rpcsx/rpcs3/Emu/Cell/lv2/sys_event_flag.cpp
Elad 575a245f8d
IDM: Implement lock-free smart pointers (#16403)
Replaces `std::shared_pointer` with `stx::atomic_ptr` and `stx::shared_ptr`.

Notes to programmers:

* This pr kills the use of `dynamic_cast`, `std::dynamic_pointer_cast` and `std::weak_ptr` on IDM objects, possible replacement is to save the object ID on the base object, then use idm::check/get_unlocked to the destination type via the saved ID which may be null. Null pointer check is how you can tell type mismatch (as dynamic cast) or object destruction (as weak_ptr locking).
* Double-inheritance on IDM objects should be used with care, `stx::shared_ptr` does not support constant-evaluated pointer offsetting to parent/child type.
* `idm::check/get_unlocked` can now be used anywhere.

Misc fixes:
* Fixes some segfaults with RPCN with interaction with IDM.
* Fix deadlocks in access violation handler due locking recursion.
* Fixes race condition in process exit-spawn on memory containers read.
* Fix bug that theoretically can prevent RPCS3 from booting - fix `id_manager::typeinfo` comparison to compare members instead of `memcmp` which can fail spuriously on padding bytes.
* Ensure all IDM inherited types of base, either has `id_base` or `id_type` defined locally, this allows to make getters such as `idm::get_unlocked<lv2_socket, lv2_socket_raw>()` which were broken before. (requires save-states invalidation)
* Removes broken operator[] overload of `stx::shared_ptr` and `stx::single_ptr` for non-array types.
2024-12-22 20:59:48 +02:00

