rpcsx/kernel/orbis/src/KernelAllocator.cpp
DH 07b1f422ef
Some checks failed
Formatting check / formatting-check (push) Has been cancelled
Build RPCSX / build-linux (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv8-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv8.1-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv8.2-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv8.4-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv8.5-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv9-a) (push) Has been cancelled
Build RPCSX / build-android (arm64-v8a, armv9.1-a) (push) Has been cancelled
Build RPCSX / build-android (x86_64, x86-64) (push) Has been cancelled
orbis: use cross platform allocator
2025-11-01 11:53:22 +03:00

219 lines
6.9 KiB
C++

#include "KernelAllocator.hpp"
#include "KernelObject.hpp"
#include "rx/Mappable.hpp"
#include "rx/Serializer.hpp"
#include "rx/SharedMutex.hpp"
#include "rx/die.hpp"
#include "rx/mem.hpp"
#include "rx/print.hpp"
static const std::uint64_t g_allocProtWord = 0xDEADBEAFBADCAFE1;
static constexpr std::uintptr_t kHeapBaseAddress = 0x00000600'0000'0000;
static constexpr auto kHeapSize = 0x1'0000'0000;
static constexpr int kDebugHeap = 0;
static constexpr auto kHeapRange =
rx::AddressRange::fromBeginSize(kHeapBaseAddress, kHeapSize);
namespace orbis {
struct KernelMemoryResource {
mutable rx::shared_mutex m_heap_mtx;
rx::shared_mutex m_heap_map_mtx;
void *m_heap_next = nullptr;
rx::Mappable m_heap;
kmultimap<std::size_t, void *> m_free_heap;
kmultimap<std::size_t, void *> m_used_node;
~KernelMemoryResource() { rx::mem::release(kHeapRange, rx::mem::pageSize); }
void *kalloc(std::size_t size,
std::size_t align = __STDCPP_DEFAULT_NEW_ALIGNMENT__);
void kfree(void *ptr, std::size_t size);
void serialize(rx::Serializer &) const {
// FIXME: implement
}
void deserialize(rx::Deserializer &) {
// FIXME: implement
}
void lock() const { m_heap_mtx.lock(); }
void unlock() const { m_heap_mtx.unlock(); }
};
static KernelMemoryResource *sMemoryResource;
std::byte *g_globalStorage;
using GlobalStorage =
kernel::StaticKernelObjectStorage<OrbisNamespace,
kernel::detail::GlobalScope>;
void initializeAllocator() {
{
auto errc = rx::mem::reserve(kHeapRange);
rx::dieIf(errc != std::errc{},
"kernel heap reservation failed: {:x}-{:x}, errno {}",
kHeapBaseAddress, kHeapBaseAddress + kHeapSize,
static_cast<int>(errc));
}
auto [heap, errc] = rx::Mappable::CreateMemory(kHeapSize);
rx::dieIf(errc != std::errc{}, "kernel heap allocation failed: errno {}",
static_cast<int>(errc));
errc =
heap.map(kHeapRange, 0, rx::mem::Protection::R | rx::mem::Protection::W,
rx::mem::pageSize);
rx::dieIf(errc != std::errc{}, "kernel heap map failed: errno {}",
static_cast<int>(errc));
auto ptr = reinterpret_cast<std::byte *>(kHeapRange.beginAddress());
sMemoryResource = new (ptr) KernelMemoryResource();
sMemoryResource->m_heap_next = ptr + sizeof(KernelMemoryResource);
sMemoryResource->m_heap = std::move(heap);
rx::print(stderr, "global: size {}, alignment {}\n", GlobalStorage::GetSize(),
GlobalStorage::GetAlignment());
// allocate whole global storage
g_globalStorage = (std::byte *)sMemoryResource->kalloc(
GlobalStorage::GetSize(), GlobalStorage::GetAlignment());
}
void deinitializeAllocator() {
sMemoryResource->kfree(g_globalStorage, GlobalStorage::GetSize());
delete sMemoryResource;
sMemoryResource = nullptr;
g_globalStorage = nullptr;
}
void *KernelMemoryResource::kalloc(std::size_t size, std::size_t align) {
size = (size + (__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1)) &
