rpcsx/rpcs3/Input/dualsense_pad_handler.cpp
DH 62ad27d1e2 split rpcs3 and hle libraries
merge rpcs3 utilities
2025-04-08 19:46:57 +03:00

1092 lines
36 KiB
C++

#include "stdafx.h"
#include "dualsense_pad_handler.h"
#include "Emu/Io/pad_config.h"
#include <limits>
LOG_CHANNEL(dualsense_log, "DualSense");
using namespace reports;
template <>
void fmt_class_string<DualSenseDevice::DualSenseDataMode>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](DualSenseDevice::DualSenseDataMode mode)
{
switch (mode)
{
case DualSenseDevice::DualSenseDataMode::Simple: return "Simple";
case DualSenseDevice::DualSenseDataMode::Enhanced: return "Enhanced";
}
return unknown;
});
}
namespace
{
constexpr id_pair SONY_DUALSENSE_ID_0 = {0x054C, 0x0CE6}; // DualSense
constexpr id_pair SONY_DUALSENSE_ID_1 = {0x054C, 0x0DF2}; // DualSense Edge
} // namespace
dualsense_pad_handler::dualsense_pad_handler()
: hid_pad_handler<DualSenseDevice>(pad_handler::dualsense, {SONY_DUALSENSE_ID_0, SONY_DUALSENSE_ID_1})
{
// Unique names for the config files and our pad settings dialog
button_list =
{
{DualSenseKeyCodes::None, ""},
{DualSenseKeyCodes::Triangle, "Triangle"},
{DualSenseKeyCodes::Circle, "Circle"},
{DualSenseKeyCodes::Cross, "Cross"},
{DualSenseKeyCodes::Square, "Square"},
{DualSenseKeyCodes::Left, "Left"},
{DualSenseKeyCodes::Right, "Right"},
{DualSenseKeyCodes::Up, "Up"},
{DualSenseKeyCodes::Down, "Down"},
{DualSenseKeyCodes::R1, "R1"},
{DualSenseKeyCodes::R2, "R2"},
{DualSenseKeyCodes::R3, "R3"},
{DualSenseKeyCodes::Options, "Options"},
{DualSenseKeyCodes::Share, "Share"},
{DualSenseKeyCodes::PSButton, "PS Button"},
{DualSenseKeyCodes::Mic, "Mic"},
{DualSenseKeyCodes::TouchPad, "Touch Pad"},
{DualSenseKeyCodes::Touch_L, "Touch Left"},
{DualSenseKeyCodes::Touch_R, "Touch Right"},
{DualSenseKeyCodes::Touch_U, "Touch Up"},
{DualSenseKeyCodes::Touch_D, "Touch Down"},
{DualSenseKeyCodes::L1, "L1"},
{DualSenseKeyCodes::L2, "L2"},
{DualSenseKeyCodes::L3, "L3"},
{DualSenseKeyCodes::LSXNeg, "LS X-"},
{DualSenseKeyCodes::LSXPos, "LS X+"},
{DualSenseKeyCodes::LSYPos, "LS Y+"},
{DualSenseKeyCodes::LSYNeg, "LS Y-"},
{DualSenseKeyCodes::RSXNeg, "RS X-"},
{DualSenseKeyCodes::RSXPos, "RS X+"},
{DualSenseKeyCodes::RSYPos, "RS Y+"},
{DualSenseKeyCodes::RSYNeg, "RS Y-"},
{DualSenseKeyCodes::EdgeFnL, "FN L"},
{DualSenseKeyCodes::EdgeFnR, "FN R"},
{DualSenseKeyCodes::EdgeLB, "LB"},
{DualSenseKeyCodes::EdgeRB, "RB"},
};
init_configs();
// Define border values
thumb_max = 255;
trigger_min = 0;
trigger_max = 255;
// Set capabilities
b_has_config = true;
b_has_rumble = true;
b_has_motion = true;
b_has_deadzones = true;
b_has_led = true;
b_has_rgb = true;
b_has_player_led = true;
b_has_battery = true;
b_has_battery_led = true;
b_has_orientation = true;
m_name_string = "DualSense Pad #";
m_max_devices = CELL_PAD_MAX_PORT_NUM;
m_trigger_threshold = trigger_max / 2;
m_thumb_threshold = thumb_max / 2;
}
void dualsense_pad_handler::check_add_device(hid_device* hidDevice, hid_enumerated_device_view path, std::wstring_view wide_serial)
{
if (!hidDevice)
{
return;
}
DualSenseDevice* device = nullptr;
for (auto& controller : m_controllers)
{
ensure(controller.second);
if (!controller.second->hidDevice)
{
device = controller.second.get();
break;
}
}
if (!device)
{
return;
}
std::array<u8, std::max(DUALSENSE_FIRMWARE_REPORT_SIZE, DUALSENSE_PAIRING_REPORT_SIZE)> buf{};
buf[0] = 0x09;
// This will give us the bluetooth mac address of the device, regardless if we are on wired or bluetooth.
