rpcsx/rpcs3/Emu/SysCalls/SC_FUNC.h
2015-01-19 21:02:33 +03:00

251 lines
6.7 KiB
C++

#pragma once
#include "Emu/Cell/PPUThread.h"
class func_caller
{
public:
virtual void operator()(PPUThread& CPU) = 0;
virtual ~func_caller(){};
};
namespace ppu_func_detail
{
enum bind_arg_type
{
ARG_GENERAL,
ARG_FLOAT,
ARG_VECTOR,
ARG_STACK,
};
template<typename T, bind_arg_type type, int g_count, int f_count, int v_count>
struct bind_arg;
template<typename T, int g_count, int f_count, int v_count>
struct bind_arg<T, ARG_GENERAL, g_count, f_count, v_count>
{
static_assert(sizeof(T) <= 8, "Invalid function argument type for ARG_GENERAL");
static __forceinline T func(PPUThread& CPU)
{
return cast_from_ppu_gpr<T>(CPU.GPR[g_count + 2]);
}
};
template<typename T, int g_count, int f_count, int v_count>
struct bind_arg<T, ARG_FLOAT, g_count, f_count, v_count>
{
static_assert(sizeof(T) <= 8, "Invalid function argument type for ARG_FLOAT");
static __forceinline T func(PPUThread& CPU)
{
return static_cast<T>(CPU.FPR[f_count]);
}
};
template<typename T, int g_count, int f_count, int v_count>
struct bind_arg<T, ARG_VECTOR, g_count, f_count, v_count>
{
static_assert(std::is_same<T, u128>::value, "Invalid function argument type for ARG_VECTOR");
static __forceinline T func(PPUThread& CPU)
{
return CPU.VPR[v_count + 1];
}
};
template<typename T, int g_count, int f_count, int v_count>
struct bind_arg<T, ARG_STACK, g_count, f_count, v_count>
{
static_assert(f_count <= 13, "TODO: Unsupported stack argument type (float)");
static_assert(v_count <= 12, "TODO: Unsupported stack argument type (vector)");
static_assert(sizeof(T) <= 8, "Invalid function argument type for ARG_STACK");
static __forceinline T func(PPUThread& CPU)
{
// TODO: check stack argument displacement
const u64 res = CPU.GetStackArg(8 + std::max(g_count - 8, 0) + std::max(f_count - 13, 0) + std::max(v_count - 12, 0));
return cast_from_ppu_gpr<T>(res);
}
};
template<typename T, bind_arg_type type>
struct bind_result
{
static_assert(type == ARG_GENERAL, "Wrong use of bind_result template");
static_assert(sizeof(T) <= 8, "Invalid function result type for ARG_GENERAL");
static __forceinline void func(PPUThread& CPU, const T& result)
{
CPU.GPR[3] = cast_to_ppu_gpr<T>(result);
}
};
template<typename T>
struct bind_result<T, ARG_FLOAT>
{
static_assert(sizeof(T) <= 8, "Invalid function result type for ARG_FLOAT");
static __forceinline void func(PPUThread& CPU, const T& result)
{
CPU.FPR[1] = static_cast<T>(result);
}
};
template<typename T>
struct bind_result<T, ARG_VECTOR>
{
static_assert(std::is_same<T, u128>::value, "Invalid function result type for ARG_VECTOR");
static __forceinline void func(PPUThread& CPU, const T& result)
{
CPU.VPR[2] = result;
}
};
template <typename RT, typename F, typename Tuple, bool Done, int Total, int... N>
struct call_impl
{
static __forceinline RT call(F f, Tuple && t)
{
return call_impl<RT, F, Tuple, Total == 1 + sizeof...(N), Total, N..., sizeof...(N)>::call(f, std::forward<Tuple>(t));
}
};
template <typename RT, typename F, typename Tuple, int Total, int... N>
struct call_impl<RT, F, Tuple, true, Total, N...>
{
static __forceinline RT call(F f, Tuple && t)
{
return f(std::get<N>(std::forward<Tuple>(t))...);
}
};
template <typename RT, typename F, typename Tuple>
