rpcsx/rpcs3/Emu/Cell/lv2/sys_semaphore.cpp
Eladash 7b6482c01d
LV2: Improve IPC support (#10206)
* Remove custom event queue's IPC management of favour of universal LV2 approach.
* Move ipc_manager to FXO.
* Fix ipc_manager internal storage memory leak: deallocate entry when IPC object destroyed.
* Rewrite lv2_obj::create to be simpler (remove many duplicated code).
* Always execute lv2_obj::create under both IPC and IDM mutexes at once (not in non-atomic single-steps). Fixing potential case where concurrency can cause IDM to contain 2 or more different objects with the same IPC key with SYS_SYNC_NOT_CARE (instead of the same object).
* Do not rely on smart ptr reference count to tell if the object exists. Use similar approach as event queues as it makes error checkings accurate.
* Optimize lv2_event_port by using std::shared_ptr for queue which wasn't allowed before.
2021-05-07 09:58:30 +03:00

303 lines
5.1 KiB
C++

#include "stdafx.h"
#include "sys_semaphore.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
LOG_CHANNEL(sys_semaphore);
error_code sys_semaphore_create(ppu_thread& ppu, vm::ptr<u32> sem_id, vm::ptr<sys_semaphore_attribute_t> attr, s32 initial_val, s32 max_val)
{
ppu.state += cpu_flag::wait;
sys_semaphore.warning("sys_semaphore_create(sem_id=*0x%x, attr=*0x%x, initial_val=%d, max_val=%d)", sem_id, attr, initial_val, max_val);
if (!sem_id || !attr)
{
return CELL_EFAULT;
}
if (max_val <= 0 || initial_val > max_val || initial_val < 0)
{
sys_semaphore.error("sys_semaphore_create(): invalid parameters (initial_val=%d, max_val=%d)", initial_val, max_val);
return CELL_EINVAL;
}
const auto _attr = *attr;
const u32 protocol = _attr.protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY)
{
sys_semaphore.error("sys_semaphore_create(): unknown protocol (0x%x)", protocol);
return CELL_EINVAL;
}
if (auto error = lv2_obj::create<lv2_sema>(_attr.pshared, _attr.ipc_key, _attr.flags, [&]
{
return std::make_shared<lv2_sema>(protocol, _attr.pshared, _attr.ipc_key, _attr.name_u64, max_val, initial_val);
}))
{
return error;
}
if (ppu.test_stopped())
{
return {};
}
*sem_id = idm::last_id();
return CELL_OK;
}
error_code sys_semaphore_destroy(ppu_thread& ppu, u32 sem_id)
{
ppu.state += cpu_flag::wait;
sys_semaphore.warning("sys_semaphore_destroy(sem_id=0x%x)", sem_id);
const auto sem = idm::withdraw<lv2_obj, lv2_sema>(sem_id, [](lv2_sema& sema) -> CellError
{
if (sema.val < 0)
{
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(sema, sema.shared, sema.key);
return {};
});
if (!sem)
{
return CELL_ESRCH;
}
if (sem.ret)
{
return sem.ret;
}
return CELL_OK;
}
error_code sys_semaphore_wait(ppu_thread& ppu, u32 sem_id, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_semaphore.trace("sys_semaphore_wait(sem_id=0x%x, timeout=0x%llx)", sem_id, timeout);
const auto sem = idm::get<lv2_obj, lv2_sema>(sem_id, [&](lv2_sema& sema)
{
const s32 val = sema.val;
if (val > 0)
{
if (sema.val.compare_and_swap_test(val, val - 1))
{
return true;
}
}
std::lock_guard lock(sema.mutex);
if (sema.val-- <= 0)
{
sema.sq.emplace_back(&ppu);
sema.sleep(ppu, timeout);
return false;
}
return true;
});
if (!sem)
{
return CELL_ESRCH;
}
if (sem.ret)
{
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (auto state = ppu.state.fetch_sub(cpu_flag::signal))
{
if (is_stopped(state))
{
return {};
}
if (state & cpu_flag::signal)
{
break;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
return {};
}
std::lock_guard lock(sem->mutex);
if (!sem->unqueue(sem->sq, &ppu))
{
break;
}
ensure(0 > sem->val.fetch_op([](s32& val)
{
if (val < 0)
{
val++;
}
}));
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait_on(ppu.state, state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_semaphore_trywait(ppu_thread& ppu, u32 sem_id)
{
ppu.state += cpu_flag::wait;
sys_semaphore.trace("sys_semaphore_trywait(sem_id=0x%x)", sem_id);
const auto sem = idm::check<lv2_obj, lv2_sema>(sem_id, [&](lv2_sema& sema)
{
return sema.val.try_dec(0);
});
if (!sem)
{
return CELL_ESRCH;
}
if (!sem.ret)
{
return not_an_error(CELL_EBUSY);
}
return CELL_OK;
}
error_code sys_semaphore_post(ppu_thread& ppu, u32 sem_id, s32 count)
{
ppu.state += cpu_flag::wait;
sys_semaphore.trace("sys_semaphore_post(sem_id=0x%x, count=%d)", sem_id, count);
const auto sem = idm::get<lv2_obj, lv2_sema>(sem_id, [&](lv2_sema& sema)
{
const s32 val = sema.val;
if (val >= 0 && count > 0 && count <= sema.max - val)
{
if (sema.val.compare_and_swap_test(val, val + count))
{
return true;
}
}
return false;
});
if (!sem)
{
return CELL_ESRCH;
}
if (count <= 0)
{
return CELL_EINVAL;
}
if (sem.ret)
{
return CELL_OK;
}
else
{
std::lock_guard lock(sem->mutex);
const auto [val, ok] = sem->val.fetch_op([&](s32& val)
{
if (count + 0u <= sem->max + 0u - val)
{
val += count;
return true;
}
return false;
});
if (!ok)
{
return not_an_error(CELL_EBUSY);
}
// Wake threads
const s32 to_awake = std::min<s32>(-std::min<s32>(val, 0), count);
for (s32 i = 0; i < to_awake; i++)
{
sem->append((ensure(sem->schedule<ppu_thread>(sem->sq, sem->protocol))));
}
if (to_awake > 0)
{
lv2_obj::awake_all();
}
}
return CELL_OK;
}
error_code sys_semaphore_get_value(ppu_thread& ppu, u32 sem_id, vm::ptr<s32> count)
{
ppu.state += cpu_flag::wait;
sys_semaphore.trace("sys_semaphore_get_value(sem_id=0x%x, count=*0x%x)", sem_id, count);
const auto sema = idm::check<lv2_obj, lv2_sema>(sem_id, [](lv2_sema& sema)
{
return std::max<s32>(0, sema.val);
});
if (!sema)
{
return CELL_ESRCH;
}
if (!count)
{
return CELL_EFAULT;
}
if (ppu.test_stopped())
{
return {};
}
*count = sema.ret;
return CELL_OK;
}