// So we can't use this to determine if it is a bluetooth device or not.
// Will also enable enhanced feature reports for bluetooth.
int res = hid_get_feature_report(hidDevice, buf.data(), buf.size());
if (res < 0 || buf[0] != 0x09)
{
dualsense_log.error("check_add_device: hid_get_feature_report 0x09 failed! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(hidDevice));
hid_close(hidDevice);
return;
}
std::string serial;
if (res == 21)
{
serial = fmt::format("%x%x%x%x%x%x", buf[6], buf[5], buf[4], buf[3], buf[2], buf[1]);
device->data_mode = DualSenseDevice::DualSenseDataMode::Enhanced;
}
else
{
// We're probably on Bluetooth in this case, but for whatever reason the feature report failed.
// This will give us a less capable fallback.
dualsense_log.warning("check_add_device: hid_get_feature_report returned wrong size! Falling back to simple mode. (result=%d)", res);
device->data_mode = DualSenseDevice::DualSenseDataMode::Simple;
for (wchar_t ch : wide_serial)
serial += static_cast<uchar>(ch);
}
device->hidDevice = hidDevice;
if (!get_calibration_data(device))
{
dualsense_log.error("check_add_device: get_calibration_data failed!");
device->close();
return;
}
u32 hw_version{};
u16 fw_version{};
u32 fw_version2{};
buf = {};
buf[0] = 0x20;
res = hid_get_feature_report(hidDevice, buf.data(), DUALSENSE_FIRMWARE_REPORT_SIZE);
if (res != DUALSENSE_FIRMWARE_REPORT_SIZE || buf[0] != 0x20) // Old versions return 65, newer versions return 64
{
dualsense_log.error("check_add_device: hid_get_feature_report 0x20 failed! Could not retrieve firmware version! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(hidDevice));
}
else
{
hw_version = read_u32(&buf[24]);
fw_version2 = read_u32(&buf[28]);
fw_version = static_cast<u16>(buf[44]) | (static_cast<u16>(buf[45]) << 8);
}
if (hid_set_nonblocking(hidDevice, 1) == -1)
{
dualsense_log.error("check_add_device: hid_set_nonblocking failed! Reason: %s", hid_error(hidDevice));
device->close();
return;
}
device->has_calib_data = true;
device->path = path;
// Get feature set
if (const hid_device_info* info = hid_get_device_info(device->hidDevice))
{
if (info->product_id == SONY_DUALSENSE_ID_1.m_pid)
{
device->feature_set = DualSenseDevice::DualSenseFeatureSet::Edge;
dualsense_log.notice("check_add_device: device is DualSense Edge: vid=0x%x, pid=0x%x, path='%s'", info->vendor_id, info->product_id, path);
}
}
else
{
dualsense_log.warning("check_add_device: hid_get_device_info failed for determining feature set! Reason: %s", hid_error(hidDevice));
}
// Activate
if (send_output_report(device) == -1)
{
dualsense_log.error("check_add_device: send_output_report failed! Reason: %s", hid_error(hidDevice));
}
// Get bluetooth information
get_data(device);
dualsense_log.notice("Added device: bluetooth=%d, data_mode=%s, serial='%s', hw_version: 0x%x, fw_version: 0x%x (0x%x), path='%s'", device->bt_controller, device->data_mode, serial, hw_version, fw_version, fw_version2, device->path);
