rpcsx/rpcs3/Emu/RSX/GL/GLGSRender.h

410 lines
10 KiB
C++

#pragma once
#include "Emu/RSX/GSRender.h"
#include "GLHelpers.h"
#include "GLTexture.h"
#include "GLTextureCache.h"
#include "GLRenderTargets.h"
#include "GLProgramBuffer.h"
#include "GLTextOut.h"
#include "GLOverlays.h"
#include <optional>
#pragma comment(lib, "opengl32.lib")
namespace gl
{
using vertex_cache = rsx::vertex_cache::default_vertex_cache<rsx::vertex_cache::uploaded_range<GLenum>, GLenum>;
using weak_vertex_cache = rsx::vertex_cache::weak_vertex_cache<GLenum>;
using null_vertex_cache = vertex_cache;
using shader_cache = rsx::shaders_cache<void*, GLProgramBuffer>;
struct vertex_upload_info
{
u32 vertex_draw_count;
u32 allocated_vertex_count;
u32 first_vertex;
u32 vertex_index_base;
u32 vertex_index_offset;
u32 persistent_mapping_offset;
u32 volatile_mapping_offset;
std::optional<std::tuple<GLenum, u32> > index_info;
};
}
struct work_item
{
u32 address_to_flush = 0;
gl::texture_cache::thrashed_set section_data;
volatile bool processed = false;
volatile bool result = false;
volatile bool received = false;
void producer_wait()
{
while (!processed)
{
std::this_thread::yield();
}
received = true;
}
};
struct driver_state
{
const u32 DEPTH_BOUNDS_MIN = 0xFFFF0001;
const u32 DEPTH_BOUNDS_MAX = 0xFFFF0002;
const u32 DEPTH_RANGE_MIN = 0xFFFF0003;
const u32 DEPTH_RANGE_MAX = 0xFFFF0004;
std::unordered_map<GLenum, u32> properties = {};
std::unordered_map<GLenum, std::array<u32, 4>> indexed_properties = {};
bool enable(u32 test, GLenum cap)
{
auto found = properties.find(cap);
if (found != properties.end() && found->second == test)
return !!test;
properties[cap] = test;
if (test)
glEnable(cap);
else
glDisable(cap);
return !!test;
}
bool enablei(u32 test, GLenum cap, u32 index)
{
auto found = indexed_properties.find(cap);
const bool exists = found != indexed_properties.end();
if (!exists)
{
indexed_properties[cap] = {};
indexed_properties[cap][index] = test;
}
else
{
if (found->second[index] == test)
return !!test;
found->second[index] = test;
}
if (test)
glEnablei(cap, index);
else
glDisablei(cap, index);
return !!test;
}
inline bool test_property(GLenum property, u32 test) const
{
auto found = properties.find(property);
if (found == properties.end())
return false;
return (found->second == test);
}
void depth_func(GLenum func)
{
if (!test_property(GL_DEPTH_FUNC, func))
{
glDepthFunc(func);
properties[GL_DEPTH_FUNC] = func;
}
}
void depth_mask(GLboolean mask)
{
if (!test_property(GL_DEPTH_WRITEMASK, mask))
{
glDepthMask(mask);
properties[GL_DEPTH_WRITEMASK] = mask;
}
}
void clear_depth(GLfloat depth)
{
u32 value = std::bit_cast<u32>(depth);
if (!test_property(GL_DEPTH_CLEAR_VALUE, value))
{
glClearDepth(depth);
properties[GL_DEPTH_CLEAR_VALUE] = value;
}
}
void stencil_mask(GLuint mask)
{
if (!test_property(GL_STENCIL_WRITEMASK, mask))
{
glStencilMask(mask);
properties[GL_STENCIL_WRITEMASK] = mask;
}
}
void clear_stencil(GLint stencil)
{
u32 value = std::bit_cast<u32>(stencil);
if (!test_property(GL_STENCIL_CLEAR_VALUE, value))
{
glClearStencil(stencil);
properties[GL_STENCIL_CLEAR_VALUE] = value;
}
}
void color_mask(u32 mask)
{
if (!test_property(GL_COLOR_WRITEMASK, mask))
{
glColorMask(((mask & 0x10) ? 1 : 0), ((mask & 0x20) ? 1 : 0), ((mask & 0x40) ? 1 : 0), ((mask & 0x80) ? 1 : 0));
properties[GL_COLOR_WRITEMASK] = mask;
}
}
