rpcsx/rpcs3/Emu/Memory/vm.h
Nekotekina bdeccd889f cpu_type removed, system_type added
cpu_state -> cpu_flag
vm::stack_allocator template improved
ppu_cmd type changed to enum, cmd64 type added
2016-08-09 17:14:41 +03:00

367 lines
9 KiB
C++

#pragma once
#include <map>
#include <functional>
#include <memory>
class thread_ctrl;
namespace vm
{
extern u8* const g_base_addr;
extern u8* const g_priv_addr;
enum memory_location_t : uint
{
main,
user_space,
video,
stack,
memory_location_max,
any = 0xffffffff,
};
enum page_info_t : u8
{
page_readable = (1 << 0),
page_writable = (1 << 1),
page_executable = (1 << 2),
page_fault_notification = (1 << 3),
page_no_reservations = (1 << 4),
page_allocated = (1 << 7),
};
// Address type
enum addr_t : u32 {};
struct access_violation : std::runtime_error
{
access_violation(u64 addr, const char* cause);
};
[[noreturn]] void throw_access_violation(u64 addr, const char* cause);
// This flag is changed by various reservation functions and may have different meaning.
// reservation_break() - true if the reservation was successfully broken.
// reservation_acquire() - true if another existing reservation was broken.
// reservation_free() - true if this thread's reservation was successfully removed.
// reservation_op() - false if reservation_update() would succeed if called instead.
// Write access to reserved memory - only set to true if the reservation was broken.
extern thread_local bool g_tls_did_break_reservation;
// Unconditionally break the reservation at specified address
void reservation_break(u32 addr);
// Reserve memory at the specified address for further atomic update
void reservation_acquire(void* data, u32 addr, u32 size);
// Attempt to atomically update previously reserved memory
bool reservation_update(u32 addr, const void* data, u32 size);
// Process a memory access error if it's caused by the reservation
bool reservation_query(u32 addr, u32 size, bool is_writing, std::function<bool()> callback);
// Returns true if the current thread owns reservation
bool reservation_test(thread_ctrl* current);
// Break all reservations created by the current thread
void reservation_free();
// Perform atomic operation unconditionally
void reservation_op(u32 addr, u32 size, std::function<void()> proc);
// Change memory protection of specified memory region
bool page_protect(u32 addr, u32 size, u8 flags_test = 0, u8 flags_set = 0, u8 flags_clear = 0);
// Check if existing memory range is allocated. Checking address before using it is very unsafe.
// Return value may be wrong. Even if it's true and correct, actual memory protection may be read-only and no-access.
bool check_addr(u32 addr, u32 size = 1);
// Search and map memory in specified memory location (don't pass alignment smaller than 4096)
u32 alloc(u32 size, memory_location_t location, u32 align = 4096, u32 sup = 0);
// Map memory at specified address (in optionally specified memory location)
u32 falloc(u32 addr, u32 size, memory_location_t location = any, u32 sup = 0);
// Unmap memory at specified address (in optionally specified memory location), return size
u32 dealloc(u32 addr, memory_location_t location = any, u32* sup_out = nullptr);
// dealloc() with no return value and no exceptions
void dealloc_verbose_nothrow(u32 addr, memory_location_t location = any) noexcept;
// Object that handles memory allocations inside specific constant bounds ("location")
class block_t final
{
std::map<u32, u32> m_map; // Mapped memory: addr -> size
std::unordered_map<u32, u32> m_sup; // Supplementary info for allocations
bool try_alloc(u32 addr, u32 size, u32 sup);
public:
block_t(u32 addr, u32 size, u64 flags = 0);
~block_t();
public:
const u32 addr; // Start address
const u32 size; // Total size
const u64 flags; // Currently unused
// Search and map memory (don't pass alignment smaller than 4096)
u32 alloc(u32 size, u32 align = 4096, u32 sup = 0);
// Try to map memory at fixed location
u32 falloc(u32 addr, u32 size, u32 sup = 0);
// Unmap memory at specified location previously returned by alloc(), return size
u32 dealloc(u32 addr, u32* sup_out = nullptr);
// Get allocated memory count
u32 used();
};
// Create new memory block with specified parameters and return it
std::shared_ptr<block_t> map(u32 addr, u32 size, u64 flags = 0);
// Delete existing memory block with specified start address, return it
std::shared_ptr<block_t> unmap(u32 addr, bool must_be_empty = false);
