rpcsx/rpcs3/Emu/RSX/VK/VKVertexBuffers.cpp
2016-08-24 21:58:59 +02:00

492 lines
17 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "VKGSRender.h"
#include "../rsx_methods.h"
#include "../Common/BufferUtils.h"
namespace vk
{
bool requires_component_expansion(rsx::vertex_base_type type, u32 size)
{
if (size == 3)
{
switch (type)
{
case rsx::vertex_base_type::f:
return true;
}
}
return false;
}
u32 get_suitable_vk_size(rsx::vertex_base_type type, u32 size)
{
if (size == 3)
{
switch (type)
{
case rsx::vertex_base_type::f:
return 16;
}
}
return rsx::get_vertex_type_size_on_host(type, size);
}
VkFormat get_suitable_vk_format(rsx::vertex_base_type type, u8 size)
{
/**
* Set up buffer fetches to only work on 4-component access. This is hardware dependant so we use 4-component access to avoid branching based on IHV implementation
* AMD GCN 1.0 for example does not support RGB32 formats for texel buffers
*/
const VkFormat vec1_types[] = { VK_FORMAT_R16_UNORM, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R8_UNORM, VK_FORMAT_R16_SINT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R8_UINT };
const VkFormat vec2_types[] = { VK_FORMAT_R16G16_UNORM, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R8G8_UNORM, VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R8G8_UINT };
const VkFormat vec3_types[] = { VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R8G8B8A8_UINT }; //VEC3 COMPONENTS NOT SUPPORTED!
const VkFormat vec4_types[] = { VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R8G8B8A8_UINT };
const VkFormat* vec_selectors[] = { 0, vec1_types, vec2_types, vec3_types, vec4_types };
if (type > rsx::vertex_base_type::ub256)
fmt::throw_exception("VKGS error: unknown vertex base type 0x%x" HERE, (u32)type);
return vec_selectors[size][(int)type];
}
VkPrimitiveTopology get_appropriate_topology(rsx::primitive_type& mode, bool &requires_modification)
{
requires_modification = false;
switch (mode)
{
case rsx::primitive_type::lines:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
case rsx::primitive_type::line_loop:
requires_modification = true;
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case rsx::primitive_type::line_strip:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case rsx::primitive_type::points:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
case rsx::primitive_type::triangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case rsx::primitive_type::triangle_strip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case rsx::primitive_type::triangle_fan:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN;
case rsx::primitive_type::quads:
case rsx::primitive_type::quad_strip:
case rsx::primitive_type::polygon:
requires_modification = true;
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
default:
fmt::throw_exception("Unsupported primitive topology 0x%x", (u8)mode);
}
}
template <typename T, u32 padding>
void copy_inlined_data_to_buffer(void *src_data, void *dst_data, u32 vertex_count, rsx::vertex_base_type type, u8 src_channels, u8 dst_channels, u16 element_size, u16 stride)
{
u8 *src = static_cast<u8*>(src_data);
u8 *dst = static_cast<u8*>(dst_data);
for (u32 i = 0; i < vertex_count; ++i)
{
T* src_ptr = reinterpret_cast<T*>(src);
T* dst_ptr = reinterpret_cast<T*>(dst);
switch (type)
{
case rsx::vertex_base_type::ub:
{
if (src_channels == 4)
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
break;
}
}
default:
{
for (u8 ch = 0; ch < dst_channels; ++ch)
{
if (ch < src_channels)
{
*dst_ptr = *src_ptr;
src_ptr++;
}
else
*dst_ptr = (T)(padding);
dst_ptr++;
}
}
}
src += stride;
dst += element_size;
}
}
void prepare_buffer_for_writing(void *data, rsx::vertex_base_type type, u8 vertex_size, u32 vertex_count)
{
switch (type)
{
case rsx::vertex_base_type::f:
{
if (vertex_size == 3)
{
float *dst = reinterpret_cast<float*>(data);
for (u32 i = 0, idx = 3; i < vertex_count; ++i, idx += 4)
dst[idx] = 1.f;
}
break;
}
case rsx::vertex_base_type::sf:
{
if (vertex_size == 3)
{
/**
* Pad the 4th component for half-float arrays to 1, since texelfetch does not mask components
