_cfg.video.overlay)
{
auto key = vk::get_renderpass_key(m_swapchain->get_surface_format());
m_text_writer = std::make_unique<vk::text_writer>();
m_text_writer->init(*m_device, vk::get_renderpass(*m_device, key));
}
m_depth_converter = std::make_unique<vk::depth_convert_pass>();
m_depth_converter->create(*m_device);
m_attachment_clear_pass = std::make_unique<vk::attachment_clear_pass>();
m_attachment_clear_pass->create(*m_device);
m_prog_buffer = std::make_unique<VKProgramBuffer>();
if (g_cfg.video.disable_vertex_cache || g_cfg.video.multithreaded_rsx)
m_vertex_cache = std::make_unique<vk::null_vertex_cache>();
else
m_vertex_cache = std::make_unique<vk::weak_vertex_cache>();
m_shaders_cache = std::make_unique<vk::shader_cache>(*m_prog_buffer, "vulkan", "v1.8");
open_command_buffer();
for (u32 i = 0; i < m_swapchain->get_swap_image_count(); ++i)
{
const auto target_layout = m_swapchain->get_optimal_present_layout();
const auto target_image = m_swapchain->get_image(i);
VkClearColorValue clear_color{};
VkImageSubresourceRange range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, range);
vkCmdClearColorImage(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_color, 1, &range);
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, target_layout, range);
}
m_current_frame = &frame_context_storage[0];
m_texture_cache.initialize((*m_device), m_swapchain->get_graphics_queue(),
m_texture_upload_buffer_ring_info);
m_ui_renderer = std::make_unique<vk::ui_overlay_renderer>();
m_ui_renderer->create(*m_current_command_buffer, m_texture_upload_buffer_ring_info);
supports_multidraw = true;
supports_native_ui = (bool)g_cfg.misc.use_native_interface;
// NOTE: We do not actually need multiple sample support for A2C to work
// This is here for visual consistency - will be removed when AA problems due to mipmaps are fixed
supports_hw_a2c = (g_cfg.video.antialiasing_level != msaa_level::none);
}
VKGSRender::~VKGSRender()
{
if (m_device == VK_NULL_HANDLE)
{
//Initialization failed
return;
}
//Wait for device to finish up with resources
vkDeviceWaitIdle(*m_device);
//Texture cache
m_texture_cache.destroy();
//Shaders
vk::finalize_compiler_context();
m_prog_buffer->clear();
m_persistent_attribute_storage.reset();
m_volatile_attribute_storage.reset();
m_vertex_layout_storage.reset();
//Global resources
vk::destroy_global_resources();
//Heaps
m_attrib_ring_info.destroy();
m_fragment_env_ring_info.destroy();
m_vertex_env_ring_info.destroy();
m_fragment_texture_params_ring_info.destroy();
m_vertex_layout_ring_info.destroy();
m_fragment_constants_ring_info.destroy();
m_transform_constants_ring_info.destroy();
m_index_buffer_ring_info.destroy();
m_texture_upload_buffer_ring_info.destroy();
//Fallback bindables
null_buffer.reset();
null_buffer_view.reset();
if (m_current_frame == &m_aux_frame_context)
{
//Return resources back to the owner
m_current_frame = &frame_context_storage[m_current_queue_index];
m_current_frame->swap_storage(m_aux_frame_context);
m_current_frame->grab_resources(m_aux_frame_context);
}
m_aux_frame_context.buffer_views_to_clean.clear();
//NOTE: aux_context uses descriptor pools borrowed from the main queues and any allocations will be automatically freed when pool is destroyed
for (auto &ctx : frame_context_storage)
{
vkDestroySemaphore((*m_device), ctx.present_wait_semaphore, nullptr);
vkDestroySemaphore((*m_device), ctx.acquire_signal_semaphore, nullptr);
ctx.descriptor_pool.destroy();
ctx.buffer_views_to_clean.clear();
}
//Textures
m_rtts.destroy();
m_texture_cache.destroy();
m_stencil_mirror_sampler.reset();
//Overlay text handler
m_text_writer.reset();
//Overlay UI renderer
m_ui_renderer->destroy();
m_ui_renderer.reset();
//RGBA->depth cast helper
m_depth_converter->destroy();
m_depth_converter.reset();
//Attachment clear helper
m_attachment_clear_pass->destroy();
m_attachment_clear_pass.reset();
//Pipeline descriptors
vkDestroyPipelineLayout(*m_device, pipeline_layout, nullptr);
vkDestroyDescriptorSetLayout(*m_device, descriptor_layouts, nullptr);
//Queries
m_occlusion_query_pool.destroy();
//Command buffer
for (auto &cb : m_primary_cb_list)
cb.destroy();
m_command_buffer_pool.destroy();
m_secondary_command_buffer.destroy();
m_secondary_command_buffer_pool.destroy();
//Device handles/contexts
m_swapchain->destroy();
m_thread_context.close();
#if !defined(_WIN32) && !defined(__APPLE__) && defined(HAVE_VULKAN)
if (m_display_handle)
XCloseDisplay(m_display_handle);
#endif
}
bool VKGSRender::on_access_violation(u32 address, bool is_writing)
{
vk::texture_cache::thrashed_set result;
{
std::lock_guard lock(m_secondary_cb_guard);
const rsx::invalidation_cause cause = is_writing ? rsx::invalidation_cause::deferred_write : rsx::invalidation_cause::deferred_read;
result = std::move(m_texture_cache.invalidate_address(m_secondary_command_buffer, address, cause));
}
if (!result.violation_handled)
return false;
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
if (result.num_flushable > 0)
{
const bool is_rsxthr = std::this_thread::get_id() == m_rsx_thread;
bool has_queue_ref = false;
if (!is_rsxthr)
{
//Always submit primary cb to ensure state consistency (flush pending changes such as image transitions)
vm::temporary_unlock();
std::lock_guard lock(m_flush_queue_mutex);
m_flush_requests.post(false);
has_queue_ref = true;
}
else if (!vk::is_uninterruptible())
{
//Flush primary cb queue to sync pending changes (e.g image transitions!)
flush_command_queue();
}
else
{
//LOG_ERROR(RSX, "Fault in uninterruptible code!");
}
if (has_queue_ref)
{
//Wait for the RSX thread to process request if it hasn't already
m_flush_requests.producer_wait();
}
m_texture_cache.flush_all(m_secondary_command_buffer, result);
if (has_queue_ref)
{
//Release RSX thread
m_flush_requests.remove_one();
}
}
return true;
}
void VKGSRender::on_invalidate_memory_range(const utils::address_range &range)
{
std::lock_guard lock(m_secondary_cb_guard);
auto data = std::move(m_texture_cache.invalidate_range(m_secondary_command_buffer, range, rsx::invalidation_cause::unmap));
AUDIT(data.empty());
if (data.violation_handled)
{
m_texture_cache.purge_unreleased_sections();
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
}
}
void VKGSRender::notify_tile_unbound(u32 tile)
{
//TODO: Handle texture writeback
//u32 addr = rsx::get_address(tiles[tile].offset, tiles[tile].location);
//on_notify_memory_unmapped(addr, tiles[tile].size);
//m_rtts.invalidate_surface_address(addr, false);
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
}
void VKGSRender::check_heap_status(u32 flags)
{
bool heap_critical;
if (flags == VK_HEAP_CHECK_ALL)
{
heap_critical = m_attrib_ring_info.is_critical() ||
m_texture_upload_buffer_ring_info.is_critical() ||
m_fragment_env_ring_info.is_critical() ||
m_vertex_env_ring_info.is_critical() ||
m_fragment_texture_params_ring_info.is_critical() ||
m_vertex_layout_ring_info.is_critical() ||
m_fragment_constants_ring_info.is_critical() ||
m_transform_constants_ring_info.is_critical() ||
m_index_buffer_ring_info.is_critical();
}
else if (flags)
{
heap_critical = false;
u32 test = 1 << utils::cnttz32(flags, true);
do
{
switch (flags & test)
{
case 0:
break;
case VK_HEAP_CHECK_TEXTURE_UPLOAD_STORAGE:
heap_critical = m_texture_upload_buffer_ring_info.is_critical();
break;
case VK_HEAP_CHECK_VERTEX_STORAGE:
heap_critical = m_attrib_ring_info.is_critical() || m_index_buffer_ring_info.is_critical();
break;
case VK_HEAP_CHECK_VERTEX_ENV_STORAGE:
heap_critical = m_vertex_env_ring_info.is_critical();
break;
case VK_HEAP_CHECK_FRAGMENT_ENV_STORAGE:
heap_critical = m_fragment_env_ring_info.is_critical();
break;
case VK_HEAP_CHECK_TEXTURE_ENV_STORAGE:
heap_critical = m_fragment_texture_params_ring_info.is_critical();
break;
case VK_HEAP_CHECK_VERTEX_LAYOUT_STORAGE:
heap_critical = m_vertex_layout_ring_info.is_critical();
break;
case VK_HEAP_CHECK_TRANSFORM_CONSTANTS_STORAGE:
heap_critical = m_transform_constants_ring_info.is_critical();
break;
case VK_HEAP_CHECK_FRAGMENT_CONSTANTS_STORAGE:
heap_critical = m_fragment_constants_ring_info.is_critical();
break;
default:
fmt::throw_exception("Unexpected heap flag set! (0x%X)", test);
}
flags &= ~test;
test <<= 1;
}
while (flags && !heap_critical);
}
if (heap_critical)
{
m_profiler.start();
frame_context_t *target_frame = nullptr;
if (!m_queued_frames.empty())
{
if (m_current_frame != &m_aux_frame_context)
{
target_frame = m_queued_frames.front();
}
}
if (target_frame == nullptr)
{
flush_command_queue(true);
m_vertex_cache->purge();
m_index_buffer_ring_info.reset_allocation_stats();
m_fragment_env_ring_info.reset_allocation_stats();
m_vertex_env_ring_info.reset_allocation_stats();
m_fragment_texture_params_ring_info.reset_allocation_stats();
m_vertex_layout_ring_info.reset_allocation_stats();
m_fragment_constants_ring_info.reset_allocation_stats();
m_transform_constants_ring_info.reset_allocation_stats();
m_attrib_ring_info.reset_allocation_stats();
m_texture_upload_buffer_ring_info.reset_allocation_stats();
m_current_frame->reset_heap_ptrs();
m_last_heap_sync_time = get_system_time();
}
else
{
// Flush the frame context
frame_context_cleanup(target_frame, true);
}
m_flip_time += m_profiler.duration();
}
}
void VKGSRender::check_present_status()
{
while (!m_queued_frames.empty())
{
auto ctx = m_queued_frames.front();
if (ctx->swap_command_buffer->pending)
{
if (!ctx->swap_command_buffer->poke())
{
return;
}
}
frame_context_cleanup(ctx, true);
}
}
void VKGSRender::check_descriptors()
{
// Ease resource pressure if the number of draw calls becomes too high or we are running low on memory resources
const auto required_descriptors = rsx::method_registers.current_draw_clause.pass_count();
verify(HERE), required_descriptors < DESCRIPTOR_MAX_DRAW_CALLS;
if ((required_descriptors + m_current_frame->used_descriptors) > DESCRIPTOR_MAX_DRAW_CALLS)
{
// Should hard sync before resetting descriptors for spec compliance
flush_command_queue(true);
m_current_frame->descriptor_pool.reset(0);
m_current_frame->used_descriptors = 0;
}
}
VkDescriptorSet VKGSRender::allocate_descriptor_set()
{
verify(HERE), m_current_frame->used_descriptors < DESCRIPTOR_MAX_DRAW_CALLS;
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.descriptorPool = m_current_frame->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &descriptor_layouts;
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
VkDescriptorSet new_descriptor_set;
CHECK_RESULT(vkAllocateDescriptorSets(*m_device, &alloc_info, &new_descriptor_set));
m_current_frame->used_descriptors++;
return new_descriptor_set;
}
void VKGSRender::begin()
{
rsx::thread::begin();
if (skip_frame || swapchain_unavailable ||
(conditional_render_enabled && conditional_render_test_failed))
return;
init_buffers(rsx::framebuffer_creation_context::context_draw);
if (!framebuffer_status_valid)
return;
if (m_current_frame->flags & frame_context_state::dirty)
{
check_present_status();
if (m_current_frame->swap_command_buffer)
{
// Borrow time by using the auxilliary context
m_aux_frame_context.grab_resources(*m_current_frame);
m_current_frame = &m_aux_frame_context;
}
else if (m_current_frame->used_descriptors)
{
m_current_frame->descriptor_pool.reset(0);
m_current_frame->used_descriptors = 0;
}
verify(HERE), !m_current_frame->swap_command_buffer;
m_current_frame->flags &= ~frame_context_state::dirty;
}
}
void VKGSRender::update_draw_state()
{
m_profiler.start();
float actual_line_width = rsx::method_registers.line_width();
vkCmdSetLineWidth(*m_current_command_buffer, actual_line_width);
if (rsx::method_registers.poly_offset_fill_enabled())
{
//offset_bias is the constant factor, multiplied by the implementation factor R
//offst_scale is the slope factor, multiplied by the triangle slope factor M
vkCmdSetDepthBias(*m_current_command_buffer, rsx::method_registers.poly_offset_bias(), 0.f, rsx::method_registers.poly_offset_scale());
}
else
{
//Zero bias value - disables depth bias
vkCmdSetDepthBias(*m_current_command_buffer, 0.f, 0.f, 0.f);
}
//Update dynamic state
if (rsx::method_registers.blend_enabled())
{
//Update blend constants
auto blend_colors = rsx::get_constant_blend_colors();
vkCmdSetBlendConstants(*m_current_command_buffer, blend_colors.data());
}
if (rsx::method_registers.stencil_test_enabled())
{
