rpcsx/rpcs3/Emu/Memory/atomic.h
2015-08-01 14:39:24 +03:00

357 lines
11 KiB
C++

#pragma once
template<typename T, size_t size = sizeof(T)> struct _to_atomic_subtype
{
static_assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 16, "Invalid atomic type");
};
template<typename T> struct _to_atomic_subtype<T, 1>
{
using type = u8;
};
template<typename T> struct _to_atomic_subtype<T, 2>
{
using type = u16;
};
template<typename T> struct _to_atomic_subtype<T, 4>
{
using type = u32;
};
template<typename T> struct _to_atomic_subtype<T, 8>
{
using type = u64;
};
template<typename T> struct _to_atomic_subtype<T, 16>
{
using type = u128;
};
template<typename T> using atomic_subtype_t = typename _to_atomic_subtype<T>::type;
// result wrapper to deal with void result type
template<typename T, typename RT, typename VT> struct atomic_op_result_t
{
RT result;
template<typename... Args> inline atomic_op_result_t(T func, VT& var, Args&&... args)
: result(std::move(func(var, std::forward<Args>(args)...)))
{
}
inline RT move()
{
return std::move(result);
}
};
// void specialization: result is the initial value of the first arg
template<typename T, typename VT> struct atomic_op_result_t<T, void, VT>
{
VT result;
template<typename... Args> inline atomic_op_result_t(T func, VT& var, Args&&... args)
: result(var)
{
func(var, std::forward<Args>(args)...);
}
inline VT move()
{
return std::move(result);
}
};
// member function specialization
template<typename CT, typename... FArgs, typename RT, typename VT> struct atomic_op_result_t<RT(CT::*)(FArgs...), RT, VT>
{
RT result;
template<typename... Args> inline atomic_op_result_t(RT(CT::*func)(FArgs...), VT& var, Args&&... args)
: result(std::move((var.*func)(std::forward<Args>(args)...)))
{
}
inline RT move()
{
return std::move(result);
}
};
// member function void specialization
template<typename CT, typename... FArgs, typename VT> struct atomic_op_result_t<void(CT::*)(FArgs...), void, VT>
{
VT result;
template<typename... Args> inline atomic_op_result_t(void(CT::*func)(FArgs...), VT& var, Args&&... args)
: result(var)
{
(var.*func)(std::forward<Args>(args)...);
}
inline VT move()
{
return std::move(result);
}
};
template<typename T> union _atomic_base
{
using type = std::remove_cv_t<T>;
using subtype = atomic_subtype_t<type>;
type data; // unsafe direct access
subtype sub_data; // unsafe direct access to substitute type
force_inline static const subtype to_subtype(const type& value)
{
return reinterpret_cast<const subtype&>(value);
}
force_inline static const type from_subtype(const subtype value)
{
return reinterpret_cast<const type&>(value);
}
force_inline static type& to_type(subtype& value)
{
return reinterpret_cast<type&>(value);
}
private:
template<typename T2> force_inline static void write_relaxed(volatile T2& data, const T2& value)
{
data = value;
}
force_inline static void write_relaxed(volatile u128& data, const u128& value)
{
sync_lock_test_and_set(&data, value);
}
template<typename T2> force_inline static T2 read_relaxed(const volatile T2& data)
{
return data;
}
force_inline static u128 read_relaxed(const volatile u128& value)
{
return sync_val_compare_and_swap(const_cast<volatile u128*>(&value), {}, {});
}
public:
// atomically compare data with cmp, replace with exch if equal, return previous data value anyway
force_inline const type compare_and_swap(const type& cmp, const type& exch) volatile
{
return from_subtype(sync_val_compare_and_swap(&sub_data, to_subtype(cmp), to_subtype(exch)));
}
// atomically compare data with cmp, replace with exch if equal, return true if data was replaced
force_inline bool compare_and_swap_test(const type& cmp, const type& exch) volatile
{
return sync_bool_compare_and_swap(&sub_data, to_subtype(cmp), to_subtype(exch));
}
// read data with memory barrier
force_inline const type load_sync() const volatile
{
const subtype zero = {};
return from_subtype(sync_val_compare_and_swap(const_cast<subtype*>(&sub_data), zero, zero));
}
// atomically replace data with exch, return previous data value
force_inline const type exchange(const type& exch) volatile
{
return from_subtype(sync_lock_test_and_set(&sub_data, to_subtype(exch)));
}
// read data without memory barrier (works as load_sync() for 128 bit)
force_inline const type load() const volatile
{
return from_subtype(read_relaxed(sub_data));
}
// write data without memory barrier (works as exchange() for 128 bit, discarding result)
force_inline void store(const type& value) volatile
{
write_relaxed(sub_data, to_subtype(value));
}
// perform an atomic operation on data (callable object version, first arg is a reference to atomic type)
template<typename F, typename... Args, typename RT = std::result_of_t<F(T&, Args...)>> auto atomic_op(F func, Args&&... args) volatile -> decltype(atomic_op_result_t<F, RT, T>::result)
{
while (true)
{
// read the old value from memory
const subtype old = read_relaxed(sub_data);
// copy the old value
subtype _new = old;
// call atomic op for the local copy of the old value and save the return value of the function
atomic_op_result_t<F, RT, T> result(func, to_type(_new), args...);
// atomically compare value with `old`, replace with `_new` and return on success
