rpcsx/rpcs3/Loader/ELF32.cpp
Peter Tissen c37905e465 initial start to eliminate static func init, not compilable atm
move module initialization into a module manager, still has some issues like stopping not working and debug crashing

add #idef 0 to modules that aren't in the windows project

don't double initialize and don't de-initialize for now, since many modules don't expect it and it leads to many errors

remove duplicate module lists for empty modules and implemented ones, make Module non-copyable but movable

add secondary project, no real use for it now

add some memleak config to the emucore and add asmjit path to rpcs3

small rebase error fixed to get it to compile again

add filters for emucore

re-add the module manager and static file

WIP commit, linker errors abound

some more abstraction layer stuff

fix the remaining linker errors, re-enable platform specific mouse, pad and keyboard handlers

rebasing

fix memset undefined and re() usage of se_t before declaration

Add wxGUI define by default for cmake builds

fix copy constructors of Datetime header

fix copy constructors of other wx interface classes

remove static declarations of global variables

make wxGLCanvas constructor non-ambiguous even with wx2.8. compat mode, fix wrong std::exception constructor calls

remove duplicate definition for FromUTF8 and ToUTF8

temp changes
2014-06-08 23:16:06 +02:00

331 lines
6.7 KiB
C++

#include "stdafx.h"
#include "Emu/ConLog.h"
#include "Emu/Memory/Memory.h"
#include "ELF32.h"
void WriteEhdr(rFile& f, Elf32_Ehdr& ehdr)
{
Write32(f, ehdr.e_magic);
Write8(f, ehdr.e_class);
Write8(f, ehdr.e_data);
Write8(f, ehdr.e_curver);
Write8(f, ehdr.e_os_abi);
Write64(f, ehdr.e_abi_ver);
Write16(f, ehdr.e_type);
Write16(f, ehdr.e_machine);
Write32(f, ehdr.e_version);
Write32(f, ehdr.e_entry);
Write32(f, ehdr.e_phoff);
Write32(f, ehdr.e_shoff);
Write32(f, ehdr.e_flags);
Write16(f, ehdr.e_ehsize);
Write16(f, ehdr.e_phentsize);
Write16(f, ehdr.e_phnum);
Write16(f, ehdr.e_shentsize);
Write16(f, ehdr.e_shnum);
Write16(f, ehdr.e_shstrndx);
}
void WritePhdr(rFile& f, Elf32_Phdr& phdr)
{
Write32(f, phdr.p_type);
Write32(f, phdr.p_offset);
Write32(f, phdr.p_vaddr);
Write32(f, phdr.p_paddr);
Write32(f, phdr.p_filesz);
Write32(f, phdr.p_memsz);
Write32(f, phdr.p_flags);
Write32(f, phdr.p_align);
}
void WriteShdr(rFile& f, Elf32_Shdr& shdr)
{
Write32(f, shdr.sh_name);
Write32(f, shdr.sh_type);
Write32(f, shdr.sh_flags);
Write32(f, shdr.sh_addr);
Write32(f, shdr.sh_offset);
Write32(f, shdr.sh_size);
Write32(f, shdr.sh_link);
Write32(f, shdr.sh_info);
Write32(f, shdr.sh_addralign);
Write32(f, shdr.sh_entsize);
}
ELF32Loader::ELF32Loader(vfsStream& f)
: elf32_f(f)
, LoaderBase()
{
}
bool ELF32Loader::LoadInfo()
{
if(!elf32_f.IsOpened()) return false;
if(!LoadEhdrInfo()) return false;
if(!LoadPhdrInfo()) return false;
if(!LoadShdrInfo()) return false;
return true;
}
bool ELF32Loader::LoadData(u64 offset)
{
if(!elf32_f.IsOpened()) return false;
if(!LoadEhdrData(offset)) return false;
if(!LoadPhdrData(offset)) return false;
if(!LoadShdrData(offset)) return false;
return true;
}
bool ELF32Loader::Close()
{
return elf32_f.Close();
}
bool ELF32Loader::LoadEhdrInfo()
{
elf32_f.Seek(0);
ehdr.Load(elf32_f);
if(!ehdr.CheckMagic()) return false;
if(ehdr.IsLittleEndian())
ConLog.Warning("ELF32 LE");
switch(ehdr.e_machine)
{
case MACHINE_MIPS:
case MACHINE_PPC64:
case MACHINE_SPU:
case MACHINE_ARM:
machine = (Elf_Machine)ehdr.e_machine;
break;
default:
machine = MACHINE_Unknown;
ConLog.Error("Unknown elf32 machine: 0x%x", ehdr.e_machine);
return false;
}
entry = ehdr.GetEntry();
if(entry == 0)
{
ConLog.Error("elf32 error: entry is null!");
return false;
}
return true;
}
bool ELF32Loader::LoadPhdrInfo()
{
if(ehdr.e_phoff == 0 && ehdr.e_phnum)
{
ConLog.Error("LoadPhdr32 error: Program header offset is null!");
return false;
