rpcsx/rpcs3/Emu/Cell/lv2/sys_cond.cpp
2022-09-21 20:35:34 +03:00

467 lines
8.8 KiB
C++

#include "stdafx.h"
#include "util/serialization.hpp"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/System.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_cond.h"
#include "util/asm.hpp"
LOG_CHANNEL(sys_cond);
lv2_cond::lv2_cond(utils::serial& ar)
: key(ar)
, name(ar)
, mtx_id(ar)
, mutex(idm::get_unlocked<lv2_obj, lv2_mutex>(mtx_id)) // May be nullptr
{
}
CellError lv2_cond::on_id_create()
{
exists++;
static auto do_it = [](lv2_cond* _this) -> CellError
{
if (lv2_obj::check(_this->mutex))
{
_this->mutex->cond_count++;
return {};
}
// Mutex has been destroyed, cannot create conditional variable
return CELL_ESRCH;
};
if (mutex)
{
return do_it(this);
}
ensure(!!Emu.DeserialManager());
Emu.DeferDeserialization([this]()
{
if (!mutex)
{
mutex = ensure(idm::get_unlocked<lv2_obj, lv2_mutex>(mtx_id));
}
// Defer function
ensure(CellError{} == do_it(this));
});
return {};
}
std::shared_ptr<void> lv2_cond::load(utils::serial& ar)
{
auto cond = std::make_shared<lv2_cond>(ar);
return lv2_obj::load(cond->key, cond);
}
void lv2_cond::save(utils::serial& ar)
{
ar(key, name, mtx_id);
}
error_code sys_cond_create(ppu_thread& ppu, vm::ptr<u32> cond_id, u32 mutex_id, vm::ptr<sys_cond_attribute_t> attr)
{
ppu.state += cpu_flag::wait;
sys_cond.warning("sys_cond_create(cond_id=*0x%x, mutex_id=0x%x, attr=*0x%x)", cond_id, mutex_id, attr);
auto mutex = idm::get<lv2_obj, lv2_mutex>(mutex_id);
if (!mutex)
{
return CELL_ESRCH;
}
const auto _attr = *attr;
const u64 ipc_key = lv2_obj::get_key(_attr);
if (const auto error = lv2_obj::create<lv2_cond>(_attr.pshared, ipc_key, _attr.flags, [&]
{
return std::make_shared<lv2_cond>(
ipc_key,
_attr.name_u64,
mutex_id,
std::move(mutex));
}))
{
return error;
}
ppu.check_state();
*cond_id = idm::last_id();
return CELL_OK;
}
error_code sys_cond_destroy(ppu_thread& ppu, u32 cond_id)
{
ppu.state += cpu_flag::wait;
sys_cond.warning("sys_cond_destroy(cond_id=0x%x)", cond_id);
const auto cond = idm::withdraw<lv2_obj, lv2_cond>(cond_id, [&](lv2_cond& cond) -> CellError
{
std::lock_guard lock(cond.mutex->mutex);
if (atomic_storage<ppu_thread*>::load(cond.sq))
{
return CELL_EBUSY;
}
cond.mutex->cond_count--;
lv2_obj::on_id_destroy(cond, cond.key);
return {};
});
if (!cond)
{
return CELL_ESRCH;
}
if (cond.ret)
{
return cond.ret;
}
return CELL_OK;
}
error_code sys_cond_signal(ppu_thread& ppu, u32 cond_id)
{
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal(cond_id=0x%x)", cond_id);
const auto cond = idm::check<lv2_obj, lv2_cond>(cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond& cond)
{
if (atomic_storage<ppu_thread*>::load(cond.sq))
{
std::lock_guard lock(cond.mutex->mutex);
if (const auto cpu = cond.schedule<ppu_thread>(cond.sq, cond.mutex->protocol))
{
if (static_cast<ppu_thread*>(cpu)->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return;
}
// TODO: Is EBUSY returned after reqeueing, on sys_cond_destroy?