const bool two_sided_stencil = rsx::method_registers.two_sided_stencil_test_enabled();
VkStencilFaceFlags face_flag = (two_sided_stencil) ? VK_STENCIL_FACE_FRONT_BIT : VK_STENCIL_FRONT_AND_BACK;
vkCmdSetStencilWriteMask(*m_current_command_buffer, face_flag, rsx::method_registers.stencil_mask());
vkCmdSetStencilCompareMask(*m_current_command_buffer, face_flag, rsx::method_registers.stencil_func_mask());
vkCmdSetStencilReference(*m_current_command_buffer, face_flag, rsx::method_registers.stencil_func_ref());
if (two_sided_stencil)
{
vkCmdSetStencilWriteMask(*m_current_command_buffer, VK_STENCIL_FACE_BACK_BIT, rsx::method_registers.back_stencil_mask());
vkCmdSetStencilCompareMask(*m_current_command_buffer, VK_STENCIL_FACE_BACK_BIT, rsx::method_registers.back_stencil_func_mask());
vkCmdSetStencilReference(*m_current_command_buffer, VK_STENCIL_FACE_BACK_BIT, rsx::method_registers.back_stencil_func_ref());
}
}
if (rsx::method_registers.depth_bounds_test_enabled())
{
//Update depth bounds min/max
vkCmdSetDepthBounds(*m_current_command_buffer, rsx::method_registers.depth_bounds_min(), rsx::method_registers.depth_bounds_max());
}
else
{
vkCmdSetDepthBounds(*m_current_command_buffer, 0.f, 1.f);
}
bind_viewport();
//TODO: Set up other render-state parameters into the program pipeline
m_setup_time += m_profiler.duration();
}
void VKGSRender::begin_render_pass()
{
if (m_render_pass_open)
return;
const auto renderpass = (m_cached_renderpass)? m_cached_renderpass : vk::get_renderpass(*m_device, m_current_renderpass_key);
VkRenderPassBeginInfo rp_begin = {};
rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rp_begin.renderPass = renderpass;
rp_begin.framebuffer = m_draw_fbo->value;
rp_begin.renderArea.offset.x = 0;
rp_begin.renderArea.offset.y = 0;
rp_begin.renderArea.extent.width = m_draw_fbo->width();
rp_begin.renderArea.extent.height = m_draw_fbo->height();
vkCmdBeginRenderPass(*m_current_command_buffer, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
m_render_pass_open = true;
}
void VKGSRender::close_render_pass()
{
if (!m_render_pass_open)
return;
vkCmdEndRenderPass(*m_current_command_buffer);
m_render_pass_open = false;
}
void VKGSRender::emit_geometry(u32 sub_index)
{
auto &draw_call = rsx::method_registers.current_draw_clause;
m_profiler.start();
if (sub_index == 0)
{
analyse_inputs_interleaved(m_vertex_layout);
if (!m_vertex_layout.validate())
{
// No vertex inputs enabled
// Execute remainining pipeline barriers with NOP draw
do
{
draw_call.execute_pipeline_dependencies();
}
while (draw_call.next());
draw_call.end();
return;
}
}
else if (draw_call.execute_pipeline_dependencies() & rsx::vertex_base_changed)
{
// Rebase vertex bases instead of
for (auto &info : m_vertex_layout.interleaved_blocks)
{
const auto vertex_base_offset = rsx::method_registers.vertex_data_base_offset();
info.real_offset_address = rsx::get_address(rsx::get_vertex_offset_from_base(vertex_base_offset, info.base_offset), info.memory_location);
}
}
const auto old_persistent_buffer = m_persistent_attribute_storage ? m_persistent_attribute_storage->value : null_buffer_view->value;
const auto old_volatile_buffer = m_volatile_attribute_storage ? m_volatile_attribute_storage->value : null_buffer_view->value;
// Programs data is dependent on vertex state
auto upload_info = upload_vertex_data();
if (!upload_info.vertex_draw_count)
{
// Malformed vertex setup; abort
return;
}
m_vertex_upload_time += m_profiler.duration();
auto persistent_buffer = m_persistent_attribute_storage ? m_persistent_attribute_storage->value : null_buffer_view->value;
auto volatile_buffer = m_volatile_attribute_storage ? m_volatile_attribute_storage->value : null_buffer_view->value;
bool update_descriptors = false;
if (sub_index == 0)
{
update_descriptors = true;
// Allocate stream layout memory for this batch
m_vertex_layout_stream_info.range = rsx::method_registers.current_draw_clause.pass_count() * 128;
m_vertex_layout_stream_info.offset = m_vertex_layout_ring_info.alloc<256>(m_vertex_layout_stream_info.range);
// m_vertex_layout_stream_info.buffer = m_vertex_layout_ring_info.heap->value;
}
else if (persistent_buffer != old_persistent_buffer || volatile_buffer != old_volatile_buffer)
{
// Need to update descriptors; make a copy for the next draw
VkDescriptorSet new_descriptor_set = allocate_descriptor_set();
std::array<VkCopyDescriptorSet, VK_NUM_DESCRIPTOR_BINDINGS> copy_set;
for (u32 n = 0; n < VK_NUM_DESCRIPTOR_BINDINGS; ++n)
{
copy_set[n] =
{
VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET, // sType
nullptr, // pNext
m_current_frame->descriptor_set, // srcSet
n, // srcBinding
0u, // srcArrayElement
new_descriptor_set, // dstSet
n, // dstBinding
0u, // dstArrayElement
1u // descriptorCount
};
}
vkUpdateDescriptorSets(*m_device, 0, 0, VK_NUM_DESCRIPTOR_BINDINGS, copy_set.data());
m_current_frame->descriptor_set = new_descriptor_set;
update_descriptors = true;
}
// Update vertex fetch parameters
update_vertex_env(sub_index, upload_info);
verify(HERE), m_vertex_layout_storage;
if (update_descriptors)
{
m_program->bind_uniform(persistent_buffer, VERTEX_BUFFERS_FIRST_BIND_SLOT, m_current_frame->descriptor_set);
m_program->bind_uniform(volatile_buffer, VERTEX_BUFFERS_FIRST_BIND_SLOT + 1, m_current_frame->descriptor_set);
m_program->bind_uniform(m_vertex_layout_storage->value, VERTEX_BUFFERS_FIRST_BIND_SLOT + 2, m_current_frame->descriptor_set);
}
// Bind the new set of descriptors for use with this draw call
vkCmdBindDescriptorSets(*m_current_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &m_current_frame->descriptor_set, 0, nullptr);
m_setup_time += m_profiler.duration();
if (!upload_info.index_info)
{
if (draw_call.is_single_draw())
{
vkCmdDraw(*m_current_command_buffer, upload_info.vertex_draw_count, 1, 0, 0);
}
else
{
u32 vertex_offset = 0;
const auto subranges = draw_call.get_subranges();
for (const auto &range : subranges)
{
vkCmdDraw(*m_current_command_buffer, range.count, 1, vertex_offset, 0);
vertex_offset += range.count;
}
}
}
else
{
const VkIndexType index_type = std::get<1>(*upload_info.index_info);
const VkDeviceSize offset = std::get<0>(*upload_info.index_info);
vkCmdBindIndexBuffer(*m_current_command_buffer, m_index_buffer_ring_info.heap->value, offset, index_type);
if (rsx::method_registers.current_draw_clause.is_single_draw())
{
const u32 index_count = upload_info.vertex_draw_count;
vkCmdDrawIndexed(*m_current_command_buffer, index_count, 1, 0, 0, 0);
}
else
{
u32 vertex_offset = 0;
const auto subranges = draw_call.get_subranges();
for (const auto &range : subranges)
{
const auto count = get_index_count(draw_call.primitive, range.count);
vkCmdDrawIndexed(*m_current_command_buffer, count, 1, vertex_offset, 0, 0);
vertex_offset += count;
}
}
}
m_draw_time += m_profiler.duration();
}
void VKGSRender::end()
{
if (skip_frame || !framebuffer_status_valid || swapchain_unavailable ||
(conditional_render_enabled && conditional_render_test_failed))
{
execute_nop_draw();
rsx::thread::end();
return;
}
m_profiler.start();
// Check for data casts
// NOTE: This is deprecated and will be removed soon. The memory barrier invoked before rendering does this better
auto ds = std::get<1>(m_rtts.m_bound_depth_stencil);
if (ds && ds->old_contents.size() == 1 &&
ds->old_contents[0].source->info.format == VK_FORMAT_B8G8R8A8_UNORM)
{
auto key = vk::get_renderpass_key(ds->info.format);
auto render_pass = vk::get_renderpass(*m_device, key);
verify("Usupported renderpass configuration" HERE), render_pass != VK_NULL_HANDLE;
VkClearDepthStencilValue clear = { 1.f, 0xFF };
VkImageSubresourceRange range = { VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 };
// Initialize source
auto src = vk::as_rtt(ds->old_contents[0].source);
src->read_barrier(*m_current_command_buffer);
switch (src->current_layout)
{
case VK_IMAGE_LAYOUT_GENERAL:
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
break;
//case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
default:
src->change_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
break;
}
// Clear explicitly before starting the inheritance transfer
const bool preinitialized = (ds->current_layout == VK_IMAGE_LAYOUT_GENERAL);
if (!preinitialized) ds->push_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdClearDepthStencilImage(*m_current_command_buffer, ds->value, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear, 1, &range);
if (!preinitialized) ds->pop_layout(*m_current_command_buffer);
// TODO: Stencil transfer
ds->old_contents[0].init_transfer(ds);
m_depth_converter->run(*m_current_command_buffer,
ds->old_contents[0].src_rect(),
ds->old_contents[0].dst_rect(),
src->get_view(0xAAE4, rsx::default_remap_vector),
ds, render_pass);
// TODO: Flush management to avoid pass running out of ubo space (very unlikely)
ds->on_write();
}
//Load textures
{
std::lock_guard lock(m_sampler_mutex);
bool update_framebuffer_sourced = false;
bool check_for_cyclic_refs = false;
if (UNLIKELY(surface_store_tag != m_rtts.cache_tag))
{
update_framebuffer_sourced = true;
surface_store_tag = m_rtts.cache_tag;
}
for (int i = 0; i < rsx::limits::fragment_textures_count; ++i)
{
if (!fs_sampler_state[i])
fs_sampler_state[i] = std::make_unique<vk::texture_cache::sampled_image_descriptor>();
if (m_samplers_dirty || m_textures_dirty[i] ||
(update_framebuffer_sourced && fs_sampler_state[i]->upload_context == rsx::texture_upload_context::framebuffer_storage))
{
auto sampler_state = static_cast<vk::texture_cache::sampled_image_descriptor*>(fs_sampler_state[i].get());
if (rsx::method_registers.fragment_textures[i].enabled())
{
check_heap_status(VK_HEAP_CHECK_TEXTURE_UPLOAD_STORAGE);
*sampler_state = m_texture_cache.upload_texture(*m_current_command_buffer, rsx::method_registers.fragment_textures[i], m_rtts);
if (sampler_state->is_cyclic_reference)
{
check_for_cyclic_refs |= true;
}
bool replace = !fs_sampler_handles[i];
VkFilter min_filter, mag_filter;
VkSamplerMipmapMode mip_mode;
f32 min_lod = 0.f, max_lod = 0.f;
f32 lod_bias = 0.f;
const u32 texture_format = rsx::method_registers.fragment_textures[i].format() & ~(CELL_GCM_TEXTURE_UN | CELL_GCM_TEXTURE_LN);
VkBool32 compare_enabled = VK_FALSE;
VkCompareOp depth_compare_mode = VK_COMPARE_OP_NEVER;
if (texture_format >= CELL_GCM_TEXTURE_DEPTH24_D8 && texture_format <= CELL_GCM_TEXTURE_DEPTH16_FLOAT)
{
if (m_device->get_formats_support().d24_unorm_s8)
{
// NOTE:
// The nvidia-specific format D24S8 has a special way of doing depth comparison that matches the PS3
// In case of projected shadow lookup the result of the divide operation has its Z clamped to [0-1] before comparison
// Most other wide formats (Z bits > 16) do not behave this way and depth greater than 1 is possible due to the use of floating point as storage
// Compare operations for these formats (such as D32_SFLOAT) are therefore emulated for correct results
// NOTE2:
// To improve reusability, DEPTH16 shadow ops are also emulated if D24S8 support is not available
compare_enabled = VK_TRUE;
depth_compare_mode = vk::get_compare_func(rsx::method_registers.fragment_textures[i].zfunc(), true);
}
}
const bool aniso_override = !g_cfg.video.strict_rendering_mode && g_cfg.video.anisotropic_level_override > 0;
const f32 af_level = aniso_override ? g_cfg.video.anisotropic_level_override : vk::max_aniso(rsx::method_registers.fragment_textures[i].max_aniso());
const auto wrap_s = vk::vk_wrap_mode(rsx::method_registers.fragment_textures[i].wrap_s());
const auto wrap_t = vk::vk_wrap_mode(rsx::method_registers.fragment_textures[i].wrap_t());
const auto wrap_r = vk::vk_wrap_mode(rsx::method_registers.fragment_textures[i].wrap_r());
const auto border_color = vk::get_border_color(rsx::method_registers.fragment_textures[i].border_color());
// Check if non-point filtering can even be used on this format
bool can_sample_linear;
if (LIKELY(!sampler_state->is_depth_texture))
{
// Most PS3-like formats can be linearly filtered without problem
can_sample_linear = true;
}
else
{
// Not all GPUs support linear filtering of depth formats
const auto vk_format = sampler_state->image_handle ? sampler_state->image_handle->image()->format() :
vk::get_compatible_sampler_format(m_device->get_formats_support(), sampler_state->external_subresource_desc.gcm_format);
can_sample_linear = m_device->get_format_properties(vk_format).optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
