rpcsx/rpcs3/Emu/SysCalls/Modules/cellSpursSpu.cpp
2015-01-26 20:15:58 +05:30

938 lines
42 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
#include "Emu/SysCalls/Modules/cellSpurs.h"
//
// SPURS utility functions
//
void cellSpursModulePutTrace(CellSpursTracePacket * packet, unsigned tag);
u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status);
//
// SPURS Kernel functions
//
void spursKernelSelectWorkload(SPUThread & spu);
void spursKernelSelectWorkload2(SPUThread & spu);
//
// SPURS system service workload functions
//
void spursSysServiceCleanupAfterPreemption(SPUThread & spu, SpursKernelMgmtData * mgmt);
void spursSysServiceUpdateTraceCount(SPUThread & spu, SpursKernelMgmtData * mgmt);
void spursSysServiceUpdateTrace(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 arg2, u32 arg3, u32 arg4);
void spursSysServiceUpdateEvent(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 wklShutdownBitSet);
void spursSysServiceUpdateWorkload(SPUThread & spu, SpursKernelMgmtData * mgmt);
void spursSysServiceProcessMessages(SPUThread & spu, SpursKernelMgmtData * mgmt);
void spursSysServiceWaitOrExit(SPUThread & spu, SpursKernelMgmtData * mgmt);
void spursSysServiceWorkloadMain(SPUThread & spu, u32 pollStatus);
void spursSysServiceWorkloadEntry(SPUThread & spu);
//
// SPURS taskset polict module functions
//
extern Module *cellSpurs;
//////////////////////////////////////////////////////////////////////////////
// SPURS utility functions
//////////////////////////////////////////////////////////////////////////////
/// Output trace information
void cellSpursModulePutTrace(CellSpursTracePacket * packet, unsigned tag) {
// TODO: Implement this
}
/// Check for execution right requests
u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) {
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
spu.GPR[3]._u32[3] = 1;
if (mgmt->spurs->m.flags1 & SF1_32_WORKLOADS) {
spursKernelSelectWorkload2(spu);
} else {
spursKernelSelectWorkload(spu);
}
auto result = spu.GPR[3]._u64[1];
if (status) {
*status = (u32)result;
}
u32 wklId = result >> 32;
return wklId == mgmt->wklCurrentId ? 0 : 1;
}
//////////////////////////////////////////////////////////////////////////////
// SPURS kernel functions
//////////////////////////////////////////////////////////////////////////////
/// Select a workload to run
void spursKernelSelectWorkload(SPUThread & spu) {
LV2_LOCK(0); // TODO: lock-free implementation if possible
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
// If the first argument is true then the shared data is not updated with the result.
const auto isPoll = spu.GPR[3]._u32[3];
// Calculate the contention (number of SPUs used) for each workload
u8 contention[CELL_SPURS_MAX_WORKLOAD];
u8 pendingContention[CELL_SPURS_MAX_WORKLOAD];
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
contention[i] = mgmt->spurs->m.wklCurrentContention[i] - mgmt->wklLocContention[i];
// If this is a poll request then the number of SPUs pending to context switch is also added to the contention presumably
// to prevent unnecessary jumps to the kernel
if (isPoll) {
pendingContention[i] = mgmt->spurs->m.wklPendingContention[i] - mgmt->wklLocPendingContention[i];
if (i != mgmt->wklCurrentId) {
contention[i] += pendingContention[i];
}
}
}
u32 wklSelectedId = CELL_SPURS_SYS_SERVICE_WORKLOAD_ID;
u32 pollStatus = 0;
// The system service workload has the highest priority. Select the system service workload if
// the system service message bit for this SPU is set.