578 lines
10 KiB
C++

#include "stdafx.h"
#include "sys_event_flag.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include <algorithm>
#include "util/asm.hpp"
LOG_CHANNEL(sys_event_flag);
lv2_event_flag::lv2_event_flag(utils::serial& ar)
: protocol(ar)
, key(ar)
, type(ar)
, name(ar)
{
ar(pattern);
}
std::function<void(void*)> lv2_event_flag::load(utils::serial& ar)
{
return load_func(make_shared<lv2_event_flag>(ar));
}
void lv2_event_flag::save(utils::serial& ar)
{
ar(protocol, key, type, name, pattern);
}
error_code sys_event_flag_create(ppu_thread& ppu, vm::ptr<u32> id, vm::ptr<sys_event_flag_attribute_t> attr, u64 init)
{
ppu.state += cpu_flag::wait;
sys_event_flag.warning("sys_event_flag_create(id=*0x%x, attr=*0x%x, init=0x%llx)", id, attr, init);
if (!id || !attr)
{
return CELL_EFAULT;
}
const auto _attr = *attr;
const u32 protocol = _attr.protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY)
{
sys_event_flag.error("sys_event_flag_create(): unknown protocol (0x%x)", protocol);
return CELL_EINVAL;
}
const u32 type = _attr.type;
if (type != SYS_SYNC_WAITER_SINGLE && type != SYS_SYNC_WAITER_MULTIPLE)
{
sys_event_flag.error("sys_event_flag_create(): unknown type (0x%x)", type);
return CELL_EINVAL;
}
const u64 ipc_key = lv2_obj::get_key(_attr);
if (const auto error = lv2_obj::create<lv2_event_flag>(_attr.pshared, ipc_key, _attr.flags, [&]
{
return make_shared<lv2_event_flag>(
_attr.protocol,
ipc_key,
_attr.type,
_attr.name_u64,
init);
}))
{
return error;
}
ppu.check_state();
*id = idm::last_id();
return CELL_OK;
}
error_code sys_event_flag_destroy(ppu_thread& ppu, u32 id)
{
ppu.state += cpu_flag::wait;
sys_event_flag.warning("sys_event_flag_destroy(id=0x%x)", id);
const auto flag = idm::withdraw<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag) -> CellError
{
if (flag.sq)
{
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(flag, flag.key);
return {};
});
if (!flag)
{
return CELL_ESRCH;
}
if (flag.ret)
{
return flag.ret;
}
return CELL_OK;
}
error_code sys_event_flag_wait(ppu_thread& ppu, u32 id, u64 bitptn, u32 mode, vm::ptr<u64> result, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_wait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x, timeout=0x%llx)", id, bitptn, mode, result, timeout);
// Fix function arguments for external access
ppu.gpr[3] = -1;
ppu.gpr[4] = bitptn;
ppu.gpr[5] = mode;
ppu.gpr[6] = 0;
// Always set result
struct store_result
{
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept
{
if (ptr)
{
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode))
{
sys_event_flag.error("sys_event_flag_wait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
const auto flag = idm::get<lv2_obj, lv2_event_flag>(id, [&, notify = lv2_obj::notify_all_t()](lv2_event_flag& flag) -> CellError
{
if (flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &ppu.gpr[6]);
}).second)
{
// TODO: is it possible to return EPERM in this case?
return {};
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(flag.mutex);
if (flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &ppu.gpr[6]);
}).second)
{
return {};
}
if (flag.type == SYS_SYNC_WAITER_SINGLE && flag.sq)
{
return CELL_EPERM;
}
flag.sleep(ppu, timeout);
lv2_obj::emplace(flag.sq, &ppu);
return CELL_EBUSY;
});
if (!flag)
{
return CELL_ESRCH;
}
if (flag.ret)
{
if (flag.ret != CELL_EBUSY)
{
return flag.ret;
}
}
else
{
store.val = ppu.gpr[6];
return CELL_OK;
}
while (auto state = +ppu.state)
{
if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal))
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++)
{
busy_wait(500);
}
if (ppu.state & cpu_flag::signal)
{
continue;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
ppu.state += cpu_flag::wait;
if (!atomic_storage<ppu_thread*>::load(flag->sq))
{
// Waiters queue is empty, so the thread must have been signaled
flag->mutex.lock_unlock();
break;
}
std::lock_guard lock(flag->mutex);
if (!flag->unqueue(flag->sq, &ppu))
{
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
ppu.gpr[6] = flag->pattern;
break;
}
}
else
{
ppu.state.wait(state);
}
}
store.val = ppu.gpr[6];
return not_an_error(ppu.gpr[3]);
}
error_code sys_event_flag_trywait(ppu_thread& ppu, u32 id, u64 bitptn, u32 mode, vm::ptr<u64> result)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_trywait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x)", id, bitptn, mode, result);
// Always set result
struct store_result
{
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept
{
if (ptr)
{
