rpcsx/rx/include/rx/asm.hpp
2025-10-05 20:07:19 +03:00

365 lines
8.6 KiB
C++

#pragma once
#include "rx/tsc.hpp"
#include "types.hpp"
#include <atomic>
#include <thread>
extern bool g_use_rtm;
extern u64 g_rtm_tx_limit1;
#ifdef _M_X64
#ifdef _MSC_VER
extern "C" {
u32 _xbegin();
void _xend();
void _mm_pause();
void _mm_prefetch(const char *, int);
void _m_prefetchw(const volatile void *);
uchar _rotl8(uchar, uchar);
ushort _rotl16(ushort, uchar);
u64 __popcnt64(u64);
s64 __mulh(s64, s64);
u64 __umulh(u64, u64);
s64 _div128(s64, s64, s64, s64 *);
u64 _udiv128(u64, u64, u64, u64 *);
void __debugbreak();
}
#include <intrin.h>
#else
#include <immintrin.h>
#endif
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
namespace rx {
// Try to prefetch to Level 2 cache since it's not split to data/code on most
// processors
template <typename T> constexpr void prefetch_exec(T func) {
if (std::is_constant_evaluated()) {
return;
}
const u64 value = reinterpret_cast<u64>(func);
const void *ptr = reinterpret_cast<const void *>(value);
#ifdef _M_X64
return _mm_prefetch(static_cast<const char *>(ptr), _MM_HINT_T1);
#else
return __builtin_prefetch(ptr, 0, 2);
#endif
}
// Try to prefetch to Level 1 cache
constexpr void prefetch_read(const void *ptr) {
if (std::is_constant_evaluated()) {
return;
}
#ifdef _M_X64
return _mm_prefetch(static_cast<const char *>(ptr), _MM_HINT_T0);
#else
return __builtin_prefetch(ptr, 0, 3);
#endif
}
constexpr void prefetch_write(void *ptr) {
if (std::is_constant_evaluated()) {
return;
}
#if defined(_M_X64) && !defined(__clang__)
return _m_prefetchw(ptr);
#else
return __builtin_prefetch(ptr, 1, 0);
#endif
}
constexpr u8 rol8(u8 x, u8 n) {
if (std::is_constant_evaluated()) {
return (x << (n & 7)) | (x >> ((-n & 7)));
}
#ifdef _MSC_VER
return _rotl8(x, n);
#elif defined(__clang__)
return __builtin_rotateleft8(x, n);
#elif defined(ARCH_X64)
return __builtin_ia32_rolqi(x, n);
#else
return (x << (n & 7)) | (x >> ((-n & 7)));
#endif
}
constexpr u16 rol16(u16 x, u16 n) {
if (std::is_constant_evaluated()) {
return (x << (n & 15)) | (x >> ((-n & 15)));
}
#ifdef _MSC_VER
return _rotl16(x, static_cast<uchar>(n));
#elif defined(__clang__)
return __builtin_rotateleft16(x, n);
#elif defined(ARCH_X64)
return __builtin_ia32_rolhi(x, n);
#else
return (x << (n & 15)) | (x >> ((-n & 15)));
#endif
}
constexpr u32 rol32(u32 x, u32 n) {
if (std::is_constant_evaluated()) {
return (x << (n & 31)) | (x >> (((0 - n) & 31)));
}
#ifdef _MSC_VER
return _rotl(x, n);
#elif defined(__clang__)
return __builtin_rotateleft32(x, n);
#else
return (x << (n & 31)) | (x >> (((0 - n) & 31)));
#endif
}
constexpr u64 rol64(u64 x, u64 n) {
if (std::is_constant_evaluated()) {
return (x << (n & 63)) | (x >> (((0 - n) & 63)));
}
#ifdef _MSC_VER
return _rotl64(x, static_cast<int>(n));
#elif defined(__clang__)
return __builtin_rotateleft64(x, n);
#else
return (x << (n & 63)) | (x >> (((0 - n) & 63)));
#endif
}
constexpr u32 popcnt64(u64 v) {
#if !defined(_MSC_VER) || defined(__SSE4_2__)
if (std::is_constant_evaluated())
#endif
{
v = (v & 0xaaaaaaaaaaaaaaaa) / 2 + (v & 0x5555555555555555);
v = (v & 0xcccccccccccccccc) / 4 + (v & 0x3333333333333333);
v = (v & 0xf0f0f0f0f0f0f0f0) / 16 + (v & 0x0f0f0f0f0f0f0f0f);
v = (v & 0xff00ff00ff00ff00) / 256 + (v & 0x00ff00ff00ff00ff);
v = ((v & 0xffff0000ffff0000) >> 16) + (v & 0x0000ffff0000ffff);
return static_cast<u32>((v >> 32) + v);
}
#if !defined(_MSC_VER) || defined(__SSE4_2__)
#ifdef _MSC_VER
return static_cast<u32>(__popcnt64(v));
#else
return __builtin_popcountll(v);
#endif
#endif
}
constexpr u32 popcnt128(const u128 &v) {
#ifdef _MSC_VER
return popcnt64(v.lo) + popcnt64(v.hi);
#else
return popcnt64(v) + popcnt64(v >> 64);
#endif
}
constexpr u64 umulh64(u64 x, u64 y) {
#ifdef _MSC_VER
if (std::is_constant_evaluated())
#endif
{
return static_cast<u64>((u128{x} * u128{y}) >> 64);
}
#ifdef _MSC_VER
return __umulh(x, y);
#endif
}
inline s64 mulh64(s64 x, s64 y) {
#ifdef _MSC_VER
return __mulh(x, y);
#else
return (s128{x} * s128{y}) >> 64;
#endif
}
inline s64 div128(s64 high, s64 low, s64 divisor, s64 *remainder = nullptr) {