if (mgmt->spurs->m.sysSrvMessage.read_relaxed() & (1 << mgmt->spuNum)) {
mgmt->spuIdling = 0;
if (!isPoll || mgmt->wklCurrentId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
// Clear the message bit
mgmt->spurs->m.sysSrvMessage.write_relaxed(mgmt->spurs->m.sysSrvMessage.read_relaxed() & ~(1 << mgmt->spuNum));
}
} else {
// Caclulate the scheduling weight for each workload
u16 maxWeight = 0;
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
u16 runnable = mgmt->wklRunnable1 & (0x8000 >> i);
u16 wklSignal = mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> i);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = mgmt->spurs->m.wklReadyCount1[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklReadyCount1[i].read_relaxed();
u8 idleSpuCount = mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed();
u8 requestCount = readyCount + idleSpuCount;
// For a workload to be considered for scheduling:
// 1. Its priority must not be 0
// 2. The number of SPUs used by it must be less than the max contention for that workload
// 3. The workload should be in runnable state
// 4. The number of SPUs allocated to it must be less than the number of SPUs requested (i.e. readyCount)
// OR the workload must be signalled
// OR the workload flag is 0 and the workload is configured as the wokload flag receiver
if (runnable && mgmt->priority[i] != 0 && mgmt->spurs->m.wklMaxContention[i].read_relaxed() > contention[i]) {
if (wklFlag || wklSignal || (readyCount != 0 && requestCount > contention[i])) {
// The scheduling weight of the workload is formed from the following parameters in decreasing order of priority:
// 1. Wokload signal set or workload flag or ready count > contention
// 2. Priority of the workload on the SPU
// 3. Is the workload the last selected workload
// 4. Minimum contention of the workload
// 5. Number of SPUs that are being used by the workload (lesser the number, more the weight)
// 6. Is the workload executable same as the currently loaded executable
// 7. The workload id (lesser the number, more the weight)
u16 weight = (wklFlag || wklSignal || (readyCount > contention[i])) ? 0x8000 : 0;
weight |= (u16)(mgmt->priority[i] & 0x7F) << 16;
weight |= i == mgmt->wklCurrentId ? 0x80 : 0x00;
weight |= (contention[i] > 0 && mgmt->spurs->m.wklMinContention[i] > contention[i]) ? 0x40 : 0x00;
weight |= ((CELL_SPURS_MAX_SPU - contention[i]) & 0x0F) << 2;
weight |= mgmt->wklUniqueId[i] == mgmt->wklCurrentId ? 0x02 : 0x00;
weight |= 0x01;
// In case of a tie the lower numbered workload is chosen
if (weight > maxWeight) {
wklSelectedId = i;
maxWeight = weight;
pollStatus = readyCount > contention[i] ? CELL_SPURS_MODULE_POLL_STATUS_READYCOUNT : 0;
pollStatus |= wklSignal ? CELL_SPURS_MODULE_POLL_STATUS_SIGNAL : 0;
pollStatus |= wklFlag ? CELL_SPURS_MODULE_POLL_STATUS_FLAG : 0;
}
}
}
}
// Not sure what this does. Possibly mark the SPU as idle/in use.
mgmt->spuIdling = wklSelectedId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID ? 1 : 0;
if (!isPoll || wklSelectedId == mgmt->wklCurrentId) {
// Clear workload signal for the selected workload
mgmt->spurs->m.wklSignal1.write_relaxed(be_t<u16>::make(mgmt->spurs->m.wklSignal1.read_relaxed() & ~(0x8000 >> wklSelectedId)));
mgmt->spurs->m.wklSignal2.write_relaxed(be_t<u16>::make(mgmt->spurs->m.wklSignal1.read_relaxed() & ~(0x80000000u >> wklSelectedId)));
// If the selected workload is the wklFlag workload then pull the wklFlag to all 1s
if (wklSelectedId == mgmt->spurs->m.wklFlagReceiver.read_relaxed()) {
mgmt->spurs->m.wklFlag.flag.write_relaxed(be_t<u32>::make(0xFFFFFFFF));
}
}
}
if (!isPoll) {
// Called by kernel
// Increment the contention for the selected workload
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
contention[wklSelectedId]++;
}
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
mgmt->spurs->m.wklCurrentContention[i] = contention[i];
mgmt->wklLocContention[i] = 0;
mgmt->wklLocPendingContention[i] = 0;
}
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
mgmt->wklLocContention[wklSelectedId] = 1;
}
mgmt->wklCurrentId = wklSelectedId;
} else if (wklSelectedId != mgmt->wklCurrentId) {
// Not called by kernel but a context switch is required
// Increment the pending contention for the selected workload
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
pendingContention[wklSelectedId]++;
}
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
mgmt->spurs->m.wklPendingContention[i] = pendingContention[i];
mgmt->wklLocPendingContention[i] = 0;
}
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
mgmt->wklLocPendingContention[wklSelectedId] = 1;
}
}
u64 result = (u64)wklSelectedId << 32;
result |= pollStatus;
spu.GPR[3]._u64[1] = result;
}
/// Select a workload to run
void spursKernelSelectWorkload2(SPUThread & spu) {
LV2_LOCK(0); // TODO: lock-free implementation if possible
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
// If the first argument is true then the shared data is not updated with the result.
const auto isPoll = spu.GPR[3]._u32[3];
// Calculate the contention (number of SPUs used) for each workload
u8 contention[CELL_SPURS_MAX_WORKLOAD2];
u8 pendingContention[CELL_SPURS_MAX_WORKLOAD2];
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD2; i++) {
contention[i] = mgmt->spurs->m.wklCurrentContention[i & 0x0F] - mgmt->wklLocContention[i & 0x0F];
contention[i] = i < CELL_SPURS_MAX_WORKLOAD ? contention[i] & 0x0F : contention[i] >> 4;
// If this is a poll request then the number of SPUs pending to context switch is also added to the contention presumably
// to prevent unnecessary jumps to the kernel
if (isPoll) {
pendingContention[i] = mgmt->spurs->m.wklPendingContention[i & 0x0F] - mgmt->wklLocPendingContention[i & 0x0F];
pendingContention[i] = i < CELL_SPURS_MAX_WORKLOAD ? pendingContention[i] & 0x0F : pendingContention[i] >> 4;
if (i != mgmt->wklCurrentId) {
contention[i] += pendingContention[i];
}
}
}
u32 wklSelectedId = CELL_SPURS_SYS_SERVICE_WORKLOAD_ID;
u32 pollStatus = 0;
// The system service workload has the highest priority. Select the system service workload if
// the system service message bit for this SPU is set.