}
elf32_f.Seek(ehdr.e_phoff);
for(uint i=0; i<ehdr.e_phnum; ++i)
{
phdr_arr.emplace_back();
if(ehdr.IsLittleEndian())
phdr_arr.back().LoadLE(elf32_f);
else
phdr_arr.back().Load(elf32_f);
}
if(/*!Memory.IsGoodAddr(entry)*/ entry & 0x1)
{
//entry is physical, convert to virtual
entry &= ~0x1;
for(size_t i=0; i<phdr_arr.size(); ++i)
{
if(phdr_arr[i].p_paddr >= entry && entry < phdr_arr[i].p_paddr + phdr_arr[i].p_memsz)
{
entry += phdr_arr[i].p_vaddr;
ConLog.Warning("virtual entry = 0x%x", entry);
break;
}
}
}
return true;
}
bool ELF32Loader::LoadShdrInfo()
{
elf32_f.Seek(ehdr.e_shoff);
for(u32 i=0; i<ehdr.e_shnum; ++i)
{
shdr_arr.emplace_back();
if(ehdr.IsLittleEndian())
shdr_arr.back().LoadLE(elf32_f);
else
shdr_arr.back().Load(elf32_f);
}
if(ehdr.e_shstrndx >= shdr_arr.size())
{
ConLog.Warning("LoadShdr32 error: shstrndx too big!");
return true;
}
for(u32 i=0; i<shdr_arr.size(); ++i)
{
elf32_f.Seek(shdr_arr[ehdr.e_shstrndx].sh_offset + shdr_arr[i].sh_name);
std::string name;
while(!elf32_f.Eof())
{
char c;
elf32_f.Read(&c, 1);
if(c == 0) break;
name.push_back(c);
}
shdr_name_arr.push_back(name);
}
return true;
}
bool ELF32Loader::LoadEhdrData(u64 offset)
{
#ifdef LOADER_DEBUG
ConLog.SkipLn();
ehdr.Show();
ConLog.SkipLn();
#endif
return true;
}
bool ELF32Loader::LoadPhdrData(u64 _offset)
{
const u64 offset = machine == MACHINE_SPU ? _offset : 0;
for(u32 i=0; i<phdr_arr.size(); ++i)
{
phdr_arr[i].Show();
if(phdr_arr[i].p_type == 0x00000001) //LOAD
{
if(phdr_arr[i].p_vaddr < min_addr)
{
min_addr = phdr_arr[i].p_vaddr;
}
if(phdr_arr[i].p_vaddr + phdr_arr[i].p_memsz > max_addr)
{
max_addr = phdr_arr[i].p_vaddr + phdr_arr[i].p_memsz;
}
if(phdr_arr[i].p_vaddr != phdr_arr[i].p_paddr)
{
ConLog.Warning
(
"LoadPhdr32 different load addrs: paddr=0x%8.8x, vaddr=0x%8.8x",
phdr_arr[i].p_paddr, phdr_arr[i].p_vaddr
);
}
switch(machine)
{
case MACHINE_SPU: Memory.MainMem.AllocFixed(phdr_arr[i].p_vaddr + offset, phdr_arr[i].p_memsz); break;
case MACHINE_MIPS: Memory.PSPMemory.RAM.AllocFixed(phdr_arr[i].p_vaddr + offset, phdr_arr[i].p_memsz); break;
case MACHINE_ARM: Memory.PSVMemory.RAM.AllocFixed(phdr_arr[i].p_vaddr + offset, phdr_arr[i].p_memsz); break;
default:
continue;
}
elf32_f.Seek(phdr_arr[i].p_offset);
elf32_f.Read(&Memory[phdr_arr[i].p_vaddr + offset], phdr_arr[i].p_filesz);
}
else if(phdr_arr[i].p_type == 0x00000004)
{
elf32_f.Seek(phdr_arr[i].p_offset);
Elf32_Note note;
if(ehdr.IsLittleEndian()) note.LoadLE(elf32_f);
else note.Load(elf32_f);
if(note.type != 1)
{
ConLog.Error("ELF32: Bad NOTE type (%d)", note.type);
break;
}
if(note.namesz != sizeof(note.name))
{
ConLog.Error("ELF32: Bad NOTE namesz (%d)", note.namesz);
break;
}
if(note.descsz != sizeof(note.desc) && note.descsz != 32)
{
ConLog.Error("ELF32: Bad NOTE descsz (%d)", note.descsz);
break;
}
//if(note.desc.flags)
//{
// ConLog.Error("ELF32: Bad NOTE flags (0x%x)", note.desc.flags);
// break;
//}
if(note.descsz == sizeof(note.desc))
{
ConLog.Warning("name = %s", std::string((const char *)note.name, 8).c_str());
ConLog.Warning("ls_size = %d", note.desc.ls_size);
ConLog.Warning("stack_size = %d", note.desc.stack_size);
}
else
{
ConLog.Warning("desc = '%s'", std::string(note.desc_text, 32).c_str());
}
}
#ifdef LOADER_DEBUG
ConLog.SkipLn();
#endif
}
return true;
}
bool ELF32Loader::LoadShdrData(u64 offset)
{
for(u32 i=0; i<shdr_arr.size(); ++i)
{
Elf32_Shdr& shdr = shdr_arr[i];
#ifdef LOADER_DEBUG
if(i < shdr_name_arr.size()) ConLog.Write("Name: %s", shdr_name_arr[i].c_str());
shdr.Show();
ConLog.SkipLn();
#endif
if((shdr.sh_type == SHT_RELA) || (shdr.sh_type == SHT_REL))
{
ConLog.Error("ELF32 ERROR: Relocation");
continue;
}
if((shdr.sh_flags & SHF_ALLOC) != SHF_ALLOC) continue;
if(shdr.sh_addr < min_addr)
{
min_addr = shdr.sh_addr;
}
if(shdr.sh_addr + shdr.sh_size > max_addr)
{
max_addr = shdr.sh_addr + shdr.sh_size;
}
}
//TODO
return true;
}