}
if (can_sample_linear)
{
mag_filter = vk::get_mag_filter(rsx::method_registers.fragment_textures[i].mag_filter());
std::tie(min_filter, mip_mode) = vk::get_min_filter_and_mip(rsx::method_registers.fragment_textures[i].min_filter());
}
else
{
mag_filter = min_filter = VK_FILTER_NEAREST;
mip_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
}
if (sampler_state->upload_context == rsx::texture_upload_context::shader_read &&
rsx::method_registers.fragment_textures[i].get_exact_mipmap_count() > 1)
{
min_lod = (float)(rsx::method_registers.fragment_textures[i].min_lod() >> 8);
max_lod = (float)(rsx::method_registers.fragment_textures[i].max_lod() >> 8);
lod_bias = rsx::method_registers.fragment_textures[i].bias();
}
else
{
mip_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
}
if (fs_sampler_handles[i] && m_textures_dirty[i])
{
if (!fs_sampler_handles[i]->matches(wrap_s, wrap_t, wrap_r, false, lod_bias, af_level, min_lod, max_lod,
min_filter, mag_filter, mip_mode, border_color, compare_enabled, depth_compare_mode))
{
replace = true;
}
}
if (replace)
{
fs_sampler_handles[i] = vk::get_resource_manager()->find_sampler(*m_device, wrap_s, wrap_t, wrap_r, false, lod_bias, af_level, min_lod, max_lod,
min_filter, mag_filter, mip_mode, border_color, compare_enabled, depth_compare_mode);
}
}
else
{
*sampler_state = {};
}
m_textures_dirty[i] = false;
}
}
for (int i = 0; i < rsx::limits::vertex_textures_count; ++i)
{
if (!vs_sampler_state[i])
vs_sampler_state[i] = std::make_unique<vk::texture_cache::sampled_image_descriptor>();
if (m_samplers_dirty || m_vertex_textures_dirty[i] ||
(update_framebuffer_sourced && vs_sampler_state[i]->upload_context == rsx::texture_upload_context::framebuffer_storage))
{
auto sampler_state = static_cast<vk::texture_cache::sampled_image_descriptor*>(vs_sampler_state[i].get());
if (rsx::method_registers.vertex_textures[i].enabled())
{
check_heap_status(VK_HEAP_CHECK_TEXTURE_UPLOAD_STORAGE);
*sampler_state = m_texture_cache.upload_texture(*m_current_command_buffer, rsx::method_registers.vertex_textures[i], m_rtts);
if (sampler_state->is_cyclic_reference)
{
check_for_cyclic_refs |= true;
}
bool replace = !vs_sampler_handles[i];
const VkBool32 unnormalized_coords = !!(rsx::method_registers.vertex_textures[i].format() & CELL_GCM_TEXTURE_UN);
const auto min_lod = (f32)rsx::method_registers.vertex_textures[i].min_lod();
const auto max_lod = (f32)rsx::method_registers.vertex_textures[i].max_lod();
const auto border_color = vk::get_border_color(rsx::method_registers.vertex_textures[i].border_color());
if (vs_sampler_handles[i])
{
if (!vs_sampler_handles[i]->matches(VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT,
unnormalized_coords, 0.f, 1.f, min_lod, max_lod, VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_MIPMAP_MODE_NEAREST, border_color))
{
replace = true;
}
}
if (replace)
{
vs_sampler_handles[i] = vk::get_resource_manager()->find_sampler(
*m_device,
VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT,
unnormalized_coords,
0.f, 1.f, min_lod, max_lod,
VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_MIPMAP_MODE_NEAREST, border_color);
}
}
else
*sampler_state = {};
m_vertex_textures_dirty[i] = false;
}
}
m_samplers_dirty.store(false);
if (check_for_cyclic_refs)
{
// Regenerate renderpass key
if (const auto key = vk::get_renderpass_key(m_fbo_images, m_current_renderpass_key);
key != m_current_renderpass_key)
{
m_current_renderpass_key = key;
m_cached_renderpass = VK_NULL_HANDLE;
}
}
}
m_textures_upload_time += m_profiler.duration();
if (!load_program())
{
// Program is not ready, skip drawing this
std::this_thread::yield();
execute_nop_draw();
// m_rtts.on_write(); - breaks games for obvious reasons
rsx::thread::end();
return;
}
// Allocate descriptor set
check_descriptors();
m_current_frame->descriptor_set = allocate_descriptor_set();
// Load program execution environment
load_program_env();
m_setup_time += m_profiler.duration();
for (int i = 0; i < rsx::limits::fragment_textures_count; ++i)
{
if (current_fp_metadata.referenced_textures_mask & (1 << i))
{
vk::image_view* view = nullptr;
auto sampler_state = static_cast<vk::texture_cache::sampled_image_descriptor*>(fs_sampler_state[i].get());
if (rsx::method_registers.fragment_textures[i].enabled() &&
sampler_state->validate())
{
if (view = sampler_state->image_handle; !view)
{
//Requires update, copy subresource
view = m_texture_cache.create_temporary_subresource(*m_current_command_buffer, sampler_state->external_subresource_desc);
}
else
{
switch (auto raw = view->image(); raw->current_layout)
{
default:
//case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::blit_engine_dst;
raw->change_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
break;
case VK_IMAGE_LAYOUT_GENERAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::framebuffer_storage;
if (!sampler_state->is_cyclic_reference)
{
// This was used in a cyclic ref before, but is missing a barrier
// No need for a full stall, use a custom barrier instead
VkPipelineStageFlags src_stage;
VkAccessFlags src_access;
if (raw->aspect() == VK_IMAGE_ASPECT_COLOR_BIT)
{
src_stage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
src_access = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
else
{
src_stage = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
src_access = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
vk::insert_image_memory_barrier(
*m_current_command_buffer,
raw->value,
VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
src_stage, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
src_access, VK_ACCESS_SHADER_READ_BIT,
{ raw->aspect(), 0, 1, 0, 1 });
raw->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::framebuffer_storage, !sampler_state->is_cyclic_reference;
raw->change_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
break;
}
}
}
if (LIKELY(view))
{
m_program->bind_uniform({ fs_sampler_handles[i]->value, view->value, view->image()->current_layout },
i,
::glsl::program_domain::glsl_fragment_program,
m_current_frame->descriptor_set);
if (current_fragment_program.redirected_textures & (1 << i))
{
// Stencil mirror required
auto root_image = static_cast<vk::viewable_image*>(view->image());
auto stencil_view = root_image->get_view(0xAAE4, rsx::default_remap_vector, VK_IMAGE_ASPECT_STENCIL_BIT);
if (!m_stencil_mirror_sampler)
{
m_stencil_mirror_sampler = std::make_unique<vk::sampler>(*m_device,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
VK_FALSE, 0.f, 1.f, 0.f, 0.f,
VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_MIPMAP_MODE_NEAREST,
VK_BORDER_COLOR_INT_OPAQUE_BLACK);
}
m_program->bind_uniform({ m_stencil_mirror_sampler->value, stencil_view->value, stencil_view->image()->current_layout },
i,
::glsl::program_domain::glsl_fragment_program,
m_current_frame->descriptor_set,
true);
}
}
else
{
m_program->bind_uniform({ vk::null_sampler(), vk::null_image_view(*m_current_command_buffer)->value, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
i,
::glsl::program_domain::glsl_fragment_program,
m_current_frame->descriptor_set);
if (current_fragment_program.redirected_textures & (1 << i))
{
m_program->bind_uniform({ vk::null_sampler(), vk::null_image_view(*m_current_command_buffer)->value, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
i,
::glsl::program_domain::glsl_fragment_program,
m_current_frame->descriptor_set,
true);
}
}
}
}
for (int i = 0; i < rsx::limits::vertex_textures_count; ++i)
{
if (current_vp_metadata.referenced_textures_mask & (1 << i))
{
if (!rsx::method_registers.vertex_textures[i].enabled())
{
m_program->bind_uniform({ vk::null_sampler(), vk::null_image_view(*m_current_command_buffer)->value, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
i,
::glsl::program_domain::glsl_vertex_program,
m_current_frame->descriptor_set);
continue;
}
auto sampler_state = static_cast<vk::texture_cache::sampled_image_descriptor*>(vs_sampler_state[i].get());
auto image_ptr = sampler_state->image_handle;
if (!image_ptr && sampler_state->validate())
{
image_ptr = m_texture_cache.create_temporary_subresource(*m_current_command_buffer, sampler_state->external_subresource_desc);
m_vertex_textures_dirty[i] = true;
}
if (!image_ptr)
{
LOG_ERROR(RSX, "Texture upload failed to vtexture index %d. Binding null sampler.", i);
m_program->bind_uniform({ vk::null_sampler(), vk::null_image_view(*m_current_command_buffer)->value, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
i,
::glsl::program_domain::glsl_vertex_program,
m_current_frame->descriptor_set);
continue;
}
switch (auto raw = image_ptr->image(); raw->current_layout)
{
default:
//case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::blit_engine_dst;
raw->change_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
break;
case VK_IMAGE_LAYOUT_GENERAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::framebuffer_storage;
if (!sampler_state->is_cyclic_reference)
{
// Custom barrier, see similar block in FS stage
VkPipelineStageFlags src_stage;
VkAccessFlags src_access;
if (raw->aspect() == VK_IMAGE_ASPECT_COLOR_BIT)
{
src_stage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
src_access = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
else
{
src_stage = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
src_access = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
vk::insert_image_memory_barrier(
*m_current_command_buffer,
raw->value,
VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
src_stage, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
src_access, VK_ACCESS_SHADER_READ_BIT,
{ raw->aspect(), 0, 1, 0, 1 });
raw->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
verify(HERE), sampler_state->upload_context == rsx::texture_upload_context::framebuffer_storage;
raw->change_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
break;
}
m_program->bind_uniform({ vs_sampler_handles[i]->value, image_ptr->value, image_ptr->image()->current_layout },
i,
::glsl::program_domain::glsl_vertex_program,
m_current_frame->descriptor_set);
}
}
m_textures_upload_time += m_profiler.duration();
if (m_current_command_buffer->flags & vk::command_buffer::cb_load_occluson_task)
{
u32 occlusion_id = m_occlusion_query_pool.find_free_slot();
if (occlusion_id == UINT32_MAX)
{
m_tsc += 100;
update(this);
occlusion_id = m_occlusion_query_pool.find_free_slot();
if (occlusion_id == UINT32_MAX)
{
//LOG_ERROR(RSX, "Occlusion pool overflow");
if (m_current_task) m_current_task->result = 1;
}
}
// Begin query
m_occlusion_query_pool.begin_query(*m_current_command_buffer, occlusion_id);
auto &data = m_occlusion_map[m_active_query_info->driver_handle];
data.indices.push_back(occlusion_id);
data.command_buffer_to_wait = m_current_command_buffer;
m_current_command_buffer->flags &= ~vk::command_buffer::cb_load_occluson_task;
m_current_command_buffer->flags |= (vk::command_buffer::cb_has_occlusion_task | vk::command_buffer::cb_has_open_query);
}
bool primitive_emulated = false;
vk::get_appropriate_topology(rsx::method_registers.current_draw_clause.primitive, primitive_emulated);
// Apply write memory barriers
if (true)//g_cfg.video.strict_rendering_mode)
{
if (ds) ds->write_barrier(*m_current_command_buffer);
for (auto &rtt : m_rtts.m_bound_render_targets)
{
if (auto surface = std::get<1>(rtt))
{
surface->write_barrier(*m_current_command_buffer);
}
}
begin_render_pass();
}
else
{
begin_render_pass();
// Clear any 'dirty' surfaces - possible is a recycled cache surface is used
rsx::simple_array<VkClearAttachment> buffers_to_clear;
if (ds && ds->dirty())
{
// Clear this surface before drawing on it
VkClearValue clear_value = {};
clear_value.depthStencil = { 1.f, 255 };
buffers_to_clear.push_back({ vk::get_aspect_flags(ds->info.format), 0, clear_value });
}
for (u32 index = 0; index < m_draw_buffers.size(); ++index)
{
if (auto rtt = std::get<1>(m_rtts.m_bound_render_targets[index]))
{
if (rtt->dirty())
{
buffers_to_clear.push_back({ VK_IMAGE_ASPECT_COLOR_BIT, index, {} });
}
}
}
if (UNLIKELY(!buffers_to_clear.empty()))
{
VkClearRect rect = { {{0, 0}, {m_draw_fbo->width(), m_draw_fbo->height()}}, 0, 1 };
vkCmdClearAttachments(*m_current_command_buffer, buffers_to_clear.size(),
buffers_to_clear.data(), 1, &rect);
}
}
// Final heap check...