if (mgmt->spurs->m.sysSrvMessage.read_relaxed() & (1 << mgmt->spuNum)) {
// Not sure what this does. Possibly Mark the SPU as in use.
mgmt->spuIdling = 0;
if (!isPoll || mgmt->wklCurrentId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
// Clear the message bit
mgmt->spurs->m.sysSrvMessage.write_relaxed(mgmt->spurs->m.sysSrvMessage.read_relaxed() & ~(1 << mgmt->spuNum));
}
} else {
// Caclulate the scheduling weight for each workload
u8 maxWeight = 0;
for (auto i = 0; i < CELL_SPURS_MAX_WORKLOAD2; i++) {
auto j = i & 0x0F;
u16 runnable = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->wklRunnable1 & (0x8000 >> j) : mgmt->wklRunnable2 & (0x8000 >> j);
u8 priority = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->priority[j] & 0x0F : mgmt->priority[j] >> 4;
u8 maxContention = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklMaxContention[j].read_relaxed() & 0x0F : mgmt->spurs->m.wklMaxContention[j].read_relaxed() >> 4;
u16 wklSignal = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> j) : mgmt->spurs->m.wklSignal2.read_relaxed() & (0x8000 >> j);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklReadyCount1[j].read_relaxed() : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[j].read_relaxed();
// For a workload to be considered for scheduling:
// 1. Its priority must be greater than 0
// 2. The number of SPUs used by it must be less than the max contention for that workload
// 3. The workload should be in runnable state
// 4. The number of SPUs allocated to it must be less than the number of SPUs requested (i.e. readyCount)
// OR the workload must be signalled
// OR the workload flag is 0 and the workload is configured as the wokload receiver
if (runnable && priority > 0 && maxContention > contention[i]) {
if (wklFlag || wklSignal || readyCount > contention[i]) {
// The scheduling weight of the workload is equal to the priority of the workload for the SPU.
// The current workload is given a sligtly higher weight presumably to reduce the number of context switches.
// In case of a tie the lower numbered workload is chosen.
u8 weight = priority << 4;
if (mgmt->wklCurrentId == i) {
weight |= 0x04;
}
if (weight > maxWeight) {
wklSelectedId = i;
maxWeight = weight;
pollStatus = readyCount > contention[i] ? CELL_SPURS_MODULE_POLL_STATUS_READYCOUNT : 0;
pollStatus |= wklSignal ? CELL_SPURS_MODULE_POLL_STATUS_SIGNAL : 0;
pollStatus |= wklFlag ? CELL_SPURS_MODULE_POLL_STATUS_FLAG : 0;
}
}
}
}
// Not sure what this does. Possibly mark the SPU as idle/in use.
mgmt->spuIdling = wklSelectedId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID ? 1 : 0;
if (!isPoll || wklSelectedId == mgmt->wklCurrentId) {
// Clear workload signal for the selected workload
mgmt->spurs->m.wklSignal1.write_relaxed(be_t<u16>::make(mgmt->spurs->m.wklSignal1.read_relaxed() & ~(0x8000 >> wklSelectedId)));
mgmt->spurs->m.wklSignal2.write_relaxed(be_t<u16>::make(mgmt->spurs->m.wklSignal1.read_relaxed() & ~(0x80000000u >> wklSelectedId)));
// If the selected workload is the wklFlag workload then pull the wklFlag to all 1s
if (wklSelectedId == mgmt->spurs->m.wklFlagReceiver.read_relaxed()) {
mgmt->spurs->m.wklFlag.flag.write_relaxed(be_t<u32>::make(0xFFFFFFFF));
}
}
}
if (!isPoll) {
// Called by kernel
// Increment the contention for the selected workload
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
contention[wklSelectedId]++;
}
for (auto i = 0; i < (CELL_SPURS_MAX_WORKLOAD2 >> 1); i++) {
mgmt->spurs->m.wklCurrentContention[i] = contention[i] | (contention[i + 0x10] << 4);
mgmt->wklLocContention[i] = 0;
mgmt->wklLocPendingContention[i] = 0;
}
mgmt->wklLocContention[wklSelectedId & 0x0F] = wklSelectedId < CELL_SPURS_MAX_WORKLOAD ? 0x01 : wklSelectedId < CELL_SPURS_MAX_WORKLOAD2 ? 0x10 : 0;
mgmt->wklCurrentId = wklSelectedId;
} else if (wklSelectedId != mgmt->wklCurrentId) {
// Not called by kernel but a context switch is required
// Increment the pending contention for the selected workload
if (wklSelectedId != CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
pendingContention[wklSelectedId]++;
}
for (auto i = 0; i < (CELL_SPURS_MAX_WORKLOAD2 >> 1); i++) {