void color_mask(bool r, bool g, bool b, bool a)
{
u32 mask = 0;
if (r) mask |= 0x10;
if (g) mask |= 0x20;
if (b) mask |= 0x40;
if (a) mask |= 0x80;
color_mask(mask);
}
void clear_color(u8 r, u8 g, u8 b, u8 a)
{
u32 value = (u32)r | (u32)g << 8 | (u32)b << 16 | (u32)a << 24;
if (!test_property(GL_COLOR_CLEAR_VALUE, value))
{
glClearColor(r / 255.f, g / 255.f, b / 255.f, a / 255.f);
properties[GL_COLOR_CLEAR_VALUE] = value;
}
}
void depth_bounds(float min, float max)
{
u32 depth_min = std::bit_cast<u32>(min);
u32 depth_max = std::bit_cast<u32>(max);
if (!test_property(DEPTH_BOUNDS_MIN, depth_min) || !test_property(DEPTH_BOUNDS_MAX, depth_max))
{
glDepthBoundsEXT(min, max);
properties[DEPTH_BOUNDS_MIN] = depth_min;
properties[DEPTH_BOUNDS_MAX] = depth_max;
}
}
void depth_range(float min, float max)
{
u32 depth_min = std::bit_cast<u32>(min);
u32 depth_max = std::bit_cast<u32>(max);
if (!test_property(DEPTH_RANGE_MIN, depth_min) || !test_property(DEPTH_RANGE_MAX, depth_max))
{
glDepthRange(min, max);
properties[DEPTH_RANGE_MIN] = depth_min;
properties[DEPTH_RANGE_MAX] = depth_max;
}
}
void logic_op(GLenum op)
{
if (!test_property(GL_COLOR_LOGIC_OP, op))
{
glLogicOp(op);
properties[GL_COLOR_LOGIC_OP] = op;
}
}
void line_width(GLfloat width)
{
u32 value = std::bit_cast<u32>(width);
if (!test_property(GL_LINE_WIDTH, value))
{
glLineWidth(width);
properties[GL_LINE_WIDTH] = value;
}
}
void front_face(GLenum face)
{
if (!test_property(GL_FRONT_FACE, face))
{
glFrontFace(face);
properties[GL_FRONT_FACE] = face;
}
}
void cull_face(GLenum mode)
{
if (!test_property(GL_CULL_FACE_MODE, mode))
{
glCullFace(mode);
properties[GL_CULL_FACE_MODE] = mode;
}
}
void polygon_offset(float factor, float units)
{
u32 _units = std::bit_cast<u32>(units);
u32 _factor = std::bit_cast<u32>(factor);
if (!test_property(GL_POLYGON_OFFSET_UNITS, _units) || !test_property(GL_POLYGON_OFFSET_FACTOR, _factor))
{
glPolygonOffset(factor, units);
properties[GL_POLYGON_OFFSET_UNITS] = _units;
properties[GL_POLYGON_OFFSET_FACTOR] = _factor;
}
}
};
class GLGSRender : public GSRender, public ::rsx::reports::ZCULL_control
{
private:
GLFragmentProgram m_fragment_prog;
GLVertexProgram m_vertex_prog;
gl::sampler_state m_fs_sampler_states[rsx::limits::fragment_textures_count]; // Fragment textures
gl::sampler_state m_fs_sampler_mirror_states[rsx::limits::fragment_textures_count]; // Alternate views of fragment textures with different format (e.g Depth vs Stencil for D24S8)
gl::sampler_state m_vs_sampler_states[rsx::limits::vertex_textures_count]; // Vertex textures
gl::glsl::program *m_program;
gl_render_targets m_rtts;
gl::texture_cache m_gl_texture_cache;
gl::buffer_view m_persistent_stream_view;
gl::buffer_view m_volatile_stream_view;
std::unique_ptr<gl::texture> m_gl_persistent_stream_buffer;
std::unique_ptr<gl::texture> m_gl_volatile_stream_buffer;
std::unique_ptr<gl::ring_buffer> m_attrib_ring_buffer;
std::unique_ptr<gl::ring_buffer> m_fragment_constants_buffer;
std::unique_ptr<gl::ring_buffer> m_transform_constants_buffer;
std::unique_ptr<gl::ring_buffer> m_fragment_env_buffer;
std::unique_ptr<gl::ring_buffer> m_vertex_env_buffer;
std::unique_ptr<gl::ring_buffer> m_texture_parameters_buffer;
std::unique_ptr<gl::ring_buffer> m_vertex_layout_buffer;
std::unique_ptr<gl::ring_buffer> m_index_ring_buffer;
// Identity buffer used to fix broken gl_VertexID on ATI stack