check_heap_status(VK_HEAP_CHECK_VERTEX_STORAGE | VK_HEAP_CHECK_VERTEX_LAYOUT_STORAGE);
// While vertex upload is an interruptible process, if we made it this far, there's no need to sync anything that occurs past this point
// Only textures are synchronized tightly with the GPU and they have been read back above
vk::enter_uninterruptible();
vkCmdBindPipeline(*m_current_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_program->pipeline);
update_draw_state();
u32 sub_index = 0;
rsx::method_registers.current_draw_clause.begin();
do
{
emit_geometry(sub_index++);
}
while (rsx::method_registers.current_draw_clause.next());
close_render_pass();
vk::leave_uninterruptible();
m_rtts.on_write();
rsx::thread::end();
}
void VKGSRender::set_viewport()
{
const auto clip_width = rsx::apply_resolution_scale(rsx::method_registers.surface_clip_width(), true);
const auto clip_height = rsx::apply_resolution_scale(rsx::method_registers.surface_clip_height(), true);
//NOTE: The scale_offset matrix already has viewport matrix factored in
m_viewport.x = 0;
m_viewport.y = 0;
m_viewport.width = clip_width;
m_viewport.height = clip_height;
m_viewport.minDepth = 0.f;
m_viewport.maxDepth = 1.f;
}
void VKGSRender::set_scissor(bool clip_viewport)
{
areau scissor;
if (get_scissor(scissor, clip_viewport))
{
m_scissor.extent.height = scissor.height();
m_scissor.extent.width = scissor.width();
m_scissor.offset.x = scissor.x1;
m_scissor.offset.y = scissor.y1;
}
}
void VKGSRender::bind_viewport()
{
vkCmdSetViewport(*m_current_command_buffer, 0, 1, &m_viewport);
vkCmdSetScissor(*m_current_command_buffer, 0, 1, &m_scissor);
}
void VKGSRender::on_init_thread()
{
if (m_device == VK_NULL_HANDLE)
{
fmt::throw_exception("No vulkan device was created");
}
GSRender::on_init_thread();
zcull_ctrl.reset(static_cast<::rsx::reports::ZCULL_control*>(this));
if (!supports_native_ui)
{
m_frame->hide();
m_shaders_cache->load(nullptr, *m_device, pipeline_layout);
m_frame->show();
}
else
{
struct native_helper : vk::shader_cache::progress_dialog_helper
{
rsx::thread *owner = nullptr;
std::shared_ptr<rsx::overlays::message_dialog> dlg;
native_helper(VKGSRender *ptr) :
owner(ptr) {}
void create() override
{
MsgDialogType type = {};
type.disable_cancel = true;
type.progress_bar_count = 2;
dlg = fxm::get<rsx::overlays::display_manager>()->create<rsx::overlays::message_dialog>((bool)g_cfg.video.shader_preloading_dialog.use_custom_background);
dlg->progress_bar_set_taskbar_index(-1);
dlg->show("Loading precompiled shaders from disk...", type, [](s32 status)
{
if (status != CELL_OK)
Emu.Stop();
});
}
void update_msg(u32 index, u32 processed, u32 entry_count) override
{
const char *text = index == 0 ? "Loading pipeline object %u of %u" : "Compiling pipeline object %u of %u";
dlg->progress_bar_set_message(index, fmt::format(text, processed, entry_count));
owner->flip(0);
}
void inc_value(u32 index, u32 value) override
{
dlg->progress_bar_increment(index, (f32)value);
owner->flip(0);
}
void set_limit(u32 index, u32 limit) override
{
dlg->progress_bar_set_limit(index, limit);
owner->flip(0);
}
void refresh() override
{
dlg->refresh();
}
void close() override
{
dlg->return_code = CELL_OK;
dlg->close();
}
}
helper(this);
// TODO: Handle window resize messages during loading on GPUs without OUT_OF_DATE_KHR support
m_shaders_cache->load(&helper, *m_device, pipeline_layout);
}
}
void VKGSRender::on_exit()
{
zcull_ctrl.release();
GSRender::on_exit();
}
void VKGSRender::clear_surface(u32 mask)
{
if (skip_frame || swapchain_unavailable) return;
// If stencil write mask is disabled, remove clear_stencil bit
if (!rsx::method_registers.stencil_mask()) mask &= ~0x2u;
// Ignore invalid clear flags
if (!(mask & 0xF3)) return;
u8 ctx = rsx::framebuffer_creation_context::context_draw;
if (mask & 0xF0) ctx |= rsx::framebuffer_creation_context::context_clear_color;
if (mask & 0x3) ctx |= rsx::framebuffer_creation_context::context_clear_depth;
init_buffers((rsx::framebuffer_creation_context)ctx);
if (!framebuffer_status_valid) return;
float depth_clear = 1.f;
u32 stencil_clear = 0;
u32 depth_stencil_mask = 0;
std::vector<VkClearAttachment> clear_descriptors;
VkClearValue depth_stencil_clear_values = {}, color_clear_values = {};
u16 scissor_x = (u16)m_scissor.offset.x;
u16 scissor_w = (u16)m_scissor.extent.width;
u16 scissor_y = (u16)m_scissor.offset.y;
u16 scissor_h = (u16)m_scissor.extent.height;
const u16 fb_width = m_draw_fbo->width();
const u16 fb_height = m_draw_fbo->height();
//clip region
std::tie(scissor_x, scissor_y, scissor_w, scissor_h) = rsx::clip_region<u16>(fb_width, fb_height, scissor_x, scissor_y, scissor_w, scissor_h, true);
VkClearRect region = { { { scissor_x, scissor_y }, { scissor_w, scissor_h } }, 0, 1 };
const bool require_mem_load = (scissor_w * scissor_h) < (fb_width * fb_height);
auto surface_depth_format = rsx::method_registers.surface_depth_fmt();
if (auto ds = std::get<1>(m_rtts.m_bound_depth_stencil); mask & 0x3)
{
if (mask & 0x1)
{
u32 max_depth_value = get_max_depth_value(surface_depth_format);
u32 clear_depth = rsx::method_registers.z_clear_value(surface_depth_format == rsx::surface_depth_format::z24s8);
float depth_clear = (float)clear_depth / max_depth_value;
depth_stencil_clear_values.depthStencil.depth = depth_clear;
depth_stencil_clear_values.depthStencil.stencil = stencil_clear;
depth_stencil_mask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (surface_depth_format == rsx::surface_depth_format::z24s8)
{
if (mask & 0x2)
{
u8 clear_stencil = rsx::method_registers.stencil_clear_value();
depth_stencil_clear_values.depthStencil.stencil = clear_stencil;
depth_stencil_mask |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (ds->samples() > 1)
{
if (!require_mem_load) ds->stencil_init_flags &= 0xFF;
ds->stencil_init_flags |= clear_stencil;
}
}
if ((mask & 0x3) != 0x3 && !require_mem_load && ds->state_flags & rsx::surface_state_flags::erase_bkgnd)
{
verify(HERE), depth_stencil_mask;
// Only one aspect was cleared. Make sure to memory intialize the other before removing dirty flag
if (mask == 1)
{
// Depth was cleared, initialize stencil
depth_stencil_clear_values.depthStencil.stencil = 0xFF;
depth_stencil_mask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
else
{
// Stencil was cleared, initialize depth
depth_stencil_clear_values.depthStencil.depth = 1.f;
depth_stencil_mask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
}
}
}
if (auto colormask = (mask & 0xF0))
{
if (!m_draw_buffers.empty())
{
bool use_fast_clear = false;
bool ignore_clear = false;
switch (rsx::method_registers.surface_color())
{
case rsx::surface_color_format::x32:
case rsx::surface_color_format::w16z16y16x16:
case rsx::surface_color_format::w32z32y32x32:
//NOP
ignore_clear = true;
break;
case rsx::surface_color_format::g8b8:
colormask = rsx::get_g8b8_r8g8_colormask(colormask);
use_fast_clear = (colormask == (0x10 | 0x20));
ignore_clear = (colormask == 0);
colormask |= (0x40 | 0x80);
break;
default:
use_fast_clear = (colormask == (0x10 | 0x20 | 0x40 | 0x80));
break;
}
if (!ignore_clear)
{
u8 clear_a = rsx::method_registers.clear_color_a();
u8 clear_r = rsx::method_registers.clear_color_r();
u8 clear_g = rsx::method_registers.clear_color_g();
u8 clear_b = rsx::method_registers.clear_color_b();
color_clear_values.color.float32[0] = (float)clear_r / 255;
color_clear_values.color.float32[1] = (float)clear_g / 255;
color_clear_values.color.float32[2] = (float)clear_b / 255;
color_clear_values.color.float32[3] = (float)clear_a / 255;
if (use_fast_clear)
{
for (u32 index = 0; index < m_draw_buffers.size(); ++index)
{
clear_descriptors.push_back({ VK_IMAGE_ASPECT_COLOR_BIT, index, color_clear_values });
}
}
else
{
color4f clear_color =
{
color_clear_values.color.float32[0],
color_clear_values.color.float32[1],
color_clear_values.color.float32[2],
color_clear_values.color.float32[3]
};
VkRenderPass renderpass = VK_NULL_HANDLE;
m_attachment_clear_pass->update_config(colormask, clear_color);
for (const auto &index : m_draw_buffers)
{
if (auto rtt = m_rtts.m_bound_render_targets[index].second)
{
if (require_mem_load) rtt->write_barrier(*m_current_command_buffer);
// Add a barrier to ensure previous writes are visible; also transitions into GENERAL layout
const auto old_layout = rtt->current_layout;
vk::insert_texture_barrier(*m_current_command_buffer, rtt, VK_IMAGE_LAYOUT_GENERAL);
if (!renderpass)
{
std::vector<vk::image*> surfaces = { rtt };
const auto key = vk::get_renderpass_key(surfaces);
renderpass = vk::get_renderpass(*m_device, key);
}
m_attachment_clear_pass->run(*m_current_command_buffer, rtt,
region.rect, renderpass);
rtt->change_layout(*m_current_command_buffer, old_layout);
}
else
fmt::throw_exception("Unreachable" HERE);
}
}
for (auto &rtt : m_rtts.m_bound_render_targets)
{
if (const auto address = rtt.first)
{
if (require_mem_load) rtt.second->write_barrier(*m_current_command_buffer);
m_rtts.on_write(address);
}
}
}
}
}
if (depth_stencil_mask)
{
if (const auto address = m_rtts.m_bound_depth_stencil.first)
{
if (require_mem_load) m_rtts.m_bound_depth_stencil.second->write_barrier(*m_current_command_buffer);
m_rtts.on_write(address);
clear_descriptors.push_back({ (VkImageAspectFlags)depth_stencil_mask, 0, depth_stencil_clear_values });
}
}
if (!clear_descriptors.empty())
{
begin_render_pass();
vkCmdClearAttachments(*m_current_command_buffer, (u32)clear_descriptors.size(), clear_descriptors.data(), 1, &region);
close_render_pass();
}
}
void VKGSRender::flush_command_queue(bool hard_sync)
{
close_and_submit_command_buffer(m_current_command_buffer->submit_fence);
if (hard_sync)
{
// wait for the latest instruction to execute
m_current_command_buffer->pending = true;
m_current_command_buffer->reset();
// Clear all command buffer statuses
for (auto &cb : m_primary_cb_list)
{
if (cb.pending)
cb.poke();
}
// Drain present queue
while (!m_queued_frames.empty())
{
check_present_status();
}
m_flush_requests.clear_pending_flag();
}
else
{
// Mark this queue as pending
m_current_command_buffer->pending = true;
// Grab next cb in line and make it usable
m_current_cb_index = (m_current_cb_index + 1) % VK_MAX_ASYNC_CB_COUNT;
m_current_command_buffer = &m_primary_cb_list[m_current_cb_index];
if (!m_current_command_buffer->poke())
{
LOG_ERROR(RSX, "CB chain has run out of free entries!");
}
m_current_command_buffer->reset();
// Just in case a queued frame holds a ref to this cb, drain the present queue
check_present_status();
}
if (m_occlusion_query_active)
{
m_current_command_buffer->flags |= vk::command_buffer::cb_load_occluson_task;
}
open_command_buffer();
}
void VKGSRender::sync_hint(rsx::FIFO_hint hint, u32 arg)
{
// Occlusion test result evaluation is coming up, avoid a hard sync
if (hint == rsx::FIFO_hint::hint_conditional_render_eval)
{
// Occlusion queries not enabled, do nothing
if (!(m_current_command_buffer->flags & vk::command_buffer::cb_has_occlusion_task))
return;
// If a flush request is already enqueued, do nothing
if (m_flush_requests.pending())
return;
// Check if the required report is synced to this CB
if (auto occlusion_info = zcull_ctrl->find_query(vm::cast(arg)))
{
auto& data = m_occlusion_map[occlusion_info->driver_handle];
if (data.command_buffer_to_wait == m_current_command_buffer && !data.indices.empty())
{
// Confirmed hard sync coming up, post a sync request
m_flush_requests.post(false);
m_flush_requests.remove_one();
}
}
}
}
void VKGSRender::advance_queued_frames()
{
// Check all other frames for completion and clear resources
check_present_status();
//m_rtts storage is double buffered and should be safe to tag on frame boundary
m_rtts.free_invalidated();
//texture cache is also double buffered to prevent use-after-free
m_texture_cache.on_frame_end();
m_samplers_dirty.store(true);
vk::remove_unused_framebuffers();
m_vertex_cache->purge();
m_current_frame->tag_frame_end(m_attrib_ring_info.get_current_put_pos_minus_one(),
m_vertex_env_ring_info.get_current_put_pos_minus_one(),