if (cond.mutex->try_own(*cpu))
{
cond.awake(cpu);
}
}
}
});
if (!cond)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_cond_signal_all(ppu_thread& ppu, u32 cond_id)
{
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal_all(cond_id=0x%x)", cond_id);
const auto cond = idm::check<lv2_obj, lv2_cond>(cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond& cond)
{
if (atomic_storage<ppu_thread*>::load(cond.sq))
{
std::lock_guard lock(cond.mutex->mutex);
for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu)
{
if (cpu->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return;
}
}
cpu_thread* result = nullptr;
auto sq = cond.sq;
atomic_storage<ppu_thread*>::release(cond.sq, nullptr);
while (const auto cpu = cond.schedule<ppu_thread>(sq, SYS_SYNC_PRIORITY))
{
if (cond.mutex->try_own(*cpu))
{
ensure(!std::exchange(result, cpu));
}
}
if (result)
{
cond.awake(result);
}
}
});
if (!cond)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_cond_signal_to(ppu_thread& ppu, u32 cond_id, u32 thread_id)
{
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_signal_to(cond_id=0x%x, thread_id=0x%x)", cond_id, thread_id);
const auto cond = idm::check<lv2_obj, lv2_cond>(cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond& cond) -> int
{
if (!idm::check_unlocked<named_thread<ppu_thread>>(thread_id))
{
return -1;
}
if (atomic_storage<ppu_thread*>::load(cond.sq))
{
std::lock_guard lock(cond.mutex->mutex);
for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu)
{
if (cpu->id == thread_id)
{
if (static_cast<ppu_thread*>(cpu)->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return 0;
}
ensure(cond.unqueue(cond.sq, cpu));
if (cond.mutex->try_own(*cpu))
{
cond.awake(cpu);
}
return 1;
}
}
}
return 0;
});
if (!cond || cond.ret == -1)
{
return CELL_ESRCH;
}
if (!cond.ret)
{
return not_an_error(CELL_EPERM);
}
return CELL_OK;
}
error_code sys_cond_wait(ppu_thread& ppu, u32 cond_id, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_cond.trace("sys_cond_wait(cond_id=0x%x, timeout=%lld)", cond_id, timeout);
// Further function result
ppu.gpr[3] = CELL_OK;
auto& sstate = *ppu.optional_savestate_state;
const auto cond = idm::get<lv2_obj, lv2_cond>(cond_id, [&, notify = lv2_obj::notify_all_t()](lv2_cond& cond) -> s64
{
if (!ppu.loaded_from_savestate && atomic_storage<u32>::load(cond.mutex->control.raw().owner) != ppu.id)
{
return -1;
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(cond.mutex->mutex);
const u64 syscall_state = sstate.try_read<u64>().second;
sstate.clear();
if (ppu.loaded_from_savestate)
{
if (syscall_state & 1)
{
// Mutex sleep
ensure(!cond.mutex->try_own(ppu));
}
else
{
lv2_obj::emplace(cond.sq, &ppu);
}
cond.sleep(ppu, timeout);
return static_cast<u32>(syscall_state >> 32);
}
// Register waiter
lv2_obj::emplace(cond.sq, &ppu);
// Unlock the mutex
const u32 count = cond.mutex->lock_count.exchange(0);
if (const auto cpu = cond.mutex->reown<ppu_thread>())
{
if (cpu->state & cpu_flag::again)
{
ensure(cond.unqueue(cond.sq, &ppu));
ppu.state += cpu_flag::again;
return 0;
}
cond.mutex->append(cpu);
}
// Sleep current thread and schedule mutex waiter
cond.sleep(ppu, timeout);
// Save the recursive value
return count;
});
if (!cond)
{
return CELL_ESRCH;
}
if (ppu.state & cpu_flag::again)
{
return {};
}
if (cond.ret < 0)
{
return CELL_EPERM;
}
while (auto state = +ppu.state)
{
if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal))
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(cond->mutex->mutex);
bool mutex_sleep = false;
bool cond_sleep = false;
for (auto cpu = atomic_storage<ppu_thread*>::load(cond->sq); cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
cond_sleep = true;
break;
}
}
for (auto cpu = atomic_storage<ppu_thread*>::load(cond->mutex->control.raw().sq); cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
mutex_sleep = true;
break;
}
}
if (!cond_sleep && !mutex_sleep)
{
break;
}
const u64 optional_syscall_state = u32{mutex_sleep} | (u64{static_cast<u32>(cond.ret)} << 32);
sstate(optional_syscall_state);
ppu.state += cpu_flag::again;
return {};
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++)
{
busy_wait(500);
}
if (ppu.state & cpu_flag::signal)
{
continue;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
const u64 start_time = ppu.start_time;
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
std::lock_guard lock(cond->mutex->mutex);
// Try to cancel the waiting
if (cond->unqueue(cond->sq, &ppu))
{
// TODO: Is EBUSY returned after reqeueing, on sys_cond_destroy?
ppu.gpr[3] = CELL_ETIMEDOUT;
// Own or requeue
if (cond->mutex->try_own(ppu))
{
break;
}
}
else if (atomic_storage<u32>::load(cond->mutex->control.raw().owner) == ppu.id)
{
break;
}
cond->mutex->sleep(ppu);
ppu.start_time = start_time; // Restore start time because awake has been called
timeout = 0;
continue;
}
}
else
{
thread_ctrl::wait_on(ppu.state, state);
}
}
// Verify ownership
ensure(atomic_storage<u32>::load(cond->mutex->control.raw().owner) == ppu.id);
// Restore the recursive value
cond->mutex->lock_count.release(static_cast<u32>(cond.ret));
return not_an_error(ppu.gpr[3]);
}