__forceinline RT call(F f, Tuple && t)
{
typedef typename std::decay<Tuple>::type ttype;
return ppu_func_detail::call_impl<RT, F, Tuple, 0 == std::tuple_size<ttype>::value, std::tuple_size<ttype>::value>::call(f, std::forward<Tuple>(t));
}
template<int g_count, int f_count, int v_count>
__forceinline std::tuple<> iterate(PPUThread& CPU)
{
// terminator
return std::tuple<>();
}
template<int g_count, int f_count, int v_count, typename T, typename... A>
__forceinline std::tuple<T, A...> iterate(PPUThread& CPU)
{
static_assert(!std::is_pointer<T>::value, "Invalid function argument type (pointer)");
static_assert(!std::is_reference<T>::value, "Invalid function argument type (reference)");
// TODO: check calculations
const bool is_float = std::is_floating_point<T>::value;
const bool is_vector = std::is_same<T, u128>::value;
const bind_arg_type t = is_float
? ((f_count >= 13) ? ARG_STACK : ARG_FLOAT)
: (is_vector ? ((v_count >= 12) ? ARG_STACK : ARG_VECTOR) : ((g_count >= 8) ? ARG_STACK : ARG_GENERAL));
const int g = g_count + (is_float || is_vector ? 0 : 1);
const int f = f_count + (is_float ? 1 : 0);
const int v = v_count + (is_vector ? 1 : 0);
return std::tuple_cat(std::tuple<T>(bind_arg<T, t, g, f, v>::func(CPU)), iterate<g, f, v, A...>(CPU));
}
template<typename RT>
struct result_type
{
static_assert(!std::is_pointer<RT>::value, "Invalid function result type (pointer)");
static_assert(!std::is_reference<RT>::value, "Invalid function result type (reference)");
static const bool is_float = std::is_floating_point<RT>::value;
static const bool is_vector = std::is_same<RT, u128>::value;
static const bind_arg_type value = is_float ? ARG_FLOAT : (is_vector ? ARG_VECTOR : ARG_GENERAL);
};
template<typename RT, typename... T>
class func_binder;
template<typename... T>
class func_binder<void, T...> : public func_caller
{
typedef void(*func_t)(T...);
const func_t m_call;
public:
func_binder(func_t call)
: func_caller()
, m_call(call)
{
}
virtual void operator()(PPUThread& CPU)
{
call<void>(m_call, iterate<0, 0, 0, T...>(CPU));
}
};
template<typename... T>
class func_binder<void, PPUThread&, T...> : public func_caller
{
typedef void(*func_t)(PPUThread&, T...);
const func_t m_call;
public:
func_binder(func_t call)
: func_caller()
, m_call(call)
{
}
virtual void operator()(PPUThread& CPU)
{
call<void>(m_call, std::tuple_cat(std::tuple<PPUThread&>(CPU), iterate<0, 0, 0, T...>(CPU)));
}
};
template<typename RT, typename... T>
class func_binder : public func_caller
{
typedef RT(*func_t)(T...);
const func_t m_call;
public:
func_binder(func_t call)
: func_caller()
, m_call(call)
{
}
virtual void operator()(PPUThread& CPU)
{
bind_result<RT, result_type<RT>::value>::func(CPU, call<RT>(m_call, iterate<0, 0, 0, T...>(CPU)));
}
};
template<typename RT, typename... T>
class func_binder<RT, PPUThread&, T...> : public func_caller
{
typedef RT(*func_t)(PPUThread&, T...);
const func_t m_call;
public:
func_binder(func_t call)
: func_caller()
, m_call(call)
{
}
virtual void operator()(PPUThread& CPU)
{
bind_result<RT, result_type<RT>::value>::func(CPU, call<RT>(m_call, std::tuple_cat(std::tuple<PPUThread&>(CPU), iterate<0, 0, 0, T...>(CPU))));
}
};
}
template<typename RT, typename... T>
func_caller* bind_func(RT(*call)(T...))
{
return new ppu_func_detail::func_binder<RT, T...>(call);
}