*/
u16 *dst = reinterpret_cast<u16*>(data);
for (u32 i = 0, idx = 3; i < vertex_count; ++i, idx += 4)
dst[idx] = 0x3c00;
}
break;
}
}
}
/**
* Template: Expand any N-compoent vector to a larger X-component vector and pad unused slots with 1
*/
template<typename T, u8 src_components, u8 dst_components, u32 padding>
void expand_array_components(const T* src_data, void *dst_ptr, u32 vertex_count)
{
T* src = const_cast<T*>(src_data);
T* dst = static_cast<T*>(dst_ptr);
for (u32 index = 0; index < vertex_count; ++index)
{
for (u8 channel = 0; channel < dst_components; channel++)
{
if (channel < src_components)
{
*dst = *src;
dst++;
src++;
}
else
{
*dst = (T)(padding);
dst++;
}
}
}
}
VkIndexType get_index_type(rsx::index_array_type type)
{
switch (type)
{
case rsx::index_array_type::u32:
return VK_INDEX_TYPE_UINT32;
case rsx::index_array_type::u16:
return VK_INDEX_TYPE_UINT16;
}
throw;
}
}
namespace
{
static constexpr std::array<const char*, 16> s_reg_table =
{
"in_pos_buffer", "in_weight_buffer", "in_normal_buffer",
"in_diff_color_buffer", "in_spec_color_buffer",
"in_fog_buffer",
"in_point_size_buffer", "in_7_buffer",
"in_tc0_buffer", "in_tc1_buffer", "in_tc2_buffer", "in_tc3_buffer",
"in_tc4_buffer", "in_tc5_buffer", "in_tc6_buffer", "in_tc7_buffer"
};
}
std::tuple<VkPrimitiveTopology, u32, std::optional<std::tuple<VkDeviceSize, VkIndexType> > >
VKGSRender::upload_vertex_data()
{
u32 input_mask = rsx::method_registers.vertex_attrib_input_mask();
u32 min_index, max_index;
bool is_indexed_draw = (rsx::method_registers.current_draw_clause.command == rsx::draw_command::indexed);
u32 index_count = 0;
std::optional<std::tuple<VkDeviceSize, VkIndexType> > index_info;
if (is_indexed_draw)
{
std::tie(min_index, max_index, index_count, index_info) = upload_index_buffer(rsx::method_registers.current_draw_clause);
min_index = 0; // We need correct index mapping
}
bool primitives_emulated = false;
VkPrimitiveTopology prims = vk::get_appropriate_topology(rsx::method_registers.current_draw_clause.primitive, primitives_emulated);
if (rsx::method_registers.current_draw_clause.command == rsx::draw_command::array)
{
if (primitives_emulated)
{
std::tie(index_count, index_info) = generate_emulating_index_buffer(rsx::method_registers.current_draw_clause, rsx::method_registers.current_draw_clause.get_elements_count());
}
else
{
index_count = rsx::method_registers.current_draw_clause.get_elements_count();
}
min_index = rsx::method_registers.current_draw_clause.first_count_commands.front().first;
max_index = rsx::method_registers.current_draw_clause.get_elements_count() + min_index;
}
if (rsx::method_registers.current_draw_clause.command == rsx::draw_command::inlined_array)
{
index_count = upload_inlined_array();
if (primitives_emulated)
{
std::tie(index_count, index_info) = generate_emulating_index_buffer(rsx::method_registers.current_draw_clause, index_count);
}
}
if (rsx::method_registers.current_draw_clause.command == rsx::draw_command::array || rsx::method_registers.current_draw_clause.command == rsx::draw_command::indexed)
{
upload_vertex_buffers(min_index, max_index);
}
return std::make_tuple(prims, index_count, index_info);
}
namespace
{
struct vertex_buffer_visitor
{
vertex_buffer_visitor(u32 vtx_cnt, VkDevice dev,
vk::vk_data_heap& heap, vk::glsl::program* prog,
VkDescriptorSet desc_set,
std::vector<std::unique_ptr<vk::buffer_view>>& buffer_view_to_clean)
: vertex_count(vtx_cnt)
, m_attrib_ring_info(heap)
, device(dev)
, m_program(prog)
, descriptor_sets(desc_set)
, m_buffer_view_to_clean(buffer_view_to_clean)
{
}
void operator()(const rsx::vertex_array_buffer& vertex_array)
{
// Fill vertex_array
u32 element_size = rsx::get_vertex_type_size_on_host(vertex_array.type, vertex_array.attribute_size);
u32 real_element_size = vk::get_suitable_vk_size(vertex_array.type, vertex_array.attribute_size);
u32 upload_size = real_element_size * vertex_count;
bool requires_expansion = vk::requires_component_expansion(vertex_array.type, vertex_array.attribute_size);
VkDeviceSize offset_in_attrib_buffer = m_attrib_ring_info.alloc<256>(upload_size);