std::unique_ptr<gl::buffer> m_identity_index_buffer;
s64 m_begin_time = 0;
s64 m_draw_time = 0;
s64 m_vertex_upload_time = 0;
s64 m_textures_upload_time = 0;
std::unique_ptr<gl::vertex_cache> m_vertex_cache;
std::unique_ptr<gl::shader_cache> m_shaders_cache;
GLint m_min_texbuffer_alignment = 256;
GLint m_uniform_buffer_offset_align = 256;
GLint m_max_texbuffer_size = 65536;
bool manually_flush_ring_buffers = false;
gl::text_writer m_text_printer;
gl::depth_convert_pass m_depth_converter;
gl::ui_overlay_renderer m_ui_renderer;
gl::video_out_calibration_pass m_video_output_pass;
shared_mutex queue_guard;
std::list<work_item> work_queue;
std::thread::id m_thread_id;
GLProgramBuffer m_prog_buffer;
draw_context_t m_decompiler_context;
//buffer
gl::fbo* m_draw_fbo = nullptr;
std::list<gl::framebuffer_holder> m_framebuffer_cache;
gl::fbo m_flip_fbo;
std::unique_ptr<gl::texture> m_flip_tex_color;
//vaos are mandatory for core profile
gl::vao m_vao;
shared_mutex m_sampler_mutex;
u64 surface_store_tag = 0;
std::atomic_bool m_samplers_dirty = {true};
std::array<std::unique_ptr<rsx::sampled_image_descriptor_base>, rsx::limits::fragment_textures_count> fs_sampler_state = {};
std::array<std::unique_ptr<rsx::sampled_image_descriptor_base>, rsx::limits::vertex_textures_count> vs_sampler_state = {};
std::unordered_map<GLenum, std::unique_ptr<gl::texture>> m_null_textures;
std::vector<u8> m_scratch_buffer;
public:
u64 get_cycles() final;
GLGSRender();
private:
gl::driver_state gl_state;
// Return element to draw and in case of indexed draw index type and offset in index buffer
gl::vertex_upload_info set_vertex_buffer();
rsx::vertex_input_layout m_vertex_layout = {};
void clear_surface(u32 arg);
void init_buffers(rsx::framebuffer_creation_context context, bool skip_reading = false);
bool load_program();
void load_program_env();
void update_vertex_env(const gl::vertex_upload_info& upload_info);
void update_draw_state();
public:
void read_buffers();
void set_viewport();
void set_scissor(bool clip_viewport);
work_item& post_flush_request(u32 address, gl::texture_cache::thrashed_set& flush_data);
bool scaled_image_from_memory(rsx::blit_src_info& src_info, rsx::blit_dst_info& dst_info, bool interpolate) override;
void begin_occlusion_query(rsx::reports::occlusion_query_info* query) override;
void end_occlusion_query(rsx::reports::occlusion_query_info* query) override;
bool check_occlusion_query_status(rsx::reports::occlusion_query_info* query) override;
void get_occlusion_query_result(rsx::reports::occlusion_query_info* query) override;
void discard_occlusion_query(rsx::reports::occlusion_query_info* query) override;
protected:
void begin() override;
void end() override;
void on_init_thread() override;
void on_exit() override;
bool do_method(u32 cmd, u32 arg) override;
void flip(int buffer, bool emu_flip = false) override;
void do_local_task(rsx::FIFO_state state) override;
bool on_access_violation(u32 address, bool is_writing) override;
void on_invalidate_memory_range(const utils::address_range &range) override;
void notify_tile_unbound(u32 tile) override;
std::array<std::vector<gsl::byte>, 4> copy_render_targets_to_memory() override;
std::array<std::vector<gsl::byte>, 2> copy_depth_stencil_buffer_to_memory() override;
void on_decompiler_init() override;
void on_decompiler_exit() override;
bool on_decompiler_task() override;
};