if (sync_bool_compare_and_swap(&sub_data, old, _new)) return result.move();
}
}
// atomic bitwise OR, returns previous data
force_inline const type _or(const type& right) volatile
{
return from_subtype(sync_fetch_and_or(&sub_data, to_subtype(right)));
}
// atomic bitwise AND, returns previous data
force_inline const type _and(const type& right) volatile
{
return from_subtype(sync_fetch_and_and(&sub_data, to_subtype(right)));
}
// atomic bitwise AND NOT (inverts right argument), returns previous data
force_inline const type _and_not(const type& right) volatile
{
return from_subtype(sync_fetch_and_and(&sub_data, ~to_subtype(right)));
}
// atomic bitwise XOR, returns previous data
force_inline const type _xor(const type& right) volatile
{
return from_subtype(sync_fetch_and_xor(&sub_data, to_subtype(right)));
}
force_inline const type operator |=(const type& right) volatile
{
return from_subtype(sync_fetch_and_or(&sub_data, to_subtype(right)) | to_subtype(right));
}
force_inline const type operator &=(const type& right) volatile
{
return from_subtype(sync_fetch_and_and(&sub_data, to_subtype(right)) & to_subtype(right));
}
force_inline const type operator ^=(const type& right) volatile
{
return from_subtype(sync_fetch_and_xor(&sub_data, to_subtype(right)) ^ to_subtype(right));
}
};
template<typename T> using if_integral_t = std::enable_if_t<std::is_integral<T>::value>;
template<typename T, typename = if_integral_t<T>> inline T operator ++(_atomic_base<T>& left)
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, 1) + 1);
}
template<typename T, typename = if_integral_t<T>> inline T operator --(_atomic_base<T>& left)
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, 1) - 1);
}
template<typename T, typename = if_integral_t<T>> inline T operator ++(_atomic_base<T>& left, int)
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, 1));
}
template<typename T, typename = if_integral_t<T>> inline T operator --(_atomic_base<T>& left, int)
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, 1));
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator +=(_atomic_base<T>& left, T2 right) -> decltype(std::declval<T>() + std::declval<T2>())
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, right) + right);
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator -=(_atomic_base<T>& left, T2 right) -> decltype(std::declval<T>() - std::declval<T2>())
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, right) - right);
}
template<typename T, typename = if_integral_t<T>> inline le_t<T> operator ++(_atomic_base<le_t<T>>& left)
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, 1) + 1);
}
template<typename T, typename = if_integral_t<T>> inline le_t<T> operator --(_atomic_base<le_t<T>>& left)
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, 1) - 1);
}
template<typename T, typename = if_integral_t<T>> inline le_t<T> operator ++(_atomic_base<le_t<T>>& left, int)
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, 1));
}
template<typename T, typename = if_integral_t<T>> inline le_t<T> operator --(_atomic_base<le_t<T>>& left, int)
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, 1));
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator +=(_atomic_base<le_t<T>>& left, T2 right) -> decltype(std::declval<T>() + std::declval<T2>())
{
return left.from_subtype(sync_fetch_and_add(&left.sub_data, right) + right);
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator -=(_atomic_base<le_t<T>>& left, T2 right) -> decltype(std::declval<T>() - std::declval<T2>())
{
return left.from_subtype(sync_fetch_and_sub(&left.sub_data, right) - right);
}
template<typename T, typename = if_integral_t<T>> inline be_t<T> operator ++(_atomic_base<be_t<T>>& left)
{
return left.atomic_op([](be_t<T>& value) -> be_t<T>
{
return ++value;
});
}
template<typename T, typename = if_integral_t<T>> inline be_t<T> operator --(_atomic_base<be_t<T>>& left)
{
return left.atomic_op([](be_t<T>& value) -> be_t<T>
{
return --value;
});
}
template<typename T, typename = if_integral_t<T>> inline be_t<T> operator ++(_atomic_base<be_t<T>>& left, int)
{
return left.atomic_op([](be_t<T>& value) -> be_t<T>
{
return value++;
});
}
template<typename T, typename = if_integral_t<T>> inline be_t<T> operator --(_atomic_base<be_t<T>>& left, int)
{
return left.atomic_op([](be_t<T>& value) -> be_t<T>
{
return value--;
});
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator +=(_atomic_base<be_t<T>>& left, T2 right) -> be_t<decltype(std::declval<T>() + std::declval<T2>())>
{
return left.atomic_op([right](be_t<T>& value) -> be_t<T>
{
return value += right;
});
}
template<typename T, typename T2, typename = if_integral_t<T>> inline auto operator -=(_atomic_base<be_t<T>>& left, T2 right) -> be_t<decltype(std::declval<T>() - std::declval<T2>())>
{
return left.atomic_op([right](be_t<T>& value) -> be_t<T>
{
return value -= right;
});
}
template<typename T> using atomic_t = _atomic_base<T>; // Atomic Type with native endianness (for emulator memory)
template<typename T> using atomic_be_t = _atomic_base<to_be_t<T>>; // Atomic BE Type (for PS3 virtual memory)
template<typename T> using atomic_le_t = _atomic_base<to_le_t<T>>; // Atomic LE Type (for PSV virtual memory)