mgmt->spurs->m.wklPendingContention[i] = pendingContention[i] | (pendingContention[i + 0x10] << 4);
mgmt->wklLocPendingContention[i] = 0;
}
mgmt->wklLocPendingContention[wklSelectedId & 0x0F] = wklSelectedId < CELL_SPURS_MAX_WORKLOAD ? 0x01 : wklSelectedId < CELL_SPURS_MAX_WORKLOAD2 ? 0x10 : 0;
}
u64 result = (u64)wklSelectedId << 32;
result |= pollStatus;
spu.GPR[3]._u64[1] = result;
}
/// Entry point of the SPURS kernel
void spursKernelMain(SPUThread & spu) {
SpursKernelMgmtData * mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
mgmt->spuNum = spu.GPR[3]._u32[3];
mgmt->dmaTagId = 0x1F;
mgmt->spurs.set(spu.GPR[4]._u64[1]);
mgmt->wklCurrentId = CELL_SPURS_SYS_SERVICE_WORKLOAD_ID;
mgmt->wklCurrentUniqueId = 0x20;
bool isSecond = mgmt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
mgmt->yieldToKernelAddr = isSecond ? 0x838 : 0x808;
mgmt->selectWorkloadAddr = 0x290;
spu.WriteLS32(mgmt->yieldToKernelAddr, 2); // hack for cellSpursModuleExit
spu.WriteLS32(mgmt->selectWorkloadAddr, 3); // hack for cellSpursModulePollStatus
spu.WriteLS32(mgmt->selectWorkloadAddr + 4, 0x35000000); // bi $0
spu.m_code3_func = isSecond ? spursKernelSelectWorkload2 : spursKernelSelectWorkload;
u32 wid = CELL_SPURS_SYS_SERVICE_WORKLOAD_ID;
u32 pollStatus = 0;
while (true) {
if (Emu.IsStopped()) {
cellSpurs->Warning("Spurs Kernel aborted");
return;
}
// Get current workload info
auto & wkl = wid < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklInfo1[wid] : (wid < CELL_SPURS_MAX_WORKLOAD2 && isSecond ? mgmt->spurs->m.wklInfo2[wid & 0xf] : mgmt->spurs->m.wklInfoSysSrv);
if (mgmt->wklCurrentAddr != wkl.addr) {
if (wkl.addr.addr() != SPURS_IMG_ADDR_SYS_SRV_WORKLOAD) {
// Load executable code
memcpy(vm::get_ptr<void>(spu.ls_offset + 0xA00), wkl.addr.get_ptr(), wkl.size);
}
mgmt->wklCurrentAddr = wkl.addr;
mgmt->wklCurrentUniqueId = wkl.uniqueId.read_relaxed();
}
if (!isSecond) {
mgmt->moduleId[0] = 0;
mgmt->moduleId[1] = 0;
}
// Run workload
spu.GPR[1]._u32[3] = 0x3FFB0;
spu.GPR[3]._u32[3] = 0x100;
spu.GPR[4]._u64[1] = wkl.arg;
spu.GPR[5]._u32[3] = pollStatus;
spu.SetPc(0xA00);
switch (mgmt->wklCurrentAddr.addr()) {
case SPURS_IMG_ADDR_SYS_SRV_WORKLOAD:
spursSysServiceWorkloadEntry(spu);
break;
default:
spu.FastCall(0xA00);
break;
}
// Check status
auto status = spu.SPU.Status.GetValue();
if (status == SPU_STATUS_STOPPED_BY_STOP) {
return;
} else {
assert(status == SPU_STATUS_RUNNING);
}
// Select next workload to run
spu.GPR[3].clear();
if (isSecond) {
spursKernelSelectWorkload2(spu);
} else {
spursKernelSelectWorkload(spu);
}
u64 res = spu.GPR[3]._u64[1];
pollStatus = (u32)(res);
wid = (u32)(res >> 32);
}
}
//////////////////////////////////////////////////////////////////////////////
// SPURS system workload functions
//////////////////////////////////////////////////////////////////////////////
/// Restore scheduling parameters after a workload has been preempted by the system service workload
void spursSysServiceCleanupAfterPreemption(SPUThread & spu, SpursKernelMgmtData * mgmt) {
if (mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum] != 0xFF) {
auto wklId = mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum];
mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum] = 0xFF;
spursSysServiceUpdateWorkload(spu, mgmt);
if (wklId >= CELL_SPURS_MAX_WORKLOAD) {
mgmt->spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x10;
mgmt->spurs->m.wklReadyCount1[wklId & 0x0F].write_relaxed(mgmt->spurs->m.wklReadyCount1[wklId & 0x0F].read_relaxed() - 1);
} else {
mgmt->spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x01;
mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1);
}
// Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace
// uses the current worload id to determine the workload to which the trace belongs
auto wklIdSaved = mgmt->wklCurrentId;
mgmt->wklCurrentId = wklId;
// Trace - STOP: GUID
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_STOP;
pkt.data.stop = SPURS_GUID_SYS_WKL;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
mgmt->wklCurrentId = wklIdSaved;
}
}
/// Update the trace count for this SPU in CellSpurs
