rpcsx/rpcs3/Emu/RSX/VK/VKDMA.cpp
Nekotekina c0f80cfe7a Use attributes for LIKELY/UNLIKELY
Remove LIKELY/UNLIKELY macro.
2020-02-05 10:42:34 +03:00

373 lines
9.4 KiB
C++

#include "stdafx.h"
#include "VKHelpers.h"
#include "VKResourceManager.h"
#include "VKDMA.h"
namespace vk
{
static constexpr size_t s_dma_block_length = 0x01000000;
static constexpr u32 s_dma_block_mask = 0xFF000000;
static constexpr u32 s_dma_offset_mask = 0x00FFFFFF;
static constexpr u32 s_page_size = 16384;
static constexpr u32 s_page_align = s_page_size - 1;
static constexpr u32 s_pages_per_entry = 32;
static constexpr u32 s_bits_per_page = 2;
static constexpr u32 s_bytes_per_entry = (s_page_size * s_pages_per_entry);
std::unordered_map<u32, dma_block> g_dma_pool;
void* dma_block::map_range(const utils::address_range& range)
{
if (inheritance_info.parent)
{
return inheritance_info.parent->map_range(range);
}
verify(HERE), range.start >= base_address;
u32 start = range.start;
start -= base_address;
return allocated_memory->map(start, range.length());
}
void dma_block::unmap()
{
if (inheritance_info.parent)
{
inheritance_info.parent->unmap();
}
else
{
allocated_memory->unmap();
}
}
void dma_block::init(const render_device& dev, u32 addr, size_t size)
{
verify(HERE), size, !(size % s_dma_block_length);
base_address = addr;
allocated_memory = std::make_unique<vk::buffer>(dev, size,
dev.get_memory_mapping().host_visible_coherent, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0);
page_info.resize(size / s_bytes_per_entry, ~0ull);
}
void dma_block::init(dma_block* parent, u32 addr, size_t size)
{
base_address = addr;
inheritance_info.parent = parent;
inheritance_info.block_offset = (addr - parent->base_address);
}
void dma_block::set_page_bit(u32 offset, u64 bits)
{
const auto entry = (offset / s_bytes_per_entry);
const auto word = entry / s_pages_per_entry;
const auto shift = (entry % s_pages_per_entry) * s_bits_per_page;
page_info[word] &= ~(3 << shift);
page_info[word] |= (bits << shift);
}
bool dma_block::test_page_bit(u32 offset, u64 bits)
{
const auto entry = (offset / s_bytes_per_entry);
const auto word = entry / s_pages_per_entry;
const auto shift = (entry % s_pages_per_entry) * s_bits_per_page;
return !!(page_info[word] & (bits << shift));
}
void dma_block::mark_dirty(const utils::address_range& range)
{
if (!inheritance_info.parent)
{
const u32 start = align(range.start, s_page_size);
const u32 end = ((range.end + 1) & s_page_align);
for (u32 page = start; page < end; page += s_page_size)
{
set_page_bit(page - base_address, page_bits::dirty);
}
if (start > range.start) [[unlikely]]
{
set_page_bit(start - s_page_size, page_bits::nocache);
}
if (end < range.end) [[unlikely]]
{
set_page_bit(end + s_page_size, page_bits::nocache);
}
}
else
{
inheritance_info.parent->mark_dirty(range);
}
}
void dma_block::set_page_info(u32 page_offset, const std::vector<u64>& bits)
{
if (!inheritance_info.parent)
{
auto bit_offset = page_offset / s_bytes_per_entry;
verify(HERE), (bit_offset + bits.size()) <= page_info.size();
std::memcpy(page_info.data() + bit_offset, bits.data(), bits.size());
}
else
{
inheritance_info.parent->set_page_info(page_offset + inheritance_info.block_offset, bits);
}
}
void dma_block::flush(const utils::address_range& range)
{
auto src = map_range(range);
auto dst = vm::get_super_ptr(range.start);
std::memcpy(dst, src, range.length());
// TODO: Clear page bits
unmap();
}
void dma_block::load(const utils::address_range& range)
{
auto src = vm::get_super_ptr(range.start);
auto dst = map_range(range);
std::memcpy(dst, src, range.length());
// TODO: Clear page bits to sychronized
unmap();
}
std::pair<u32, buffer*> dma_block::get(const utils::address_range& range)
{
if (inheritance_info.parent)
{
return inheritance_info.parent->get(range);
}
verify(HERE), range.start >= base_address, range.end <= end();
// mark_dirty(range);
return { (range.start - base_address), allocated_memory.get() };
}
dma_block* dma_block::head()
{
if (!inheritance_info.parent)
return this;
return inheritance_info.parent->head();
}
const dma_block* dma_block::head() const
{
if (!inheritance_info.parent)
return this;
return inheritance_info.parent->head();
}
void dma_block::set_parent(command_buffer& cmd, dma_block* parent)
{
verify(HERE), parent;
if (inheritance_info.parent == parent)
{
// Nothing to do
return;
}
inheritance_info.parent = parent;
inheritance_info.block_offset = (base_address - parent->base_address);