m_fragment_env_ring_info.get_current_put_pos_minus_one(),
m_vertex_layout_ring_info.get_current_put_pos_minus_one(),
m_fragment_texture_params_ring_info.get_current_put_pos_minus_one(),
m_fragment_constants_ring_info.get_current_put_pos_minus_one(),
m_transform_constants_ring_info.get_current_put_pos_minus_one(),
m_index_buffer_ring_info.get_current_put_pos_minus_one(),
m_texture_upload_buffer_ring_info.get_current_put_pos_minus_one());
m_queued_frames.push_back(m_current_frame);
verify(HERE), m_queued_frames.size() <= VK_MAX_ASYNC_FRAMES;
m_current_queue_index = (m_current_queue_index + 1) % VK_MAX_ASYNC_FRAMES;
m_current_frame = &frame_context_storage[m_current_queue_index];
m_current_frame->flags |= frame_context_state::dirty;
vk::advance_frame_counter();
}
void VKGSRender::present(frame_context_t *ctx)
{
verify(HERE), ctx->present_image != UINT32_MAX;
if (!swapchain_unavailable)
{
switch (VkResult error = m_swapchain->present(ctx->present_wait_semaphore, ctx->present_image))
{
case VK_SUCCESS:
break;
case VK_SUBOPTIMAL_KHR:
break;
case VK_ERROR_OUT_OF_DATE_KHR:
swapchain_unavailable = true;
break;
default:
vk::die_with_error(HERE, error);
}
}
// Presentation image released; reset value
ctx->present_image = UINT32_MAX;
}
void VKGSRender::queue_swap_request()
{
verify(HERE), !m_current_frame->swap_command_buffer;
m_current_frame->swap_command_buffer = m_current_command_buffer;
if (m_swapchain->is_headless())
{
m_swapchain->end_frame(*m_current_command_buffer, m_current_frame->present_image);
close_and_submit_command_buffer(m_current_command_buffer->submit_fence);
}
else
{
close_and_submit_command_buffer(m_current_command_buffer->submit_fence,
m_current_frame->acquire_signal_semaphore,
m_current_frame->present_wait_semaphore,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT);
}
// Set up a present request for this frame as well
present(m_current_frame);
m_current_frame->swap_command_buffer->pending = true;
// Grab next cb in line and make it usable
m_current_cb_index = (m_current_cb_index + 1) % VK_MAX_ASYNC_CB_COUNT;
m_current_command_buffer = &m_primary_cb_list[m_current_cb_index];
m_current_command_buffer->reset();
// Set up new pointers for the next frame
advance_queued_frames();
open_command_buffer();
}
void VKGSRender::frame_context_cleanup(frame_context_t *ctx, bool free_resources)
{
verify(HERE), ctx->swap_command_buffer;
if (ctx->swap_command_buffer->pending)
{
// Perform hard swap here
if (ctx->swap_command_buffer->wait(FRAME_PRESENT_TIMEOUT) != VK_SUCCESS)
{
// Lost surface/device, release swapchain
swapchain_unavailable = true;
}
free_resources = true;
}
if (free_resources)
{
if (g_cfg.video.overlay)
{
m_text_writer->reset_descriptors();
}
if (m_overlay_manager && m_overlay_manager->has_dirty())
{
m_overlay_manager->lock();
std::vector<u32> uids_to_dispose;
uids_to_dispose.reserve(m_overlay_manager->get_dirty().size());
for (const auto& view : m_overlay_manager->get_dirty())
{
m_ui_renderer->remove_temp_resources(view->uid);
uids_to_dispose.push_back(view->uid);
}
m_overlay_manager->unlock();
m_overlay_manager->dispose(uids_to_dispose);
}
vk::reset_global_resources();
m_attachment_clear_pass->free_resources();
m_depth_converter->free_resources();
m_ui_renderer->free_resources();
ctx->buffer_views_to_clean.clear();
if (ctx->last_frame_sync_time > m_last_heap_sync_time)
{
m_last_heap_sync_time = ctx->last_frame_sync_time;
//Heap cleanup; deallocates memory consumed by the frame if it is still held
m_attrib_ring_info.m_get_pos = ctx->attrib_heap_ptr;
m_vertex_env_ring_info.m_get_pos = ctx->vtx_env_heap_ptr;
m_fragment_env_ring_info.m_get_pos = ctx->frag_env_heap_ptr;
m_fragment_constants_ring_info.m_get_pos = ctx->frag_const_heap_ptr;
m_transform_constants_ring_info.m_get_pos = ctx->vtx_const_heap_ptr;
m_vertex_layout_ring_info.m_get_pos = ctx->vtx_layout_heap_ptr;
m_fragment_texture_params_ring_info.m_get_pos = ctx->frag_texparam_heap_ptr;
m_index_buffer_ring_info.m_get_pos = ctx->index_heap_ptr;
m_texture_upload_buffer_ring_info.m_get_pos = ctx->texture_upload_heap_ptr;
m_attrib_ring_info.notify();
m_vertex_env_ring_info.notify();
m_fragment_env_ring_info.notify();
m_fragment_constants_ring_info.notify();
m_transform_constants_ring_info.notify();
m_vertex_layout_ring_info.notify();
m_fragment_texture_params_ring_info.notify();
m_index_buffer_ring_info.notify();
m_texture_upload_buffer_ring_info.notify();
}
}
ctx->swap_command_buffer = nullptr;
// Remove from queued list
while (!m_queued_frames.empty())
{
auto frame = m_queued_frames.front();
m_queued_frames.pop_front();
if (frame == ctx)
{
break;
}
}
vk::advance_completed_frame_counter();
}
void VKGSRender::do_local_task(rsx::FIFO_state state)
{
if (m_flush_requests.pending())
{
std::lock_guard lock(m_flush_queue_mutex);
//TODO: Determine if a hard sync is necessary
//Pipeline barriers later may do a better job synchronizing than wholly stalling the pipeline
flush_command_queue();
m_flush_requests.clear_pending_flag();
m_flush_requests.consumer_wait();
}
else if (!in_begin_end && state != rsx::FIFO_state::lock_wait)
{
if (m_graphics_state & rsx::pipeline_state::framebuffer_reads_dirty)
{
//This will re-engage locks and break the texture cache if another thread is waiting in access violation handler!
//Only call when there are no waiters
m_texture_cache.do_update();
m_graphics_state &= ~rsx::pipeline_state::framebuffer_reads_dirty;
}
}
rsx::thread::do_local_task(state);
switch (state)
{
case rsx::FIFO_state::lock_wait:
// Critical check finished
return;
//case rsx::FIFO_state::spinning:
//case rsx::FIFO_state::empty:
// We have some time, check the present queue
//check_present_status();
//break;
default:
break;
}
if (m_overlay_manager)
{
if (!in_begin_end && async_flip_requested & flip_request::native_ui)
{
flush_command_queue(true);
flip((s32)current_display_buffer, false);
}
}
}
bool VKGSRender::do_method(u32 cmd, u32 arg)
{
switch (cmd)
{
case NV4097_CLEAR_SURFACE:
clear_surface(arg);
return true;
case NV4097_TEXTURE_READ_SEMAPHORE_RELEASE:
// Texture barrier, seemingly not very useful
return true;
case NV4097_BACK_END_WRITE_SEMAPHORE_RELEASE:
//sync_at_semaphore_release();
return true;
default:
return false;
}
}
bool VKGSRender::load_program()
{
if (m_graphics_state & rsx::pipeline_state::invalidate_pipeline_bits)
{
get_current_fragment_program(fs_sampler_state);
verify(HERE), current_fragment_program.valid;
get_current_vertex_program(vs_sampler_state);
m_graphics_state &= ~rsx::pipeline_state::invalidate_pipeline_bits;
}
auto &vertex_program = current_vertex_program;
auto &fragment_program = current_fragment_program;
auto old_program = m_program;
vk::pipeline_props properties{};
// Input assembly
bool emulated_primitive_type;
properties.state.set_primitive_type(vk::get_appropriate_topology(rsx::method_registers.current_draw_clause.primitive, emulated_primitive_type));
const bool restarts_valid = rsx::method_registers.current_draw_clause.command == rsx::draw_command::indexed && !emulated_primitive_type && !rsx::method_registers.current_draw_clause.is_disjoint_primitive;
if (rsx::method_registers.restart_index_enabled() && !vk::emulate_primitive_restart(rsx::method_registers.current_draw_clause.primitive) && restarts_valid)
properties.state.enable_primitive_restart();
// Rasterizer state
properties.state.set_attachment_count((u32)m_draw_buffers.size());
properties.state.set_front_face(vk::get_front_face(rsx::method_registers.front_face_mode()));
properties.state.enable_depth_clamp(rsx::method_registers.depth_clamp_enabled() || !rsx::method_registers.depth_clip_enabled());
properties.state.enable_depth_bias(true);
properties.state.enable_depth_bounds_test(true);
if (rsx::method_registers.depth_test_enabled())
{
//NOTE: Like stencil, depth write is meaningless without depth test
properties.state.set_depth_mask(rsx::method_registers.depth_write_enabled());
properties.state.enable_depth_test(vk::get_compare_func(rsx::method_registers.depth_func()));
}
if (rsx::method_registers.logic_op_enabled())
properties.state.enable_logic_op(vk::get_logic_op(rsx::method_registers.logic_operation()));
if (rsx::method_registers.cull_face_enabled())
properties.state.enable_cull_face(vk::get_cull_face(rsx::method_registers.cull_face_mode()));
bool color_mask_b = rsx::method_registers.color_mask_b();
bool color_mask_g = rsx::method_registers.color_mask_g();
bool color_mask_r = rsx::method_registers.color_mask_r();
bool color_mask_a = rsx::method_registers.color_mask_a();
if (rsx::method_registers.surface_color() == rsx::surface_color_format::g8b8)
rsx::get_g8b8_r8g8_colormask(color_mask_r, color_mask_g, color_mask_b, color_mask_a);
properties.state.set_color_mask(color_mask_r, color_mask_g, color_mask_b, color_mask_a);
bool mrt_blend_enabled[] =
{
rsx::method_registers.blend_enabled(),
rsx::method_registers.blend_enabled_surface_1(),
rsx::method_registers.blend_enabled_surface_2(),
rsx::method_registers.blend_enabled_surface_3()
};
VkBlendFactor sfactor_rgb, sfactor_a, dfactor_rgb, dfactor_a;
VkBlendOp equation_rgb, equation_a;
if (mrt_blend_enabled[0] || mrt_blend_enabled[1] || mrt_blend_enabled[2] || mrt_blend_enabled[3])
{
sfactor_rgb = vk::get_blend_factor(rsx::method_registers.blend_func_sfactor_rgb());
sfactor_a = vk::get_blend_factor(rsx::method_registers.blend_func_sfactor_a());
dfactor_rgb = vk::get_blend_factor(rsx::method_registers.blend_func_dfactor_rgb());
dfactor_a = vk::get_blend_factor(rsx::method_registers.blend_func_dfactor_a());
equation_rgb = vk::get_blend_op(rsx::method_registers.blend_equation_rgb());
equation_a = vk::get_blend_op(rsx::method_registers.blend_equation_a());
for (u8 idx = 0; idx < m_draw_buffers.size(); ++idx)
{
if (mrt_blend_enabled[idx])
{
properties.state.enable_blend(idx, sfactor_rgb, sfactor_a, dfactor_rgb, dfactor_a, equation_rgb, equation_a);
}
}
}
if (rsx::method_registers.stencil_test_enabled())
{
if (!rsx::method_registers.two_sided_stencil_test_enabled())
{
properties.state.enable_stencil_test(
vk::get_stencil_op(rsx::method_registers.stencil_op_fail()),
vk::get_stencil_op(rsx::method_registers.stencil_op_zfail()),
vk::get_stencil_op(rsx::method_registers.stencil_op_zpass()),
vk::get_compare_func(rsx::method_registers.stencil_func()),
0xFF, 0xFF); //write mask, func_mask, ref are dynamic
}
else
{
properties.state.enable_stencil_test_separate(0,
vk::get_stencil_op(rsx::method_registers.stencil_op_fail()),
vk::get_stencil_op(rsx::method_registers.stencil_op_zfail()),
vk::get_stencil_op(rsx::method_registers.stencil_op_zpass()),
vk::get_compare_func(rsx::method_registers.stencil_func()),
0xFF, 0xFF); //write mask, func_mask, ref are dynamic
properties.state.enable_stencil_test_separate(1,
vk::get_stencil_op(rsx::method_registers.back_stencil_op_fail()),
vk::get_stencil_op(rsx::method_registers.back_stencil_op_zfail()),
vk::get_stencil_op(rsx::method_registers.back_stencil_op_zpass()),
vk::get_compare_func(rsx::method_registers.back_stencil_func()),
0xFF, 0xFF); //write mask, func_mask, ref are dynamic
}
if (auto ds = m_rtts.m_bound_depth_stencil.second;
ds && ds->samples() > 1 && !(ds->stencil_init_flags & 0xFF00))
{
if (properties.state.ds.front.failOp != VK_STENCIL_OP_KEEP ||
properties.state.ds.front.depthFailOp != VK_STENCIL_OP_KEEP ||
properties.state.ds.front.passOp != VK_STENCIL_OP_KEEP ||
properties.state.ds.front.failOp != VK_STENCIL_OP_KEEP ||
properties.state.ds.front.depthFailOp != VK_STENCIL_OP_KEEP ||
properties.state.ds.front.passOp != VK_STENCIL_OP_KEEP)
{
// Toggle bit 9 to signal require full bit-wise transfer
ds->stencil_init_flags |= (1 << 8);
}
}
}
const auto rasterization_samples = u8((m_current_renderpass_key >> 16) & 0xF);
if (supports_hw_a2c || rasterization_samples > 1)
{
properties.state.set_multisample_state(
rasterization_samples,
rsx::method_registers.msaa_sample_mask(),
rsx::method_registers.msaa_enabled(),
rsx::method_registers.msaa_alpha_to_coverage_enabled(),
rsx::method_registers.msaa_alpha_to_one_enabled());