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode))
{
sys_event_flag.error("sys_event_flag_trywait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
u64 pattern{};
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag)
{
return flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &pattern);
}).second;
});
if (!flag)
{
return CELL_ESRCH;
}
if (!flag.ret)
{
return not_an_error(CELL_EBUSY);
}
store.val = pattern;
return CELL_OK;
}
error_code sys_event_flag_set(cpu_thread& cpu, u32 id, u64 bitptn)
{
cpu.state += cpu_flag::wait;
// Warning: may be called from SPU thread.
sys_event_flag.trace("sys_event_flag_set(id=0x%x, bitptn=0x%llx)", id, bitptn);
const auto flag = idm::get_unlocked<lv2_obj, lv2_event_flag>(id);
if (!flag)
{
return CELL_ESRCH;
}
if ((flag->pattern & bitptn) == bitptn)
{
return CELL_OK;
}
if (lv2_obj::notify_all_t notify; true)
{
std::lock_guard lock(flag->mutex);
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu)
{
if (ppu->state & cpu_flag::again)
{
cpu.state += cpu_flag::again;
// Fake error for abort
return not_an_error(CELL_EAGAIN);
}
}
u32 count = 0;
// Process all waiters in single atomic op
for (u64 pattern = flag->pattern, to_write = pattern, dependant_mask = 0;; to_write = pattern, dependant_mask = 0)
{
count = 0;
to_write |= bitptn;
dependant_mask = 0;
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu)
{
ppu->gpr[7] = 0;
}
auto first = +flag->sq;
auto get_next = [&]() -> ppu_thread*
{
s32 prio = smax;
ppu_thread* it{};
for (auto ppu = first; ppu; ppu = ppu->next_cpu)
{
if (!ppu->gpr[7] && (flag->protocol != SYS_SYNC_PRIORITY || ppu->prio.load().prio <= prio))
{
it = ppu;
prio = ppu->prio.load().prio;
}
}
if (it)
{
// Mark it so it won't reappear
it->gpr[7] = 1;
}
return it;
};
while (auto it = get_next())
{
auto& ppu = *it;
const u64 pattern = ppu.gpr[4];
const u64 mode = ppu.gpr[5];
// If it's OR mode, set bits must have waken up the thread therefore no
// dependency on old value
const u64 dependant_mask_or = ((mode & 0xf) == SYS_EVENT_FLAG_WAIT_OR || (bitptn & pattern & to_write) == pattern ? 0 : pattern);
if (lv2_event_flag::check_pattern(to_write, pattern, mode, &ppu.gpr[6]))
{
dependant_mask |= dependant_mask_or;
ppu.gpr[3] = CELL_OK;
count++;
if (!to_write)
{
break;
}
}
else
{
ppu.gpr[3] = -1;
}
}
dependant_mask &= ~bitptn;
auto [new_val, ok] = flag->pattern.fetch_op([&](u64& x)
{
if ((x ^ pattern) & dependant_mask)
{
return false;
}
x |= bitptn;
// Clear the bit-wise difference
x &= ~((pattern | bitptn) & ~to_write);
return true;
});
if (ok)
{
break;
}
pattern = new_val;
}
if (!count)
{
return CELL_OK;
}
// Remove waiters
for (auto next_cpu = &flag->sq; *next_cpu;)
{
auto& ppu = **next_cpu;
if (ppu.gpr[3] == CELL_OK)
{
atomic_storage<ppu_thread*>::release(*next_cpu, ppu.next_cpu);
ppu.next_cpu = nullptr;
flag->append(&ppu);
continue;
}
next_cpu = &ppu.next_cpu;
};
lv2_obj::awake_all();
}
return CELL_OK;
}
error_code sys_event_flag_clear(ppu_thread& ppu, u32 id, u64 bitptn)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_clear(id=0x%x, bitptn=0x%llx)", id, bitptn);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag)
{
flag.pattern &= bitptn;
});
if (!flag)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_event_flag_cancel(ppu_thread& ppu, u32 id, vm::ptr<u32> num)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_cancel(id=0x%x, num=*0x%x)", id, num);
if (num) *num = 0;
const auto flag = idm::get_unlocked<lv2_obj, lv2_event_flag>(id);
if (!flag)
{
return CELL_ESRCH;
}
u32 value = 0;
{
lv2_obj::notify_all_t notify;
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu)
{
if (cpu->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return {};
}
}
// Get current pattern
const u64 pattern = flag->pattern;
// Signal all threads to return CELL_ECANCELED (protocol does not matter)
while (auto ppu = flag->schedule<ppu_thread>(flag->sq, SYS_SYNC_FIFO))
{
ppu->gpr[3] = CELL_ECANCELED;
ppu->gpr[6] = pattern;
value++;
flag->append(ppu);
}
if (value)
{
lv2_obj::awake_all();
}
}
static_cast<void>(ppu.test_stopped());
if (num) *num = value;
return CELL_OK;
}
error_code sys_event_flag_get(ppu_thread& ppu, u32 id, vm::ptr<u64> flags)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_get(id=0x%x, flags=*0x%x)", id, flags);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [](lv2_event_flag& flag)
{
return +flag.pattern;
});
ppu.check_state();
if (!flag)
{
if (flags) *flags = 0;
return CELL_ESRCH;
}
if (!flags)
{
return CELL_EFAULT;
}
*flags = flag.ret;
return CELL_OK;
}