rpcsx/rpcs3/Emu/Cell/lv2/sys_timer.cpp
2019-07-23 00:09:01 +01:00

326 lines
6.1 KiB
C++

#include "stdafx.h"
#include "sys_timer.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_event.h"
#include "sys_process.h"
#include <thread>
LOG_CHANNEL(sys_timer);
extern u64 get_guest_system_time();
void lv2_timer_context::operator()()
{
while (!Emu.IsStopped())
{
const u32 _state = state;
if (_state == SYS_TIMER_STATE_RUN)
{
const u64 _now = get_guest_system_time();
const u64 next = expire;
if (_now >= next)
{
std::lock_guard lock(mutex);
if (const auto queue = port.lock())
{
queue->send(source, data1, data2, next);
}
if (period)
{
// Set next expiration time and check again (HACK)
expire += period;
continue;
}
// Stop after oneshot
state.compare_and_swap_test(SYS_TIMER_STATE_RUN, SYS_TIMER_STATE_STOP);
continue;
}
// TODO: use single global dedicated thread for busy waiting, no timer threads
lv2_obj::wait_timeout(next - _now);
}
else if (_state == SYS_TIMER_STATE_STOP)
{
thread_ctrl::wait_for(10000);
}
else
{
break;
}
}
}
void lv2_timer_context::on_abort()
{
// Signal thread using invalid state
state = -1;
}
error_code sys_timer_create(ppu_thread& ppu, vm::ptr<u32> timer_id)
{
vm::temporary_unlock(ppu);
sys_timer.warning("sys_timer_create(timer_id=*0x%x)", timer_id);
if (const u32 id = idm::make<lv2_obj, lv2_timer>("Timer Thread"))
{
*timer_id = id;
return CELL_OK;
}
return CELL_EAGAIN;
}
error_code sys_timer_destroy(ppu_thread& ppu, u32 timer_id)
{
vm::temporary_unlock(ppu);
sys_timer.warning("sys_timer_destroy(timer_id=0x%x)", timer_id);
const auto timer = idm::withdraw<lv2_obj, lv2_timer>(timer_id, [&](lv2_timer& timer) -> CellError
{
std::lock_guard lock(timer.mutex);
if (!timer.port.expired())
{
return CELL_EISCONN;
}
return {};
});
if (!timer)
{
return CELL_ESRCH;
}
if (timer.ret)
{
return timer.ret;
}
return CELL_OK;
}
error_code sys_timer_get_information(ppu_thread& ppu, u32 timer_id, vm::ptr<sys_timer_information_t> info)
{
vm::temporary_unlock(ppu);
sys_timer.trace("sys_timer_get_information(timer_id=0x%x, info=*0x%x)", timer_id, info);
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [&](lv2_timer& timer)
{
std::lock_guard lock(timer.mutex);
info->next_expire = timer.expire;
info->period = timer.period;
info->timer_state = timer.state;
});
if (!timer)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code _sys_timer_start(ppu_thread& ppu, u32 timer_id, u64 base_time, u64 period)
{
vm::temporary_unlock(ppu);
sys_timer.trace("_sys_timer_start(timer_id=0x%x, base_time=0x%llx, period=0x%llx)", timer_id, base_time, period);
const u64 start_time = get_guest_system_time();
if (!period && start_time >= base_time)
{
// Invalid oneshot (TODO: what will happen if both args are 0?)
return not_an_error(CELL_ETIMEDOUT);
}
if (period && period < 100)
{
// Invalid periodic timer
return CELL_EINVAL;
}
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [&](lv2_timer& timer) -> CellError
{
std::unique_lock lock(timer.mutex);
if (timer.state != SYS_TIMER_STATE_STOP)
{
return CELL_EBUSY;
}
if (timer.port.expired())
{
return CELL_ENOTCONN;
}
// sys_timer_start_periodic() will use current time (TODO: is it correct?)
timer.expire = base_time ? base_time : start_time + period;
timer.period = period;
timer.state = SYS_TIMER_STATE_RUN;
lock.unlock();
thread_ctrl::notify(timer);
return {};
});
if (!timer)
{
return CELL_ESRCH;
}
if (timer.ret)
{
return timer.ret;
}
return CELL_OK;
}
error_code sys_timer_stop(ppu_thread& ppu, u32 timer_id)
{
vm::temporary_unlock(ppu);
sys_timer.trace("sys_timer_stop()");
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [](lv2_timer& timer)
{
std::lock_guard lock(timer.mutex);
timer.state = SYS_TIMER_STATE_STOP;
});
if (!timer)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_timer_connect_event_queue(ppu_thread& ppu, u32 timer_id, u32 queue_id, u64 name, u64 data1, u64 data2)
{
vm::temporary_unlock(ppu);
sys_timer.warning("sys_timer_connect_event_queue(timer_id=0x%x, queue_id=0x%x, name=0x%llx, data1=0x%llx, data2=0x%llx)", timer_id, queue_id, name, data1, data2);
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [&](lv2_timer& timer) -> CellError
{
const auto found = idm::find_unlocked<lv2_obj, lv2_event_queue>(queue_id);
if (!found)
{
return CELL_ESRCH;
}
std::lock_guard lock(timer.mutex);
if (!timer.port.expired())
{
return CELL_EISCONN;
}
// Connect event queue
timer.port = std::static_pointer_cast<lv2_event_queue>(found->second);
timer.source = name ? name : ((u64)process_getpid() << 32) | timer_id;
timer.data1 = data1;
timer.data2 = data2;
return {};
});
if (!timer)
{
return CELL_ESRCH;
}
if (timer.ret)
{
return timer.ret;
}
return CELL_OK;
}
error_code sys_timer_disconnect_event_queue(ppu_thread& ppu, u32 timer_id)
{
vm::temporary_unlock(ppu);
sys_timer.warning("sys_timer_disconnect_event_queue(timer_id=0x%x)", timer_id);
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [](lv2_timer& timer) -> CellError
{
std::lock_guard lock(timer.mutex);
if (timer.port.expired())
{
return CELL_ENOTCONN;
}
timer.state = SYS_TIMER_STATE_STOP;
timer.port.reset();
return {};
});
if (!timer)
{
return CELL_ESRCH;
}
if (timer.ret)
{
return timer.ret;
}
return CELL_OK;
}
error_code sys_timer_sleep(ppu_thread& ppu, u32 sleep_time)
{
vm::temporary_unlock(ppu);
sys_timer.trace("sys_timer_sleep(sleep_time=%d) -> sys_timer_usleep()", sleep_time);
return sys_timer_usleep(ppu, sleep_time * u64{1000000});
}
error_code sys_timer_usleep(ppu_thread& ppu, u64 sleep_time)
{
vm::temporary_unlock(ppu);
sys_timer.trace("sys_timer_usleep(sleep_time=0x%llx)", sleep_time);
if (sleep_time)
{
lv2_obj::sleep(ppu, 0);
lv2_obj::wait_timeout<true>(sleep_time);
if (ppu.is_stopped())
{
return 0;
}
}
else
{
std::this_thread::yield();
}
return CELL_OK;
}