}
properties.renderpass_key = m_current_renderpass_key;
vk::enter_uninterruptible();
//Load current program from buffer
vertex_program.skip_vertex_input_check = true;
fragment_program.unnormalized_coords = 0;
m_program = m_prog_buffer->get_graphics_pipeline(vertex_program, fragment_program, properties,
!g_cfg.video.disable_asynchronous_shader_compiler, *m_device, pipeline_layout).get();
vk::leave_uninterruptible();
if (m_prog_buffer->check_cache_missed())
{
if (m_prog_buffer->check_program_linked_flag())
{
// Program was linked or queued for linking
m_shaders_cache->store(properties, vertex_program, fragment_program);
}
// Notify the user with HUD notification
if (g_cfg.misc.show_shader_compilation_hint)
{
if (m_overlay_manager)
{
if (auto dlg = m_overlay_manager->get<rsx::overlays::shader_compile_notification>())
{
// Extend duration
dlg->touch();
}
else
{
// Create dialog but do not show immediately
m_overlay_manager->create<rsx::overlays::shader_compile_notification>();
}
}
}
}
return m_program != nullptr;
}
void VKGSRender::load_program_env()
{
if (!m_program)
{
fmt::throw_exception("Unreachable right now" HERE);
}
const u32 fragment_constants_size = current_fp_metadata.program_constants_buffer_length;
const bool update_transform_constants = !!(m_graphics_state & rsx::pipeline_state::transform_constants_dirty);
const bool update_fragment_constants = !!(m_graphics_state & rsx::pipeline_state::fragment_constants_dirty);
const bool update_vertex_env = !!(m_graphics_state & rsx::pipeline_state::vertex_state_dirty);
const bool update_fragment_env = !!(m_graphics_state & rsx::pipeline_state::fragment_state_dirty);
const bool update_fragment_texture_env = !!(m_graphics_state & rsx::pipeline_state::fragment_texture_state_dirty);
if (update_vertex_env)
{
check_heap_status(VK_HEAP_CHECK_VERTEX_ENV_STORAGE);
// Vertex state
const auto mem = m_vertex_env_ring_info.alloc<256>(256);
auto buf = (u8*)m_vertex_env_ring_info.map(mem, 144);
fill_scale_offset_data(buf, false);
fill_user_clip_data(buf + 64);
*(reinterpret_cast<u32*>(buf + 128)) = rsx::method_registers.transform_branch_bits();
*(reinterpret_cast<f32*>(buf + 132)) = rsx::method_registers.point_size();
*(reinterpret_cast<f32*>(buf + 136)) = rsx::method_registers.clip_min();
*(reinterpret_cast<f32*>(buf + 140)) = rsx::method_registers.clip_max();
m_vertex_env_ring_info.unmap();
m_vertex_env_buffer_info = { m_vertex_env_ring_info.heap->value, mem, 144 };
}
if (update_transform_constants)
{
check_heap_status(VK_HEAP_CHECK_TRANSFORM_CONSTANTS_STORAGE);
// Transform constants
auto mem = m_transform_constants_ring_info.alloc<256>(8192);
auto buf = m_transform_constants_ring_info.map(mem, 8192);
fill_vertex_program_constants_data(buf);
m_transform_constants_ring_info.unmap();
m_vertex_constants_buffer_info = { m_transform_constants_ring_info.heap->value, mem, 8192 };
}
if (update_fragment_constants)
{
check_heap_status(VK_HEAP_CHECK_FRAGMENT_CONSTANTS_STORAGE);
// Fragment constants
if (fragment_constants_size)
{
auto mem = m_fragment_constants_ring_info.alloc<256>(fragment_constants_size);
auto buf = m_fragment_constants_ring_info.map(mem, fragment_constants_size);
m_prog_buffer->fill_fragment_constants_buffer({ reinterpret_cast<float*>(buf), ::narrow<int>(fragment_constants_size) },
current_fragment_program, vk::sanitize_fp_values());
m_fragment_constants_ring_info.unmap();
m_fragment_constants_buffer_info = { m_fragment_constants_ring_info.heap->value, mem, fragment_constants_size };
}
else
{
m_fragment_constants_buffer_info = { m_fragment_constants_ring_info.heap->value, 0, 32 };
}
}
if (update_fragment_env)
{
check_heap_status(VK_HEAP_CHECK_FRAGMENT_ENV_STORAGE);
auto mem = m_fragment_env_ring_info.alloc<256>(256);
auto buf = m_fragment_env_ring_info.map(mem, 32);
fill_fragment_state_buffer(buf, current_fragment_program);
m_fragment_env_ring_info.unmap();
m_fragment_env_buffer_info = { m_fragment_env_ring_info.heap->value, mem, 32 };
}
if (update_fragment_texture_env)
{
check_heap_status(VK_HEAP_CHECK_TEXTURE_ENV_STORAGE);
auto mem = m_fragment_texture_params_ring_info.alloc<256>(256);
auto buf = m_fragment_texture_params_ring_info.map(mem, 256);
fill_fragment_texture_parameters(buf, current_fragment_program);
m_fragment_texture_params_ring_info.unmap();
m_fragment_texture_params_buffer_info = { m_fragment_texture_params_ring_info.heap->value, mem, 256 };
}
//if (1)
{
m_program->bind_uniform(m_vertex_env_buffer_info, VERTEX_PARAMS_BIND_SLOT, m_current_frame->descriptor_set);
m_program->bind_uniform(m_vertex_constants_buffer_info, VERTEX_CONSTANT_BUFFERS_BIND_SLOT, m_current_frame->descriptor_set);
m_program->bind_uniform(m_fragment_constants_buffer_info, FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT, m_current_frame->descriptor_set);
m_program->bind_uniform(m_fragment_env_buffer_info, FRAGMENT_STATE_BIND_SLOT, m_current_frame->descriptor_set);
m_program->bind_uniform(m_fragment_texture_params_buffer_info, FRAGMENT_TEXTURE_PARAMS_BIND_SLOT, m_current_frame->descriptor_set);
}
//Clear flags
const u32 handled_flags = (rsx::pipeline_state::fragment_state_dirty | rsx::pipeline_state::vertex_state_dirty | rsx::pipeline_state::transform_constants_dirty | rsx::pipeline_state::fragment_constants_dirty | rsx::pipeline_state::fragment_texture_state_dirty);
m_graphics_state &= ~handled_flags;
}
void VKGSRender::update_vertex_env(u32 id, const vk::vertex_upload_info& vertex_info)
{
// Actual allocation must have been done previously
u32 base_offset;
if (!m_vertex_layout_storage ||
!m_vertex_layout_storage->in_range(m_vertex_layout_stream_info.offset, m_vertex_layout_stream_info.range, base_offset))
{
verify("Incompatible driver (MacOS?)" HERE), m_texbuffer_view_size >= m_vertex_layout_stream_info.range;
if (m_vertex_layout_storage)
m_current_frame->buffer_views_to_clean.push_back(std::move(m_vertex_layout_storage));
// View 64M blocks at a time (different drivers will only allow a fixed viewable heap size, 64M should be safe)
const size_t view_size = (base_offset + m_texbuffer_view_size) > m_vertex_layout_ring_info.size() ? m_vertex_layout_ring_info.size() - base_offset : m_texbuffer_view_size;
m_vertex_layout_storage = std::make_unique<vk::buffer_view>(*m_device, m_vertex_layout_ring_info.heap->value, VK_FORMAT_R32G32_UINT, base_offset, view_size);
base_offset = 0;
}
u32 draw_info[4];
draw_info[0] = vertex_info.vertex_index_base;
draw_info[1] = vertex_info.vertex_index_offset;
draw_info[2] = id;
draw_info[3] = (id * 16) + (base_offset / 8);
vkCmdPushConstants(*m_current_command_buffer, pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, 16, draw_info);
const size_t data_offset = (id * 128) + m_vertex_layout_stream_info.offset;
auto dst = m_vertex_layout_ring_info.map(data_offset, 128);
fill_vertex_layout_state(m_vertex_layout, vertex_info.first_vertex, vertex_info.allocated_vertex_count, (s32*)dst,
vertex_info.persistent_window_offset, vertex_info.volatile_window_offset);
m_vertex_layout_ring_info.unmap();
}
void VKGSRender::init_buffers(rsx::framebuffer_creation_context context, bool skip_reading)
{
prepare_rtts(context);
if (!skip_reading)
{
read_buffers();
}
}
void VKGSRender::read_buffers()
{
}
void VKGSRender::write_buffers()
{
}
void VKGSRender::close_and_submit_command_buffer(VkFence fence, VkSemaphore wait_semaphore, VkSemaphore signal_semaphore, VkPipelineStageFlags pipeline_stage_flags)
{
// Wait before sync block below
rsx::g_dma_manager.sync();
if (m_attrib_ring_info.dirty() ||
m_fragment_env_ring_info.dirty() ||
m_vertex_env_ring_info.dirty() ||
m_fragment_texture_params_ring_info.dirty() ||
m_vertex_layout_ring_info.dirty() ||
m_fragment_constants_ring_info.dirty() ||
m_index_buffer_ring_info.dirty() ||
m_transform_constants_ring_info.dirty() ||
m_texture_upload_buffer_ring_info.dirty())
{
std::lock_guard lock(m_secondary_cb_guard);
m_secondary_command_buffer.begin();
m_attrib_ring_info.sync(m_secondary_command_buffer);
m_fragment_env_ring_info.sync(m_secondary_command_buffer);
m_vertex_env_ring_info.sync(m_secondary_command_buffer);
m_fragment_texture_params_ring_info.sync(m_secondary_command_buffer);
m_vertex_layout_ring_info.sync(m_secondary_command_buffer);
m_fragment_constants_ring_info.sync(m_secondary_command_buffer);
m_index_buffer_ring_info.sync(m_secondary_command_buffer);
m_transform_constants_ring_info.sync(m_secondary_command_buffer);
m_texture_upload_buffer_ring_info.sync(m_secondary_command_buffer);
m_secondary_command_buffer.end();
m_secondary_command_buffer.submit(m_swapchain->get_graphics_queue(),
VK_NULL_HANDLE, VK_NULL_HANDLE, VK_NULL_HANDLE, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT);
}
// End open queries. Flags will be automatically reset by the submit routine
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_open_query)
{
auto open_query = m_occlusion_map[m_active_query_info->driver_handle].indices.back();
m_occlusion_query_pool.end_query(*m_current_command_buffer, open_query);
m_current_command_buffer->flags &= ~vk::command_buffer::cb_has_open_query;
}
m_current_command_buffer->end();
m_current_command_buffer->tag();
m_current_command_buffer->submit(m_swapchain->get_graphics_queue(),
wait_semaphore, signal_semaphore, fence, pipeline_stage_flags);
}
void VKGSRender::open_command_buffer()
{
m_current_command_buffer->begin();
}
void VKGSRender::prepare_rtts(rsx::framebuffer_creation_context context)
{
const bool clipped_scissor = (context == rsx::framebuffer_creation_context::context_draw);
if (m_current_framebuffer_context == context && !m_rtts_dirty && m_draw_fbo)
{
// Fast path
// Framebuffer usage has not changed, framebuffer exists and config regs have not changed
set_scissor(clipped_scissor);
return;
}
m_rtts_dirty = false;
framebuffer_status_valid = false;
m_framebuffer_state_contested = false;
const auto layout = get_framebuffer_layout(context);
if (!framebuffer_status_valid)
{
return;
}
if (m_draw_fbo && layout.ignore_change)
{
// Nothing has changed, we're still using the same framebuffer
// Update flags to match current
set_scissor(clipped_scissor);
return;
}
m_rtts.prepare_render_target(*m_current_command_buffer,
layout.color_format, layout.depth_format,
layout.width, layout.height,
layout.target, layout.aa_mode,
layout.color_addresses, layout.zeta_address,
layout.actual_color_pitch, layout.actual_zeta_pitch,
(*m_device), *m_current_command_buffer);
// Reset framebuffer information
const auto color_bpp = get_format_block_size_in_bytes(layout.color_format);
const auto samples = get_format_sample_count(layout.aa_mode);
for (u8 i = 0; i < rsx::limits::color_buffers_count; ++i)
{
// Flush old address if we keep missing it
if (m_surface_info[i].pitch && g_cfg.video.write_color_buffers)
{
const utils::address_range rsx_range = m_surface_info[i].get_memory_range();
m_texture_cache.set_memory_read_flags(rsx_range, rsx::memory_read_flags::flush_once);
m_texture_cache.flush_if_cache_miss_likely(*m_current_command_buffer, rsx_range);
}
m_surface_info[i].address = m_surface_info[i].pitch = 0;
m_surface_info[i].width = layout.width;
m_surface_info[i].height = layout.height;
m_surface_info[i].color_format = layout.color_format;
m_surface_info[i].bpp = color_bpp;
m_surface_info[i].samples = samples;
}
//Process depth surface as well
{
if (m_depth_surface_info.pitch && g_cfg.video.write_depth_buffer)
{
const utils::address_range surface_range = m_depth_surface_info.get_memory_range();
m_texture_cache.set_memory_read_flags(surface_range, rsx::memory_read_flags::flush_once);
m_texture_cache.flush_if_cache_miss_likely(*m_current_command_buffer, surface_range);
}
m_depth_surface_info.address = m_depth_surface_info.pitch = 0;
m_depth_surface_info.width = layout.width;
m_depth_surface_info.height = layout.height;
m_depth_surface_info.depth_format = layout.depth_format;
m_depth_surface_info.bpp = (layout.depth_format == rsx::surface_depth_format::z16? 2 : 4);
m_depth_surface_info.samples = samples;
}
//Bind created rtts as current fbo...