void spursSysServiceUpdateTraceCount(SPUThread & spu, SpursKernelMgmtData * mgmt) {
if (mgmt->traceBuffer) {
auto traceInfo = vm::ptr<CellSpursTraceInfo>::make((u32)(mgmt->traceBuffer - (mgmt->spurs->m.traceStartIndex[mgmt->spuNum] << 4)));
traceInfo->count[mgmt->spuNum] = mgmt->traceMsgCount;
}
}
/// Update trace control in SPU from CellSpurs
void spursSysServiceUpdateTrace(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 arg2, u32 arg3, u32 arg4) {
auto sysSrvMsgUpdateTrace = mgmt->spurs->m.sysSrvMsgUpdateTrace;
mgmt->spurs->m.sysSrvMsgUpdateTrace &= ~(1 << mgmt->spuNum);
mgmt->spurs->m.xCC &= ~(1 << mgmt->spuNum);
mgmt->spurs->m.xCC |= arg2 << mgmt->spuNum;
bool notify = false;
if (((sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.sysSrvMsgUpdateTrace == 0) && (mgmt->spurs->m.xCD != 0)) {
mgmt->spurs->m.xCD = 0;
notify = true;
}
if (arg4 && mgmt->spurs->m.xCD != 0) {
mgmt->spurs->m.xCD = 0;
notify = true;
}
// Get trace parameters from CellSpurs and store them in the LS
if (((sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) != 0) || (arg3 != 0)) {
if (mgmt->traceMsgCount != 0xFF || mgmt->spurs->m.traceBuffer.addr() == 0) {
spursSysServiceUpdateTraceCount(spu, mgmt);
} else {
mgmt->traceMsgCount = mgmt->spurs->m.traceBuffer->count[mgmt->spuNum];
}
mgmt->traceBuffer = mgmt->spurs->m.traceBuffer.addr() + (mgmt->spurs->m.traceStartIndex[mgmt->spuNum] << 4);
mgmt->traceMaxCount = mgmt->spurs->m.traceStartIndex[1] - mgmt->spurs->m.traceStartIndex[0];
if (mgmt->traceBuffer == 0) {
mgmt->traceMsgCount = 0;
}
}
if (notify) {
// TODO: sys_spu_thread_send_event(mgmt->spurs->m.spuPort, 2, 0);
}
}
/// Update events in CellSpurs
void spursSysServiceUpdateEvent(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 wklShutdownBitSet) {
// Mark the workloads in wklShutdownBitSet as completed and also generate a bit set of the completed
// workloads that have a shutdown completion hook registered
u32 wklNotifyBitSet = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
if (wklShutdownBitSet & (0x80000000u >> i)) {
mgmt->spurs->m.wklEvent1[i] |= 0x01;
if (mgmt->spurs->m.wklEvent1[i] & 0x02 || mgmt->spurs->m.wklEvent1[i] & 0x10) {
wklNotifyBitSet |= 0x80000000u >> i;
}
}
if (wklShutdownBitSet & (0x8000 >> i)) {
mgmt->spurs->m.wklEvent2[i] |= 0x01;
if (mgmt->spurs->m.wklEvent2[i] & 0x02 || mgmt->spurs->m.wklEvent2[i] & 0x10) {
wklNotifyBitSet |= 0x8000 >> i;
}
}
}
if (wklNotifyBitSet) {
// TODO: sys_spu_thread_send_event(mgmt->spurs->m.spuPort, 0, wklNotifyMask);
}
}
/// Update workload information in the SPU from CellSpurs
void spursSysServiceUpdateWorkload(SPUThread & spu, SpursKernelMgmtData * mgmt) {
u32 wklShutdownBitSet = 0;
mgmt->wklRunnable1 = 0;
mgmt->wklRunnable2 = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
// Copy the priority of the workload for this SPU and its unique id to the LS
mgmt->priority[i] = mgmt->spurs->m.wklInfo1[i].priority[mgmt->spuNum] == 0 ? 0 : 0x10 - mgmt->spurs->m.wklInfo1[i].priority[mgmt->spuNum];
mgmt->wklUniqueId[i] = mgmt->spurs->m.wklInfo1[i].uniqueId.read_relaxed();
// Update workload status and runnable flag based on the workload state
auto wklStatus = mgmt->spurs->m.wklStatus1[i];
if (mgmt->spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
mgmt->spurs->m.wklStatus1[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable1 |= 0x8000 >> i;
} else {
mgmt->spurs->m.wklStatus1[i] &= ~(1 << mgmt->spuNum);
}
// If the workload is shutting down and if this is the last SPU from which it is being removed then
// add it to the shutdown bit set
if (mgmt->spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.wklStatus1[i] == 0)) {
mgmt->spurs->m.wklState1[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x80000000u >> i;
}
}
if (mgmt->spurs->m.flags1 & SF1_32_WORKLOADS) {
// Copy the priority of the workload for this SPU to the LS
if (mgmt->spurs->m.wklInfo2[i].priority[mgmt->spuNum]) {
mgmt->priority[i] |= (0x10 - mgmt->spurs->m.wklInfo2[i].priority[mgmt->spuNum]) << 4;
}
// Update workload status and runnable flag based on the workload state
wklStatus = mgmt->spurs->m.wklStatus2[i];