if (allocated_memory)
{
VkBufferCopy copy{};
copy.srcOffset = 0;
copy.dstOffset = inheritance_info.block_offset;
copy.size = allocated_memory->size();
vkCmdCopyBuffer(cmd, allocated_memory->value, parent->allocated_memory->value, 1, &copy);
auto gc = vk::get_resource_manager();
gc->dispose(allocated_memory);
parent->set_page_info(inheritance_info.block_offset, page_info);
page_info.clear();
}
}
void dma_block::extend(command_buffer& cmd, const render_device &dev, size_t new_size)
{
verify(HERE), allocated_memory;
if (new_size <= allocated_memory->size())
return;
const auto required_entries = new_size / s_bytes_per_entry;
page_info.resize(required_entries, ~0ull);
auto new_allocation = std::make_unique<vk::buffer>(dev, new_size,
dev.get_memory_mapping().host_visible_coherent, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0);
VkBufferCopy copy{};
copy.size = allocated_memory->size();
vkCmdCopyBuffer(cmd, allocated_memory->value, new_allocation->value, 1, &copy);
auto gc = vk::get_resource_manager();
gc->dispose(allocated_memory);
allocated_memory = std::move(new_allocation);
}
u32 dma_block::start() const
{
return base_address;
}
u32 dma_block::end() const
{
auto source = head();
return (source->base_address + source->allocated_memory->size() - 1);
}
u32 dma_block::size() const
{
return (allocated_memory) ? allocated_memory->size() : 0;
}
std::pair<u32, vk::buffer*> map_dma(command_buffer& cmd, u32 local_address, u32 length)
{
const auto map_range = utils::address_range::start_length(local_address, length);
const auto first_block = (local_address & s_dma_block_mask);
const auto limit = local_address + length - 1;
auto last_block = (limit & s_dma_block_mask);
if (first_block == last_block) [[likely]]
{
if (auto found = g_dma_pool.find(first_block); found != g_dma_pool.end())
{
return found->second.get(map_range);
}
auto &block_info = g_dma_pool[first_block];
block_info.init(*vk::get_current_renderer(), first_block, s_dma_block_length);
return block_info.get(map_range);
}
dma_block* block_head = nullptr;
auto block_end = align(limit, s_dma_block_length);
// Reverse scan to try and find the minimum required length in case of other chaining
for (auto block = last_block; block != first_block; block -= s_dma_block_length)
{
if (auto found = g_dma_pool.find(block); found != g_dma_pool.end())
{
const auto end = found->second.end();
last_block = std::max(last_block, end & s_dma_block_mask);
block_end = std::max(block_end, end + 1);
break;
}
}
for (auto block = first_block; block <= last_block; block += s_dma_block_length)
{
auto found = g_dma_pool.find(block);
const bool exists = (found != g_dma_pool.end());
auto entry = exists ? &found->second : &g_dma_pool[block];
if (block == first_block)
{
block_head = entry->head();
if (exists)
{
if (entry->end() < limit)
{
auto new_length = block_end - block_head->start();
block_head->extend(cmd, *vk::get_current_renderer(), new_length);
}
}
else
{
auto required_size = (block_end - block);
block_head->init(*vk::get_current_renderer(), block, required_size);
}
}
else
{
if (exists)
{
entry->set_parent(cmd, block_head);
}
else
{
entry->init(block_head, block, s_dma_block_length);
}
}
}
verify(HERE), block_head;
return block_head->get(map_range);
}
template<bool load>
void sync_dma_impl(u32 local_address, u32 length)
{
const auto limit = local_address + length - 1;
while (length)
{
u32 block = (local_address & s_dma_block_mask);
if (auto found = g_dma_pool.find(block); found != g_dma_pool.end())
{
const auto sync_end = std::min(limit, found->second.end());
const auto range = utils::address_range::start_end(local_address, sync_end);
if constexpr (load)
{
found->second.load(range);
}
else
{
found->second.flush(range);
}
if (sync_end < limit) [[unlikely]]
{
// Technically legal but assuming a map->flush usage, this shouldnot happen
// Optimizations could in theory batch together multiple transfers though
rsx_log.error("Sink request spans multiple allocated blocks!");
const auto write_end = (sync_end + 1u);
const auto written = (write_end - local_address);
length -= written;
local_address = write_end;
continue;
}
break;
}
else
{
rsx_log.error("Sync command on range not mapped!");
return;
}
}
}
void load_dma(u32 local_address, u32 length)
{
sync_dma_impl<true>(local_address, length);
}
void flush_dma(u32 local_address, u32 length)
{
sync_dma_impl<false>(local_address, length);
}
void clear_dma_resources()
{
g_dma_pool.clear();
}
}