const auto draw_buffers = rsx::utility::get_rtt_indexes(layout.target);
m_draw_buffers.clear();
m_fbo_images.clear();
for (u8 index : draw_buffers)
{
if (auto surface = std::get<1>(m_rtts.m_bound_render_targets[index]))
{
m_fbo_images.push_back(surface);
m_surface_info[index].address = layout.color_addresses[index];
m_surface_info[index].pitch = layout.actual_color_pitch[index];
verify("Pitch mismatch!" HERE), surface->rsx_pitch == layout.actual_color_pitch[index];
m_texture_cache.notify_surface_changed(m_surface_info[index].get_memory_range(layout.aa_factors));
m_draw_buffers.push_back(index);
}
}
if (std::get<0>(m_rtts.m_bound_depth_stencil) != 0)
{
auto ds = std::get<1>(m_rtts.m_bound_depth_stencil);
m_fbo_images.push_back(ds);
m_depth_surface_info.address = layout.zeta_address;
m_depth_surface_info.pitch = layout.actual_zeta_pitch;
verify("Pitch mismatch!" HERE), ds->rsx_pitch == layout.actual_zeta_pitch;
m_texture_cache.notify_surface_changed(m_depth_surface_info.get_memory_range(layout.aa_factors));
}
// Before messing with memory properties, flush command queue if there are dma transfers queued up
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_dma_transfer)
{
flush_command_queue();
}
const auto color_fmt_info = vk::get_compatible_gcm_format(layout.color_format);
for (u8 index : m_draw_buffers)
{
if (!m_surface_info[index].address || !m_surface_info[index].pitch) continue;
const utils::address_range surface_range = m_surface_info[index].get_memory_range();
if (g_cfg.video.write_color_buffers)
{
m_texture_cache.lock_memory_region(
*m_current_command_buffer, m_rtts.m_bound_render_targets[index].second, surface_range, true,
m_surface_info[index].width, m_surface_info[index].height, layout.actual_color_pitch[index],
color_fmt_info.first, color_fmt_info.second);
}
else
{
m_texture_cache.commit_framebuffer_memory_region(*m_current_command_buffer, surface_range);
}
}
if (m_depth_surface_info.address && m_depth_surface_info.pitch)
{
const utils::address_range surface_range = m_depth_surface_info.get_memory_range();
if (g_cfg.video.write_depth_buffer)
{
const u32 gcm_format = (m_depth_surface_info.depth_format != rsx::surface_depth_format::z16) ? CELL_GCM_TEXTURE_DEPTH16 : CELL_GCM_TEXTURE_DEPTH24_D8;
m_texture_cache.lock_memory_region(
*m_current_command_buffer, m_rtts.m_bound_depth_stencil.second, surface_range, true,
m_depth_surface_info.width, m_depth_surface_info.height, layout.actual_zeta_pitch, gcm_format, false);
}
else
{
m_texture_cache.commit_framebuffer_memory_region(*m_current_command_buffer, surface_range);
}
}
if (!m_rtts.orphaned_surfaces.empty())
{
if (g_cfg.video.write_color_buffers || g_cfg.video.write_depth_buffer)
{
u32 gcm_format;
bool swap_bytes;
for (auto& surface : m_rtts.orphaned_surfaces)
{
if (surface->is_depth_surface())
{
if (!g_cfg.video.write_depth_buffer) continue;
gcm_format = (surface->get_surface_depth_format() != rsx::surface_depth_format::z16) ? CELL_GCM_TEXTURE_DEPTH16 : CELL_GCM_TEXTURE_DEPTH24_D8;
swap_bytes = true;
}
else
{
if (!g_cfg.video.write_color_buffers) continue;
auto info = vk::get_compatible_gcm_format(surface->get_surface_color_format());
gcm_format = info.first;
swap_bytes = info.second;
}
m_texture_cache.lock_memory_region(
*m_current_command_buffer, surface, surface->get_memory_range(), false,
surface->get_surface_width(rsx::surface_metrics::pixels), surface->get_surface_height(rsx::surface_metrics::pixels), surface->get_rsx_pitch(),
gcm_format, swap_bytes);
}
}
m_rtts.orphaned_surfaces.clear();
}
m_current_renderpass_key = vk::get_renderpass_key(m_fbo_images);
m_cached_renderpass = vk::get_renderpass(*m_device, m_current_renderpass_key);
// Search old framebuffers for this same configuration
const auto fbo_width = rsx::apply_resolution_scale(layout.width, true);
const auto fbo_height = rsx::apply_resolution_scale(layout.height, true);
if (m_draw_fbo)
{
// Release old ref
m_draw_fbo->release();
}
m_draw_fbo = vk::get_framebuffer(*m_device, fbo_width, fbo_height, m_cached_renderpass, m_fbo_images);
m_draw_fbo->add_ref();
set_viewport();
set_scissor(clipped_scissor);
check_zcull_status(true);
}
void VKGSRender::reinitialize_swapchain()
{
m_swapchain_dims.width = m_frame->client_width();
m_swapchain_dims.height = m_frame->client_height();
// Reject requests to acquire new swapchain if the window is minimized
// The NVIDIA driver will spam VK_ERROR_OUT_OF_DATE_KHR if you try to acquire an image from the swapchain and the window is minimized
// However, any attempt to actually renew the swapchain will crash the driver with VK_ERROR_DEVICE_LOST while the window is in this state
if (m_swapchain_dims.width == 0 || m_swapchain_dims.height == 0)
{
swapchain_unavailable = true;
return;
}
// NOTE: This operation will create a hard sync point
close_and_submit_command_buffer(m_current_command_buffer->submit_fence);
m_current_command_buffer->pending = true;
m_current_command_buffer->reset();
for (auto &ctx : frame_context_storage)
{
if (ctx.present_image == UINT32_MAX)
continue;
// Release present image by presenting it
frame_context_cleanup(&ctx, true);
}
// Drain all the queues
vkDeviceWaitIdle(*m_device);
// Rebuild swapchain. Old swapchain destruction is handled by the init_swapchain call
if (!m_swapchain->init(m_swapchain_dims.width, m_swapchain_dims.height))
{
LOG_WARNING(RSX, "Swapchain initialization failed. Request ignored [%dx%d]", m_swapchain_dims.width, m_swapchain_dims.height);
swapchain_unavailable = true;
open_command_buffer();
return;
}
// Prepare new swapchain images for use
open_command_buffer();
for (u32 i = 0; i < m_swapchain->get_swap_image_count(); ++i)
{
const auto target_layout = m_swapchain->get_optimal_present_layout();
const auto target_image = m_swapchain->get_image(i);
VkClearColorValue clear_color{};
VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, range);
vkCmdClearColorImage(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_color, 1, &range);
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, target_layout, range);
}
//Will have to block until rendering is completed
VkFence resize_fence = VK_NULL_HANDLE;
VkFenceCreateInfo infos = {};
infos.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
vkCreateFence((*m_device), &infos, nullptr, &resize_fence);
//Flush the command buffer
close_and_submit_command_buffer(resize_fence);
vk::wait_for_fence(resize_fence);
vkDestroyFence((*m_device), resize_fence, nullptr);
m_current_command_buffer->reset();
open_command_buffer();
swapchain_unavailable = false;
}
void VKGSRender::flip(int buffer, bool emu_flip)
{
// Check swapchain condition/status
if (!m_swapchain->supports_automatic_wm_reports())
{
if (m_swapchain_dims.width != m_frame->client_width() ||
m_swapchain_dims.height != m_frame->client_height())
{
swapchain_unavailable = true;
}
}
if (swapchain_unavailable)
{
reinitialize_swapchain();
}
m_profiler.start();
if (m_current_frame == &m_aux_frame_context)
{
m_current_frame = &frame_context_storage[m_current_queue_index];
if (m_current_frame->swap_command_buffer)
{
// Its possible this flip request is triggered by overlays and the flip queue is in undefined state
frame_context_cleanup(m_current_frame, true);
}
// Swap aux storage and current frame; aux storage should always be ready for use at all times
m_current_frame->swap_storage(m_aux_frame_context);
m_current_frame->grab_resources(m_aux_frame_context);
}
else if (m_current_frame->swap_command_buffer)
{
if (m_draw_calls > 0)
{
// This can be 'legal' if the window was being resized and no polling happened because of swapchain_unavailable flag
LOG_ERROR(RSX, "Possible data corruption on frame context storage detected");
}
// There were no draws and back-to-back flips happened
frame_context_cleanup(m_current_frame, true);
}
if (skip_frame || swapchain_unavailable)
{
if (!skip_frame)
{
verify(HERE), swapchain_unavailable;
// Perform a mini-flip here without invoking present code
m_current_frame->swap_command_buffer = m_current_command_buffer;
flush_command_queue(true);
vk::advance_frame_counter();
frame_context_cleanup(m_current_frame, true);
m_draw_time = 0;
m_setup_time = 0;
m_vertex_upload_time = 0;
m_textures_upload_time = 0;
}
m_frame->flip(m_context);
rsx::thread::flip(buffer, emu_flip);
return;
}
u32 buffer_width = display_buffers[buffer].width;
u32 buffer_height = display_buffers[buffer].height;
u32 buffer_pitch = display_buffers[buffer].pitch;
u32 av_format;
const auto avconfig = fxm::get<rsx::avconf>();
if (avconfig)
{
av_format = avconfig->get_compatible_gcm_format();
if (!buffer_pitch) buffer_pitch = buffer_width * avconfig->get_bpp();
buffer_width = std::min(buffer_width, avconfig->resolution_x);
buffer_height = std::min(buffer_height, avconfig->resolution_y);
}
else
{
av_format = CELL_GCM_TEXTURE_A8R8G8B8;
if (!buffer_pitch) buffer_pitch = buffer_width * 4;
}
coordi aspect_ratio;
sizei csize = m_swapchain_dims;
sizei new_size = csize;
if (!g_cfg.video.stretch_to_display_area)
{
const double aq = (double)buffer_width / buffer_height;
const double rq = (double)new_size.width / new_size.height;
const double q = aq / rq;
if (q > 1.0)
{
new_size.height = int(new_size.height / q);
aspect_ratio.y = (csize.height - new_size.height) / 2;
}
else if (q < 1.0)
{
new_size.width = int(new_size.width * q);
aspect_ratio.x = (csize.width - new_size.width) / 2;
}
}
aspect_ratio.size = new_size;
//Prepare surface for new frame. Set no timeout here so that we wait for the next image if need be
verify(HERE), m_current_frame->present_image == UINT32_MAX;
verify(HERE), m_current_frame->swap_command_buffer == nullptr;
u64 timeout = m_swapchain->get_swap_image_count() <= VK_MAX_ASYNC_FRAMES? 0ull: 100000000ull;
while (VkResult status = m_swapchain->acquire_next_swapchain_image(m_current_frame->acquire_signal_semaphore, timeout, &m_current_frame->present_image))
{
switch (status)
{
case VK_TIMEOUT:
case VK_NOT_READY:
{
//In some cases, after a fullscreen switch, the driver only allows N-1 images to be acquirable, where N = number of available swap images.