if (mgmt->spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
mgmt->spurs->m.wklStatus2[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable2 |= 0x8000 >> i;
} else {
mgmt->spurs->m.wklStatus2[i] &= ~(1 << mgmt->spuNum);
}
// If the workload is shutting down and if this is the last SPU from which it is being removed then
// add it to the shutdown bit set
if (mgmt->spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.wklStatus2[i] == 0)) {
mgmt->spurs->m.wklState2[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x8000 >> i;
}
}
}
}
if (wklShutdownBitSet) {
spursSysServiceUpdateEvent(spu, mgmt, wklShutdownBitSet);
}
}
/// Process any messages
void spursSysServiceProcessMessages(SPUThread & spu, SpursKernelMgmtData * mgmt) {
LV2_LOCK(0);
// Process update workload message
if (mgmt->spurs->m.sysSrvMsgUpdateWorkload.read_relaxed() & (1 << mgmt->spuNum)) {
mgmt->spurs->m.sysSrvMsgUpdateWorkload &= ~(1 << mgmt->spuNum);
spursSysServiceUpdateWorkload(spu, mgmt);
}
// Process update trace message
if (mgmt->spurs->m.sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) {
spursSysServiceUpdateTrace(spu, mgmt, 1, 0, 0);
}
// Process terminate request
if (mgmt->spurs->m.sysSrvMsgTerminate & (1 << mgmt->spuNum)) {
mgmt->spurs->m.sysSrvOnSpu &= ~(1 << mgmt->spuNum);
// TODO: Rest of the terminate processing
}
}
/// Wait for an external event or exit the SPURS thread group if no workloads can be scheduled
void spursSysServiceWaitOrExit(SPUThread & spu, SpursKernelMgmtData * mgmt) {
while (true) {
Emu.GetCoreMutex().lock();
// Find the number of SPUs that are idling in this SPURS instance
u32 nIdlingSpus = 0;
for (u32 i = 0; i < 8; i++) {
if (mgmt->spurs->m.spuIdling & (1 << i)) {
nIdlingSpus++;
}
}
bool allSpusIdle = nIdlingSpus == mgmt->spurs->m.nSpus ? true: false;
bool exitIfNoWork = mgmt->spurs->m.flags1 & SF1_EXIT_IF_NO_WORK ? true : false;
// Check if any workloads can be scheduled
bool foundReadyWorkload = false;
if (mgmt->spurs->m.sysSrvMessage.read_relaxed() & (1 << mgmt->spuNum)) {
foundReadyWorkload = true;
} else {
if (mgmt->spurs->m.flags1 & SF1_32_WORKLOADS) {
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD2; i++) {
u32 j = i & 0x0F;
u8 runnable = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->wklRunnable1 & (0x8000 >> j) : mgmt->wklRunnable2 & (0x8000 >> j);
u8 priority = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->priority[j] & 0x0F : mgmt->priority[j] >> 4;
u8 maxContention = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklMaxContention[j].read_relaxed() & 0x0F : mgmt->spurs->m.wklMaxContention[j].read_relaxed() >> 4;
u8 contention = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklCurrentContention[j] & 0x0F : mgmt->spurs->m.wklCurrentContention[j] >> 4;
u8 wklSignal = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> j) : mgmt->spurs->m.wklSignal2.read_relaxed() & (0x8000 >> j);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklReadyCount1[j].read_relaxed() : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[j].read_relaxed();
if (runnable && priority > 0 && maxContention > contention) {
if (wklFlag || wklSignal || readyCount > contention) {
foundReadyWorkload = true;
break;
}
}
}
} else {
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
u8 runnable = mgmt->wklRunnable1 & (0x8000 >> i);
u8 wklSignal = mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> i);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = mgmt->spurs->m.wklReadyCount1[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklReadyCount1[i].read_relaxed();
u8 idleSpuCount = mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed();
u8 requestCount = readyCount + idleSpuCount;
if (runnable && mgmt->priority[i] != 0 && mgmt->spurs->m.wklMaxContention[i].read_relaxed() > mgmt->spurs->m.wklCurrentContention[i]) {
if (wklFlag || wklSignal || (readyCount != 0 && requestCount > mgmt->spurs->m.wklCurrentContention[i])) {
foundReadyWorkload = true;
break;
}
}
}
}
}
// If all SPUs are idling and the exit_if_no_work flag is set then the SPU thread group must exit. Otherwise wait for external events.