void *dst = m_attrib_ring_info.map(offset_in_attrib_buffer, upload_size);
vk::prepare_buffer_for_writing(dst, vertex_array.type, vertex_array.attribute_size, vertex_count);
gsl::span<gsl::byte> dest_span(static_cast<gsl::byte*>(dst), upload_size);
write_vertex_array_data_to_buffer(dest_span, vertex_array.data, vertex_count, vertex_array.type, vertex_array.attribute_size, vertex_array.stride, real_element_size);
m_attrib_ring_info.unmap();
const VkFormat format = vk::get_suitable_vk_format(vertex_array.type, vertex_array.attribute_size);
m_buffer_view_to_clean.push_back(std::make_unique<vk::buffer_view>(device, m_attrib_ring_info.heap->value, format, offset_in_attrib_buffer, upload_size));
m_program->bind_uniform(m_buffer_view_to_clean.back()->value, s_reg_table[vertex_array.index], descriptor_sets);
}
void operator()(const rsx::vertex_array_register& vertex_register)
{
switch (vertex_register.type)
{
case rsx::vertex_base_type::f:
{
size_t data_size = rsx::get_vertex_type_size_on_host(vertex_register.type, vertex_register.attribute_size);
const VkFormat format = vk::get_suitable_vk_format(vertex_register.type, vertex_register.attribute_size);
u32 offset_in_attrib_buffer = 0;
if (vk::requires_component_expansion(vertex_register.type, vertex_register.attribute_size))
{
const u32 num_stored_verts = static_cast<u32>(data_size / (sizeof(float) * vertex_register.attribute_size));
const u32 real_element_size = vk::get_suitable_vk_size(vertex_register.type, vertex_register.attribute_size);
data_size = real_element_size * num_stored_verts;
offset_in_attrib_buffer = m_attrib_ring_info.alloc<256>(data_size);
void *dst = m_attrib_ring_info.map(offset_in_attrib_buffer, data_size);
vk::expand_array_components<float, 3, 4, 1>(reinterpret_cast<const float*>(vertex_register.data.data()), dst, num_stored_verts);
m_attrib_ring_info.unmap();
}
else
{
offset_in_attrib_buffer = m_attrib_ring_info.alloc<256>(data_size);
void *dst = m_attrib_ring_info.map(offset_in_attrib_buffer, data_size);
memcpy(dst, vertex_register.data.data(), data_size);
m_attrib_ring_info.unmap();
}
m_buffer_view_to_clean.push_back(std::make_unique<vk::buffer_view>(device, m_attrib_ring_info.heap->value, format, offset_in_attrib_buffer, data_size));
m_program->bind_uniform(m_buffer_view_to_clean.back()->value, s_reg_table[vertex_register.index], descriptor_sets);
break;
}
default:
fmt::throw_exception("Unknown base type %d" HERE, (u32)vertex_register.type);
}
}
void operator()(const rsx::empty_vertex_array& vbo)
{
u32 offset_in_attrib_buffer = m_attrib_ring_info.alloc<256>(32);
void *dst = m_attrib_ring_info.map(offset_in_attrib_buffer, 32);
memset(dst, 0, 32);
m_attrib_ring_info.unmap();
m_buffer_view_to_clean.push_back(std::make_unique<vk::buffer_view>(device, m_attrib_ring_info.heap->value, VK_FORMAT_R32_SFLOAT, offset_in_attrib_buffer, 32));
m_program->bind_uniform(m_buffer_view_to_clean.back()->value, s_reg_table[vbo.index], descriptor_sets);
}
protected:
VkDevice device;
u32 vertex_count;
vk::vk_data_heap& m_attrib_ring_info;
vk::glsl::program* m_program;
VkDescriptorSet descriptor_sets;
std::vector<std::unique_ptr<vk::buffer_view>>& m_buffer_view_to_clean;
};
} // End anonymous namespace
void VKGSRender::upload_vertex_buffers(u32 min_index, u32 vertex_max_index)
{
vertex_buffer_visitor visitor(vertex_max_index - min_index + 1, *m_device, m_attrib_ring_info, m_program, descriptor_sets, m_buffer_view_to_clean);
const auto& vertex_buffers = get_vertex_buffers(rsx::method_registers, {{min_index, vertex_max_index - min_index + 1}});
for (const auto& vbo : vertex_buffers)
std::apply_visitor(visitor, vbo);
}
u32 VKGSRender::upload_inlined_array()
{
u32 stride = 0;
u32 offsets[rsx::limits::vertex_count] = { 0 };
for (u32 i = 0; i < rsx::limits::vertex_count; ++i)
{
const auto &info = rsx::method_registers.vertex_arrays_info[i];
if (!info.size) continue;
offsets[i] = stride;
stride += rsx::get_vertex_type_size_on_host(info.type, info.size);
}
u32 vertex_draw_count = (u32)(inline_vertex_array.size() * sizeof(u32)) / stride;