//This means that any acquired images have to be released
//before acquireNextImage can return successfully. This is despite the driver reporting 2 swap chain images available
//This makes fullscreen performance slower than windowed performance as throughput is lowered due to losing one presentable image
//Found on AMD Crimson 17.7.2
//Whatever returned from status, this is now a spin
timeout = 0ull;
check_present_status();
continue;
}
case VK_ERROR_OUT_OF_DATE_KHR:
LOG_WARNING(RSX, "vkAcquireNextImageKHR failed with VK_ERROR_OUT_OF_DATE_KHR. Flip request ignored until surface is recreated.");
swapchain_unavailable = true;
reinitialize_swapchain();
continue;
default:
vk::die_with_error(HERE, status);
}
}
//Confirm that the driver did not silently fail
verify(HERE), m_current_frame->present_image != UINT32_MAX;
//Blit contents to screen..
vk::image* image_to_flip = nullptr;
if ((u32)buffer < display_buffers_count && buffer_width && buffer_height)
{
const u32 absolute_address = rsx::get_address(display_buffers[buffer].offset, CELL_GCM_LOCATION_LOCAL);
if (auto render_target_texture = m_rtts.get_color_surface_at(absolute_address))
{
if (render_target_texture->last_use_tag == m_rtts.write_tag)
{
image_to_flip = render_target_texture;
}
else
{
const auto overlap_info = m_rtts.get_merged_texture_memory_region(*m_current_command_buffer, absolute_address, buffer_width, buffer_height, buffer_pitch, render_target_texture->get_bpp());
if (!overlap_info.empty() && overlap_info.back().surface == render_target_texture)
{
// Confirmed to be the newest data source in that range
image_to_flip = render_target_texture;
}
}
if (image_to_flip)
{
buffer_width = rsx::apply_resolution_scale(buffer_width, true);
buffer_height = rsx::apply_resolution_scale(buffer_height, true);
if (buffer_width > render_target_texture->width() ||
buffer_height > render_target_texture->height())
{
// TODO: Should emit only once to avoid flooding the log file
// TODO: Take AA scaling into account
LOG_WARNING(RSX, "Selected output image does not satisfy the video configuration. Display buffer resolution=%dx%d, avconf resolution=%dx%d, surface=%dx%d",
display_buffers[buffer].width, display_buffers[buffer].height, avconfig? avconfig->resolution_x : 0, avconfig? avconfig->resolution_y : 0,
render_target_texture->get_surface_width(rsx::surface_metrics::pixels), render_target_texture->get_surface_height(rsx::surface_metrics::pixels));
buffer_width = render_target_texture->width();
buffer_height = render_target_texture->height();
}
}
}
else if (auto surface = m_texture_cache.find_texture_from_dimensions<true>(absolute_address, av_format, buffer_width, buffer_height))
{
//Hack - this should be the first location to check for output
//The render might have been done offscreen or in software and a blit used to display
image_to_flip = surface->get_raw_texture();
}
if (!image_to_flip)
{
// Read from cell
const auto range = utils::address_range::start_length(absolute_address, buffer_pitch * buffer_height);
const u32 lookup_mask = rsx::texture_upload_context::blit_engine_dst | rsx::texture_upload_context::framebuffer_storage;
const auto overlap = m_texture_cache.find_texture_from_range<true>(range, 0, lookup_mask);
for (const auto & section : overlap)
{
if (!section->is_synchronized())
{
section->copy_texture(*m_current_command_buffer, true);
}
}
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_dma_transfer)
{
// Submit for processing to lower hard fault penalty
flush_command_queue();
}
m_texture_cache.invalidate_range(*m_current_command_buffer, range, rsx::invalidation_cause::read);
image_to_flip = m_texture_cache.upload_image_simple(*m_current_command_buffer, absolute_address, buffer_width, buffer_height);
}
}
VkImage target_image = m_swapchain->get_image(m_current_frame->present_image);
const auto present_layout = m_swapchain->get_optimal_present_layout();
if (image_to_flip)
{
VkImageLayout target_layout = present_layout;
VkImageSubresourceRange range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (aspect_ratio.x || aspect_ratio.y)
{
VkClearColorValue clear_black {};
vk::change_image_layout(*m_current_command_buffer, target_image, present_layout, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, range);
vkCmdClearColorImage(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_black, 1, &range);
target_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
}
vk::copy_scaled_image(*m_current_command_buffer, image_to_flip->value, target_image, image_to_flip->current_layout, target_layout,
{ 0, 0, (s32)buffer_width, (s32)buffer_height }, aspect_ratio, 1, VK_IMAGE_ASPECT_COLOR_BIT, false);
if (target_layout != present_layout)
{
vk::change_image_layout(*m_current_command_buffer, target_image, target_layout, present_layout, range);
}
}
else
{
//No draw call was issued!
//TODO: Upload raw bytes from cpu for rendering
VkImageSubresourceRange range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
VkClearColorValue clear_black {};
vk::change_image_layout(*m_current_command_buffer, target_image, present_layout, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, range);
vkCmdClearColorImage(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_black, 1, &range);
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, present_layout, range);
}
if (m_frame->screenshot_toggle == true)
{
m_frame->screenshot_toggle = false;
const size_t sshot_size = buffer_height * buffer_width * 4;
vk::buffer sshot_vkbuf(*m_device, align(sshot_size, 0x100000), m_device->get_memory_mapping().host_visible_coherent, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0);
VkBufferImageCopy copy_info;
copy_info.bufferOffset = 0;
copy_info.bufferRowLength = 0;
copy_info.bufferImageHeight = 0;
copy_info.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_info.imageSubresource.baseArrayLayer = 0;
copy_info.imageSubresource.layerCount = 1;
copy_info.imageSubresource.mipLevel = 0;
copy_info.imageOffset.x = 0;
copy_info.imageOffset.y = 0;
copy_info.imageOffset.z = 0;
copy_info.imageExtent.width = buffer_width;
copy_info.imageExtent.height = buffer_height;
copy_info.imageExtent.depth = 1;
image_to_flip->push_layout(*m_current_command_buffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vk::copy_image_to_buffer(*m_current_command_buffer, image_to_flip, &sshot_vkbuf, copy_info);
image_to_flip->pop_layout(*m_current_command_buffer);
flush_command_queue(true);
auto src = sshot_vkbuf.map(0, sshot_size);
std::vector<u8> sshot_frame(sshot_size);
memcpy(sshot_frame.data(), src, sshot_size);
sshot_vkbuf.unmap();
m_frame->take_screenshot(std::move(sshot_frame), buffer_width, buffer_height);
}
const bool has_overlay = (m_overlay_manager && m_overlay_manager->has_visible());
if (g_cfg.video.overlay || has_overlay)
{
//Change the image layout whilst setting up a dependency on waiting for the blit op to finish before we start writing
VkImageSubresourceRange subres = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
barrier.oldLayout = present_layout;
barrier.image = target_image;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.subresourceRange = subres;
vkCmdPipelineBarrier(*m_current_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1, &barrier);
auto key = vk::get_renderpass_key(m_swapchain->get_surface_format());
VkRenderPass single_target_pass = vk::get_renderpass(*m_device, key);
verify("Usupported renderpass configuration" HERE), single_target_pass != VK_NULL_HANDLE;
auto direct_fbo = vk::get_framebuffer(*m_device, m_swapchain_dims.width, m_swapchain_dims.height, single_target_pass, m_swapchain->get_surface_format(), target_image);
direct_fbo->add_ref();
if (has_overlay)
{
// Lock to avoid modification during run-update chain
std::lock_guard lock(*m_overlay_manager);
for (const auto& view : m_overlay_manager->get_views())
{
m_ui_renderer->run(*m_current_command_buffer, direct_fbo->width(), direct_fbo->height(), direct_fbo, single_target_pass, m_texture_upload_buffer_ring_info, *view.get());
}
}
if (g_cfg.video.overlay)
{
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 0, direct_fbo->width(), direct_fbo->height(), fmt::format("RSX Load: %3d%%", get_load()));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 18, direct_fbo->width(), direct_fbo->height(), fmt::format("draw calls: %17d", m_draw_calls));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 36, direct_fbo->width(), direct_fbo->height(), fmt::format("draw call setup: %12dus", m_setup_time));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 54, direct_fbo->width(), direct_fbo->height(), fmt::format("vertex upload time: %9dus", m_vertex_upload_time));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 72, direct_fbo->width(), direct_fbo->height(), fmt::format("texture upload time: %8dus", m_textures_upload_time));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 90, direct_fbo->width(), direct_fbo->height(), fmt::format("draw call execution: %8dus", m_draw_time));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 108, direct_fbo->width(), direct_fbo->height(), fmt::format("submit and flip: %12dus", m_flip_time));
const auto num_dirty_textures = m_texture_cache.get_unreleased_textures_count();
const auto texture_memory_size = m_texture_cache.get_texture_memory_in_use() / (1024 * 1024);
const auto tmp_texture_memory_size = m_texture_cache.get_temporary_memory_in_use() / (1024 * 1024);
const auto num_flushes = m_texture_cache.get_num_flush_requests();
const auto num_mispredict = m_texture_cache.get_num_cache_mispredictions();
const auto num_speculate = m_texture_cache.get_num_cache_speculative_writes();
const auto num_misses = m_texture_cache.get_num_cache_misses();
const auto num_unavoidable = m_texture_cache.get_num_unavoidable_hard_faults();
const auto cache_miss_ratio = (u32)ceil(m_texture_cache.get_cache_miss_ratio() * 100);
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 144, direct_fbo->width(), direct_fbo->height(), fmt::format("Unreleased textures: %8d", num_dirty_textures));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 162, direct_fbo->width(), direct_fbo->height(), fmt::format("Texture cache memory: %7dM", texture_memory_size));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 180, direct_fbo->width(), direct_fbo->height(), fmt::format("Temporary texture memory: %3dM", tmp_texture_memory_size));
m_text_writer->print_text(*m_current_command_buffer, *direct_fbo, 0, 198, direct_fbo->width(), direct_fbo->height(), fmt::format("Flush requests: %13d = %2d (%3d%%) hard faults, %2d unavoidable, %2d misprediction(s), %2d speculation(s)", num_flushes, num_misses, cache_miss_ratio, num_unavoidable, num_mispredict, num_speculate));
}
vk::change_image_layout(*m_current_command_buffer, target_image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, present_layout, subres);
direct_fbo->release();
}
queue_swap_request();
m_flip_time = m_profiler.duration();
//NOTE:Resource destruction is handled within the real swap handler
m_frame->flip(m_context);
rsx::thread::flip(buffer, emu_flip);
//Do not reset perf counters if we are skipping the next frame
if (skip_frame) return;
m_draw_time = 0;
m_setup_time = 0;
m_vertex_upload_time = 0;
m_textures_upload_time = 0;
}
bool VKGSRender::scaled_image_from_memory(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate)
{
if (swapchain_unavailable)
return false;
// Verify enough memory exists before attempting to handle data transfer
check_heap_status(VK_HEAP_CHECK_TEXTURE_UPLOAD_STORAGE);
if (m_texture_cache.blit(src, dst, interpolate, m_rtts, *m_current_command_buffer))
{
m_samplers_dirty.store(true);
m_current_command_buffer->set_flag(vk::command_buffer::cb_has_blit_transfer);
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_dma_transfer)
{
// A dma transfer has been queued onto this cb
// This likely means that we're done with the tranfers to the target (writes_likely_completed=1)
flush_command_queue();
}
return true;
}
return false;
}
void VKGSRender::begin_occlusion_query(rsx::reports::occlusion_query_info* query)
{
verify(HERE), !m_occlusion_query_active;
query->result = 0;
//query->sync_timestamp = get_system_time();
m_active_query_info = query;
m_occlusion_query_active = true;
m_current_command_buffer->flags |= vk::command_buffer::cb_load_occluson_task;
}
void VKGSRender::end_occlusion_query(rsx::reports::occlusion_query_info* query)
{
verify(HERE), query == m_active_query_info;
// NOTE: flushing the queue is very expensive, do not flush just because query stopped
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_open_query)
{
// End query
auto open_query = m_occlusion_map[m_active_query_info->driver_handle].indices.back();
m_occlusion_query_pool.end_query(*m_current_command_buffer, open_query);
m_current_command_buffer->flags &= ~vk::command_buffer::cb_has_open_query;
}
// Clear occlusion load flag
m_current_command_buffer->flags &= ~vk::command_buffer::cb_load_occluson_task;
m_occlusion_query_active = false;
m_active_query_info = nullptr;
}
bool VKGSRender::check_occlusion_query_status(rsx::reports::occlusion_query_info* query)
{
if (!query->num_draws)
return true;
auto &data = m_occlusion_map[query->driver_handle];
if (data.indices.empty())
return true;
if (data.command_buffer_to_wait == m_current_command_buffer)
{
if (!m_flush_requests.pending())
{
//Likely to be read at some point in the near future, submit now to avoid stalling later
m_flush_requests.post(false);
m_flush_requests.remove_one();
}
return false;
}
if (data.command_buffer_to_wait->pending)
//Don't bother poking the state, a flush later will likely do it for free
return false;
u32 oldest = data.indices.front();
return m_occlusion_query_pool.check_query_status(oldest);
}
void VKGSRender::get_occlusion_query_result(rsx::reports::occlusion_query_info* query)
{
auto &data = m_occlusion_map[query->driver_handle];
if (data.indices.empty())
return;
if (query->num_draws)
{
if (data.command_buffer_to_wait == m_current_command_buffer)
{
std::lock_guard lock(m_flush_queue_mutex);
flush_command_queue();
//Clear any deferred flush requests from previous call to get_query_status()
if (m_flush_requests.pending())
{
m_flush_requests.clear_pending_flag();
m_flush_requests.consumer_wait();
}
}
if (data.command_buffer_to_wait->pending)
data.command_buffer_to_wait->wait(GENERAL_WAIT_TIMEOUT);
//Gather data
for (const auto occlusion_id : data.indices)
{
//We only need one hit
if (auto value = m_occlusion_query_pool.get_query_result(occlusion_id))
{
query->result = 1;
break;
}
}
}
m_occlusion_query_pool.reset_queries(*m_current_command_buffer, data.indices);
data.indices.clear();
}
void VKGSRender::discard_occlusion_query(rsx::reports::occlusion_query_info* query)
{
if (m_active_query_info == query)
{
end_occlusion_query(query);
}
auto &data = m_occlusion_map[query->driver_handle];
if (data.indices.empty())
return;
m_occlusion_query_pool.reset_queries(*m_current_command_buffer, data.indices);
data.indices.clear();
}
void VKGSRender::emergency_query_cleanup(vk::command_buffer* commands)
{
verify("Command list mismatch" HERE), commands == static_cast<vk::command_buffer*>(m_current_command_buffer);
if (m_current_command_buffer->flags & vk::command_buffer::cb_has_open_query)
{
auto open_query = m_occlusion_map[m_active_query_info->driver_handle].indices.back();
m_occlusion_query_pool.end_query(*m_current_command_buffer, open_query);
m_current_command_buffer->flags &= ~vk::command_buffer::cb_has_open_query;
}
}
bool VKGSRender::on_decompiler_task()
{
return m_prog_buffer->async_update(8, *m_device, pipeline_layout).first;
}