#ifdef _MSC_VER
s64 rem = 0;
s64 r = _div128(high, low, divisor, &rem);
if (remainder) {
*remainder = rem;
}
#else
const s128 x = (u128{static_cast<u64>(high)} << 64) | u64(low);
const s128 r = x / divisor;
if (remainder) {
*remainder = x % divisor;
}
#endif
return r;
}
inline u64 udiv128(u64 high, u64 low, u64 divisor, u64 *remainder = nullptr) {
#ifdef _MSC_VER
u64 rem = 0;
u64 r = _udiv128(high, low, divisor, &rem);
if (remainder) {
*remainder = rem;
}
#else
const u128 x = (u128{high} << 64) | low;
const u128 r = x / divisor;
if (remainder) {
*remainder = x % divisor;
}
#endif
return r;
}
#ifdef _MSC_VER
inline u128 operator/(u128 lhs, u64 rhs) {
u64 rem = 0;
return _udiv128(lhs.hi, lhs.lo, rhs, &rem);
}
#endif
constexpr u32 ctz128(u128 arg) {
#ifdef _MSC_VER
if (!arg.lo)
return std::countr_zero(arg.hi) + 64u;
else
return std::countr_zero(arg.lo);
#else
if (u64 lo = static_cast<u64>(arg))
return std::countr_zero<u64>(lo);
else
return std::countr_zero<u64>(arg >> 64) + 64;
#endif
}
constexpr u32 clz128(u128 arg) {
#ifdef _MSC_VER
if (arg.hi)
return std::countl_zero(arg.hi);
else
return std::countl_zero(arg.lo) + 64;
#else
if (u64 hi = static_cast<u64>(arg >> 64))
return std::countl_zero<u64>(hi);
else
return std::countl_zero<u64>(arg) + 64;
#endif
}
inline void pause() {
#if defined(ARCH_ARM64)
__asm__ volatile("yield");
#elif defined(_M_X64)
_mm_pause();
#elif defined(ARCH_X64)
__builtin_ia32_pause();
#else
#error "Missing pause() implementation"
#endif
}
inline void yield() { std::this_thread::yield(); }
// Synchronization helper (cache-friendly busy waiting)
inline void busy_wait(usz cycles = 3000) {
const u64 stop = get_tsc() + cycles;
do
pause();
while (get_tsc() < stop);
}
// Align to power of 2
template <typename T, typename U>
requires std::is_unsigned_v<T>
constexpr std::make_unsigned_t<std::common_type_t<T, U>> align(T value,
U align) {
return static_cast<std::make_unsigned_t<std::common_type_t<T, U>>>(
(value + (align - 1)) & (T{0} - align));
}
// General purpose aligned division, the result is rounded up not truncated
template <typename T>
requires std::is_unsigned_v<T>
constexpr T aligned_div(T value, std::type_identity_t<T> align) {
return static_cast<T>(value / align + T{!!(value % align)});
}
// General purpose aligned division, the result is rounded to nearest
template <typename T>
requires std::is_integral_v<T>
constexpr T rounded_div(T value, std::type_identity_t<T> align) {
if constexpr (std::is_unsigned_v<T>) {
return static_cast<T>(value / align + T{(value % align) > (align / 2)});
}
return static_cast<T>(value / align +
(value > 0 ? T{(value % align) > (align / 2)}
: 0 - T{(value % align) < (align / 2)}));
}
// Multiplying by ratio, semi-resistant to overflows
template <UnsignedInt T>
constexpr T rational_mul(T value, std::type_identity_t<T> numerator,
std::type_identity_t<T> denominator) {
if constexpr (sizeof(T) <= sizeof(u64) / 2) {
return static_cast<T>(value * u64{numerator} / u64{denominator});
}
return static_cast<T>(value / denominator * numerator +
(value % denominator) * numerator / denominator);
}
template <UnsignedInt T> constexpr T add_saturate(T addend1, T addend2) {
return static_cast<T>(~addend1) < addend2 ? T{umax}
: static_cast<T>(addend1 + addend2);
}
template <UnsignedInt T> constexpr T sub_saturate(T minuend, T subtrahend) {
return minuend < subtrahend ? T{0} : static_cast<T>(minuend - subtrahend);
}
template <UnsignedInt T> constexpr T mul_saturate(T factor1, T factor2) {
return factor1 > 0 && T{umax} / factor1 < factor2
? T{umax}
: static_cast<T>(factor1 * factor2);
}
inline void trigger_write_page_fault(void *ptr) {
#if defined(ARCH_X64) && !defined(_MSC_VER)
__asm__ volatile("lock orl $0, 0(%0)" ::"r"(ptr));
#elif defined(ARCH_ARM64) && !defined(ANDROID)
u32 value = 0;
u32 *u32_ptr = static_cast<u32 *>(ptr);
__asm__ volatile("ldset %w0, %w0, %1"
: "+r"(value), "=Q"(*u32_ptr)
: "r"(value));
#else
static_cast<std::atomic<std::uint32_t> *>(ptr)->fetch_or(
0, std::memory_order::relaxed);
#endif
}
} // namespace rx
#ifdef _MSC_VER
using rx::operator/;
#endif