for (int index = 0; index < rsx::limits::vertex_count; ++index)
{
auto &vertex_info = rsx::method_registers.vertex_arrays_info[index];
if (!m_program->has_uniform(s_reg_table[index]))
continue;
if (!vertex_info.size) // disabled
{
continue;
}
const u32 element_size = vk::get_suitable_vk_size(vertex_info.type, vertex_info.size);
const u32 data_size = element_size * vertex_draw_count;
const VkFormat format = vk::get_suitable_vk_format(vertex_info.type, vertex_info.size);
u32 offset_in_attrib_buffer = m_attrib_ring_info.alloc<256>(data_size);
u8 *src = reinterpret_cast<u8*>(inline_vertex_array.data());
u8 *dst = static_cast<u8*>(m_attrib_ring_info.map(offset_in_attrib_buffer, data_size));
src += offsets[index];
u8 opt_size = vertex_info.size;
if (vertex_info.size == 3)
opt_size = 4;
//TODO: properly handle cmp type
if (vertex_info.type == rsx::vertex_base_type::cmp)
LOG_ERROR(RSX, "Compressed vertex attributes not supported for inlined arrays yet");
switch (vertex_info.type)
{
case rsx::vertex_base_type::f:
vk::copy_inlined_data_to_buffer<float, 1>(src, dst, vertex_draw_count, vertex_info.type, vertex_info.size, opt_size, element_size, stride);
break;
case rsx::vertex_base_type::sf:
vk::copy_inlined_data_to_buffer<u16, 0x3c00>(src, dst, vertex_draw_count, vertex_info.type, vertex_info.size, opt_size, element_size, stride);
break;
case rsx::vertex_base_type::s1:
case rsx::vertex_base_type::ub:
case rsx::vertex_base_type::ub256:
vk::copy_inlined_data_to_buffer<u8, 1>(src, dst, vertex_draw_count, vertex_info.type, vertex_info.size, opt_size, element_size, stride);
break;
case rsx::vertex_base_type::s32k:
case rsx::vertex_base_type::cmp:
vk::copy_inlined_data_to_buffer<u16, 1>(src, dst, vertex_draw_count, vertex_info.type, vertex_info.size, opt_size, element_size, stride);
break;
default:
fmt::throw_exception("Unknown base type %d" HERE, (u32)vertex_info.type);
}
m_attrib_ring_info.unmap();
m_buffer_view_to_clean.push_back(std::make_unique<vk::buffer_view>(*m_device, m_attrib_ring_info.heap->value, format, offset_in_attrib_buffer, data_size));
m_program->bind_uniform(m_buffer_view_to_clean.back()->value, s_reg_table[index], descriptor_sets);
}
return vertex_draw_count;
}
std::tuple<u32, u32, u32, std::tuple<VkDeviceSize, VkIndexType>> VKGSRender::upload_index_buffer(const rsx::draw_clause &clause)
{
rsx::index_array_type index_type = rsx::method_registers.index_type();
u32 type_size = gsl::narrow<u32>(get_index_type_size(index_type));
u32 index_count = get_index_count(clause.primitive, clause.get_elements_count());
u32 upload_size = index_count * type_size;
VkDeviceSize offset_in_index_buffer = m_index_buffer_ring_info.alloc<256>(upload_size);
void* buf = m_index_buffer_ring_info.map(offset_in_index_buffer, upload_size);
u32 min_index, max_index;
std::tie(min_index, max_index) = write_index_array_data_to_buffer(gsl::span<gsl::byte>(static_cast<gsl::byte*>(buf), index_count * type_size), get_raw_index_array(clause.first_count_commands),
index_type, clause.primitive, rsx::method_registers.restart_index_enabled(), rsx::method_registers.restart_index(), clause.first_count_commands,
[](auto prim) { return !is_primitive_native(prim); });
m_index_buffer_ring_info.unmap();
return std::make_tuple(min_index, max_index, index_count, std::make_tuple(offset_in_index_buffer, vk::get_index_type(index_type)));
}
std::tuple<u32, std::tuple<VkDeviceSize, VkIndexType> > VKGSRender::generate_emulating_index_buffer(const rsx::draw_clause &clause, u32 vertex_count)
{
u32 index_count = get_index_count(clause.primitive, vertex_count);
u32 upload_size = index_count * sizeof(u16);
VkDeviceSize offset_in_index_buffer = m_index_buffer_ring_info.alloc<256>(upload_size);
void* buf = m_index_buffer_ring_info.map(offset_in_index_buffer, upload_size);
write_index_array_for_non_indexed_non_native_primitive_to_buffer(reinterpret_cast<char*>(buf), clause.primitive, 0, vertex_count);
m_index_buffer_ring_info.unmap();
return std::make_tuple(index_count, std::make_tuple(offset_in_index_buffer, VK_INDEX_TYPE_UINT16));
}