// Get memory block associated with optionally specified memory location or optionally specified address
std::shared_ptr<block_t> get(memory_location_t location, u32 addr = 0);
// Get PS3/PSV virtual memory address from the provided pointer (nullptr always converted to 0)
inline vm::addr_t get_addr(const void* real_ptr)
{
if (!real_ptr)
{
return vm::addr_t{};
}
const std::ptrdiff_t diff = static_cast<const u8*>(real_ptr) - g_base_addr;
const u32 res = static_cast<u32>(diff);
if (res == diff)
{
return static_cast<vm::addr_t>(res);
}
fmt::throw_exception("Not a virtual memory pointer (%p)", real_ptr);
}
// Convert pointer-to-member to a vm address compatible offset
template<typename MT, typename T> inline u32 get_offset(MT T::*const member_ptr)
{
return static_cast<u32>(reinterpret_cast<std::uintptr_t>(&reinterpret_cast<char const volatile&>(reinterpret_cast<T*>(0ull)->*member_ptr)));
}
template<typename T>
struct cast_impl
{
static_assert(std::is_same<T, u32>::value, "vm::cast() error: unsupported type");
};
template<>
struct cast_impl<u32>
{
static vm::addr_t cast(u32 addr, const char* loc)
{
return static_cast<vm::addr_t>(addr);
}
static vm::addr_t cast(u32 addr)
{
return static_cast<vm::addr_t>(addr);
}
};
template<>
struct cast_impl<u64>
{
static vm::addr_t cast(u64 addr, const char* loc)
{
return static_cast<vm::addr_t>(static_cast<u32>(addr));
}
static vm::addr_t cast(u64 addr)
{
return static_cast<vm::addr_t>(static_cast<u32>(addr));
}
};
template<typename T, bool Se>
struct cast_impl<se_t<T, Se>>
{
static vm::addr_t cast(const se_t<T, Se>& addr, const char* loc)
{
return cast_impl<T>::cast(addr, loc);
}
static vm::addr_t cast(const se_t<T, Se>& addr)
{
return cast_impl<T>::cast(addr);
}
};
template<typename T>
vm::addr_t cast(const T& addr, const char* loc)
{
return cast_impl<T>::cast(addr, loc);
}
template<typename T>
vm::addr_t cast(const T& addr)
{
return cast_impl<T>::cast(addr);
}
// Convert specified PS3/PSV virtual memory address to a pointer for common access
inline void* base(u32 addr)
{
return g_base_addr + addr;
}
// Convert specified PS3/PSV virtual memory address to a pointer for privileged access (always readable/writable if allocated)
inline void* base_priv(u32 addr)
{
return g_priv_addr + addr;
}
inline const u8& read8(u32 addr)
{
return g_base_addr[addr];
}
inline void write8(u32 addr, u8 value)
{
g_base_addr[addr] = value;
}
namespace ps3
{
// Convert specified PS3 address to a pointer of specified (possibly converted to BE) type
template<typename T> inline to_be_t<T>* _ptr(u32 addr)
{
return static_cast<to_be_t<T>*>(base(addr));
}
template<typename T> inline to_be_t<T>* _ptr_priv(u32 addr)
{
return static_cast<to_be_t<T>*>(base_priv(addr));
}
// Convert specified PS3 address to a reference of specified (possibly converted to BE) type
template<typename T> inline to_be_t<T>& _ref(u32 addr)
{
return *_ptr<T>(addr);
}
template<typename T> inline to_be_t<T>& _ref_priv(u32 addr)
{
return *_ptr_priv<T>(addr);
}
inline const be_t<u16>& read16(u32 addr)
{
return _ref<u16>(addr);
}
inline void write16(u32 addr, be_t<u16> value)
{
_ref<u16>(addr) = value;
}
inline const be_t<u32>& read32(u32 addr)
{
return _ref<u32>(addr);
}
inline void write32(u32 addr, be_t<u32> value)
{
_ref<u32>(addr) = value;
}
inline const be_t<u64>& read64(u32 addr)
{
return _ref<u64>(addr);
}
inline void write64(u32 addr, be_t<u64> value)
{
_ref<u64>(addr) = value;
}
void init();
}
namespace psv
{
template<typename T> inline to_le_t<T>* _ptr(u32 addr)
{
return static_cast<to_le_t<T>*>(base(addr));
}
template<typename T> inline to_le_t<T>* _ptr_priv(u32 addr)
{
return static_cast<to_le_t<T>*>(base_priv(addr));
}
template<typename T> inline to_le_t<T>& _ref(u32 addr)
{
return *_ptr<T>(addr);
}
template<typename T> inline to_le_t<T>& _ref_priv(u32 addr)
{
return *_ptr_priv<T>(addr);
}
inline const le_t<u16>& read16(u32 addr)
{
return _ref<u16>(addr);
}
inline void write16(u32 addr, le_t<u16> value)
{
_ref<u16>(addr) = value;
}
inline const le_t<u32>& read32(u32 addr)
{
return _ref<u32>(addr);
}
inline void write32(u32 addr, le_t<u32> value)
{
_ref<u32>(addr) = value;
}
inline const le_t<u64>& read64(u32 addr)
{
return _ref<u64>(addr);
}
inline void write64(u32 addr, le_t<u64> value)
{
_ref<u64>(addr) = value;
}
void init();
}
namespace psp
{
using namespace psv;
void init();
}
void close();
extern thread_local u64 g_tls_fault_count;
}
#include "vm_var.h"