if ((mgmt->spurs->m.spuIdling & (1 << mgmt->spuNum)) && (allSpusIdle == false || exitIfNoWork == false) && foundReadyWorkload == false) {
// The system service blocks by making a reservation and waiting on the reservation lost event. This is unfortunately
// not yet completely implemented in rpcs3. So we busy wait here.
//u128 r;
//spu.ReadChannel(r, 0);
Emu.GetCoreMutex().unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
Emu.GetCoreMutex().lock();
}
if ((allSpusIdle == true && exitIfNoWork == true) || foundReadyWorkload == false) {
mgmt->spurs->m.spuIdling |= 1 << mgmt->spuNum;
} else {
mgmt->spurs->m.spuIdling &= ~(1 << mgmt->spuNum);
}
Emu.GetCoreMutex().unlock();
if (allSpusIdle == false || exitIfNoWork == false) {
if (foundReadyWorkload == true) {
return;
}
} else {
// TODO: exit spu thread group
}
}
}
/// Main function for the system service workload
void spursSysServiceWorkloadMain(SPUThread & spu, u32 pollStatus) {
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
if (mgmt->spurs.addr() % CellSpurs::align) {
assert(0);
}
// Initialise the system service if this is the first time its being started on this SPU
if (mgmt->sysSrvInitialised == 0) {
mgmt->sysSrvInitialised = 1;
LV2_LOCK(0);
if (mgmt->spurs->m.sysSrvOnSpu & (1 << mgmt->spuNum)) {
assert(0);
}
mgmt->spurs->m.sysSrvOnSpu |= 1 << mgmt->spuNum;
mgmt->traceBuffer = 0;
mgmt->traceMsgCount = -1;
spursSysServiceUpdateTrace(spu, mgmt, 1, 1, 0);
spursSysServiceCleanupAfterPreemption(spu, mgmt);
// Trace - SERVICE: INIT
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_SERVICE;
pkt.data.service.incident = CELL_SPURS_TRACE_SERVICE_INIT;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
}
// Trace - START: Module='SYS '
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_START;
memcpy(pkt.data.start.module, "SYS ", 4);
pkt.data.start.level = 1; // Policy module
pkt.data.start.ls = 0xA00 >> 2;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
while (true) {
// Process messages for the system service workload
spursSysServiceProcessMessages(spu, mgmt);
poll:
if (cellSpursModulePollStatus(spu, nullptr)) {
// Trace - SERVICE: EXIT
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_SERVICE;
pkt.data.service.incident = CELL_SPURS_TRACE_SERVICE_EXIT;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
// Trace - STOP: GUID
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_STOP;
pkt.data.stop = SPURS_GUID_SYS_WKL;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
break;
}
// If we reach here it means that either there are more system service messages to be processed
// or there are no workloads that can be scheduled.
// If the SPU is not idling then process the remaining system service messages
if (mgmt->spuIdling == 0) {
continue;
}
// If we reach here it means that the SPU is idling
// Trace - SERVICE: WAIT
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_SERVICE;
pkt.data.service.incident = CELL_SPURS_TRACE_SERVICE_WAIT;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
spursSysServiceWaitOrExit(spu, mgmt);
goto poll;
}
}
/// Entry point of the system service workload
void spursSysServiceWorkloadEntry(SPUThread & spu) {
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3];
spu.GPR[1]._u32[3] = 0x3FFD0;
*(vm::ptr<u32>::make(spu.GPR[1]._u32[3])) = 0x3FFF0;
memset(vm::get_ptr<void>(spu.ls_offset + 0x3FFE0), 0, 32);
if (mgmt->wklCurrentId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
spursSysServiceWorkloadMain(spu, pollStatus);
} else {
// TODO: If we reach here it means the current workload was preempted to start the
// system service workload. Need to implement this.