~(__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1);
rx::dieIf(size == 0, "kalloc: zero size");
if (m_heap_map_mtx.try_lock()) {
std::lock_guard lock(m_heap_map_mtx, std::adopt_lock);
// Try to reuse previously freed block
for (auto [it, end] = m_free_heap.equal_range(size); it != end; ++it) {
auto result = it->second;
if (!(std::bit_cast<std::uintptr_t>(result) & (align - 1))) {
auto node = m_free_heap.extract(it);
node.key() = 0;
node.mapped() = nullptr;
m_used_node.insert(m_used_node.begin(), std::move(node));
// std::fprintf(stderr, "kalloc: reuse %p-%p, size = %lx\n", result,
// (char *)result + size, size);
if (kDebugHeap > 0) {
std::memcpy(std::bit_cast<std::byte *>(result) + size,
&g_allocProtWord, sizeof(g_allocProtWord));
}
return result;
}
}
}
std::lock_guard lock(m_heap_mtx);
align = std::max<std::size_t>(align, __STDCPP_DEFAULT_NEW_ALIGNMENT__);
auto heap = reinterpret_cast<std::uintptr_t>(m_heap_next);
heap = (heap + (align - 1)) & ~(align - 1);
if (kDebugHeap > 1) {
if (auto diff =
(heap + size + sizeof(g_allocProtWord)) & (rx::mem::pageSize - 1);
diff != 0) {
heap += rx::mem::pageSize - diff;
heap &= ~(align - 1);
}
}
rx::dieIf(heap + size > kHeapBaseAddress + kHeapSize,
"kalloc: out of kernel memory");
// Check overflow
rx::dieIf(heap + size < heap, "kalloc: too big allocation");
// std::fprintf(stderr, "kalloc: allocate %lx-%lx, size = %lx, align=%lx\n",
// heap, heap + size, size, align);
auto result = reinterpret_cast<void *>(heap);
if (kDebugHeap > 0) {
std::memcpy(std::bit_cast<std::byte *>(result) + size, &g_allocProtWord,
sizeof(g_allocProtWord));
}
if (kDebugHeap > 0) {
m_heap_next =
reinterpret_cast<void *>(heap + size + sizeof(g_allocProtWord));
} else {
m_heap_next = reinterpret_cast<void *>(heap + size);
}
if (kDebugHeap > 1) {
heap = reinterpret_cast<std::uintptr_t>(m_heap_next);
align = std::min<std::size_t>(align, rx::mem::pageSize);
heap = (heap + (align - 1)) & ~(align - 1);
size = rx::mem::pageSize;
// std::fprintf(stderr, "kalloc: protect %lx-%lx, size = %lx, align=%lx\n",
// heap, heap + size, size, align);
auto errc = rx::mem::protect(rx::AddressRange::fromBeginSize(heap, size),
rx::mem::Protection{});
rx::dieIf(errc != std::errc{}, "kalloc: failed to protect memory");
m_heap_next = reinterpret_cast<void *>(heap + size);
}
return result;
}
void KernelMemoryResource::kfree(void *ptr, std::size_t size) {
size = (size + (__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1)) &
~(__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1);
rx::dieIf(size == 0, "kfree: zero size");
rx::dieIf(std::bit_cast<std::uintptr_t>(ptr) < kHeapBaseAddress ||
std::bit_cast<std::uintptr_t>(ptr) + size >
kHeapBaseAddress + kHeapSize,
"kfree: invalid address");
if (kDebugHeap > 0) {
if (std::memcmp(std::bit_cast<std::byte *>(ptr) + size, &g_allocProtWord,
sizeof(g_allocProtWord)) != 0) {
rx::die("kfree: kernel heap corruption");
}
std::memset(ptr, 0xcc, size + sizeof(g_allocProtWord));
}
// std::fprintf(stderr, "kfree: release %p-%p, size = %lx\n", ptr,
// (char *)ptr + size, size);
std::lock_guard lock(m_heap_map_mtx);
if (!m_used_node.empty()) {
auto node = m_used_node.extract(m_used_node.begin());
node.key() = size;
node.mapped() = ptr;
m_free_heap.insert(std::move(node));
} else {
m_free_heap.emplace(size, ptr);
}
}
void kfree(void *ptr, std::size_t size) {
return sMemoryResource->kfree(ptr, size);
}
void *kalloc(std::size_t size, std::size_t align) {
return sMemoryResource->kalloc(size, align);
}
} // namespace orbis