}
// TODO: Ensure that this function always returns to the SPURS kernel
return;
}
//////////////////////////////////////////////////////////////////////////////
// SPURS taskset policy module functions
//////////////////////////////////////////////////////////////////////////////
bool spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 * isWaiting) {
auto kernelMgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
auto mgmt = vm::get_ptr<SpursTasksetPmMgmtData>(spu.ls_offset + 0x2700);
// Verify taskset state is valid
for (auto i = 0; i < 4; i ++) {
if ((mgmt->taskset->m.waiting_set[i] & mgmt->taskset->m.running_set[i]) ||
(mgmt->taskset->m.ready_set[i] & mgmt->taskset->m.ready2_set[i]) ||
((mgmt->taskset->m.running_set[i] | mgmt->taskset->m.ready_set[i] |
mgmt->taskset->m.ready2_set[i] | mgmt->taskset->m.signal_received_set[i] |
mgmt->taskset->m.waiting_set[i]) & ~mgmt->taskset->m.enabled_set[i])) {
assert(0);
}
}
// TODO: Implement cases
s32 delta = 0;
switch (request + 1) {
case 0:
break;
case 1:
break;
case 2:
break;
case 3:
break;
case 4:
break;
case 5:
break;
case 6:
break;
default:
assert(0);
break;
}
// Set the ready count of the workload to the number of ready tasks
do {
s32 readyCount = kernelMgmt->wklCurrentId >= CELL_SPURS_MAX_WORKLOAD ?
kernelMgmt->spurs->m.wklIdleSpuCountOrReadyCount2[kernelMgmt->wklCurrentId & 0x0F].read_relaxed() :
kernelMgmt->spurs->m.wklReadyCount1[kernelMgmt->wklCurrentId].read_relaxed();
auto newReadyCount = readyCount + delta > 0xFF ? 0xFF : readyCount + delta < 0 ? 0 : readyCount + delta;
if (kernelMgmt->wklCurrentId >= CELL_SPURS_MAX_WORKLOAD) {
kernelMgmt->spurs->m.wklIdleSpuCountOrReadyCount2[kernelMgmt->wklCurrentId & 0x0F].write_relaxed(newReadyCount);
} else {
kernelMgmt->spurs->m.wklReadyCount1[kernelMgmt->wklCurrentId].write_relaxed(newReadyCount);
}
delta += readyCount;
} while (delta > 0);
// TODO: Implement return
return false;
}
void spursTasksetDispatch() {
}
void spursTasksetProcessPollStatus(SPUThread & spu, u32 pollStatus) {
if (pollStatus & CELL_SPURS_MODULE_POLL_STATUS_FLAG) {
spursTasksetProcessRequest(spu, 6, nullptr, nullptr);
}
}
bool spursTasksetShouldYield(SPUThread & spu) {
u32 pollStatus;
if (cellSpursModulePollStatus(spu, &pollStatus)) {
return true;
}
spursTasksetProcessPollStatus(spu, pollStatus);
return false;
}
void spursTasksetInit(SPUThread & spu, u32 pollStatus) {
auto mgmt = vm::get_ptr<SpursTasksetPmMgmtData>(spu.ls_offset + 0x2700);
auto kernelMgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
kernelMgmt->moduleId[0] = 'T';
kernelMgmt->moduleId[1] = 'K';
// Trace - START: Module='TKST'
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = 0x52; // Its not clear what this tag means exactly but it seems similar to CELL_SPURS_TRACE_TAG_START
memcpy(pkt.data.start.module, "TKST", 4);
pkt.data.start.level = 2;
pkt.data.start.ls = 0xA00 >> 2;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
spursTasksetProcessPollStatus(spu, pollStatus);
}
void spursTasksetEntry(SPUThread & spu) {
auto mgmt = vm::get_ptr<SpursTasksetPmMgmtData>(spu.ls_offset + 0x2700);
// Check if the function was invoked by the SPURS kernel or because of a syscall
if (spu.PC != 0xA70) {
// Called from kernel
auto kernelMgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3];
memset(mgmt, 0, sizeof(*mgmt));
mgmt->taskset.set(arg);
memcpy(mgmt->moduleId, "SPURSTASK MODULE", 16);
mgmt->kernelMgmt = spu.GPR[3]._u32[3];
mgmt->yieldAddr = 0xA70;
mgmt->spuNum = kernelMgmt->spuNum;
mgmt->dmaTagId = kernelMgmt->dmaTagId;
mgmt->taskId = 0xFFFFFFFF;
spursTasksetInit(spu, pollStatus);
// TODO: Dispatch
}
mgmt->contextSaveArea[0] = spu.GPR[0];
mgmt->contextSaveArea[1] = spu.GPR[1];
for (auto i = 0; i < 48; i++) {
mgmt->contextSaveArea[i + 2] = spu.GPR[80 + i];
}
// TODO: Process syscall
}