}
void dualsense_pad_handler::init_config(cfg_pad* cfg)
{
if (!cfg)
return;
// Set default button mapping
cfg->ls_left.def = ::at32(button_list, DualSenseKeyCodes::LSXNeg);
cfg->ls_down.def = ::at32(button_list, DualSenseKeyCodes::LSYNeg);
cfg->ls_right.def = ::at32(button_list, DualSenseKeyCodes::LSXPos);
cfg->ls_up.def = ::at32(button_list, DualSenseKeyCodes::LSYPos);
cfg->rs_left.def = ::at32(button_list, DualSenseKeyCodes::RSXNeg);
cfg->rs_down.def = ::at32(button_list, DualSenseKeyCodes::RSYNeg);
cfg->rs_right.def = ::at32(button_list, DualSenseKeyCodes::RSXPos);
cfg->rs_up.def = ::at32(button_list, DualSenseKeyCodes::RSYPos);
cfg->start.def = ::at32(button_list, DualSenseKeyCodes::Options);
cfg->select.def = ::at32(button_list, DualSenseKeyCodes::Share);
cfg->ps.def = ::at32(button_list, DualSenseKeyCodes::PSButton);
cfg->square.def = ::at32(button_list, DualSenseKeyCodes::Square);
cfg->cross.def = ::at32(button_list, DualSenseKeyCodes::Cross);
cfg->circle.def = ::at32(button_list, DualSenseKeyCodes::Circle);
cfg->triangle.def = ::at32(button_list, DualSenseKeyCodes::Triangle);
cfg->left.def = ::at32(button_list, DualSenseKeyCodes::Left);
cfg->down.def = ::at32(button_list, DualSenseKeyCodes::Down);
cfg->right.def = ::at32(button_list, DualSenseKeyCodes::Right);
cfg->up.def = ::at32(button_list, DualSenseKeyCodes::Up);
cfg->r1.def = ::at32(button_list, DualSenseKeyCodes::R1);
cfg->r2.def = ::at32(button_list, DualSenseKeyCodes::R2);
cfg->r3.def = ::at32(button_list, DualSenseKeyCodes::R3);
cfg->l1.def = ::at32(button_list, DualSenseKeyCodes::L1);
cfg->l2.def = ::at32(button_list, DualSenseKeyCodes::L2);
cfg->l3.def = ::at32(button_list, DualSenseKeyCodes::L3);
cfg->pressure_intensity_button.def = ::at32(button_list, DualSenseKeyCodes::None);
cfg->analog_limiter_button.def = ::at32(button_list, DualSenseKeyCodes::None);
cfg->orientation_reset_button.def = ::at32(button_list, DualSenseKeyCodes::None);
// Set default misc variables
cfg->lstick_anti_deadzone.def = static_cast<u32>(0.13 * thumb_max); // 13%
cfg->rstick_anti_deadzone.def = static_cast<u32>(0.13 * thumb_max); // 13%
cfg->lstickdeadzone.def = 40; // between 0 and 255
cfg->rstickdeadzone.def = 40; // between 0 and 255
cfg->ltriggerthreshold.def = 0; // between 0 and 255
cfg->rtriggerthreshold.def = 0; // between 0 and 255
cfg->lpadsquircling.def = 8000;
cfg->rpadsquircling.def = 8000;
// Set default color value
cfg->colorR.def = 0;
cfg->colorG.def = 0;
cfg->colorB.def = 20;
// Set default LED options
cfg->led_battery_indicator.def = false;
cfg->led_battery_indicator_brightness.def = 10;
cfg->led_low_battery_blink.def = true;
// apply defaults
cfg->from_default();
}
dualsense_pad_handler::DataStatus dualsense_pad_handler::get_data(DualSenseDevice* device)
{
if (!device)
return DataStatus::ReadError;
std::array<u8, 128> buf{};
const int res = hid_read(device->hidDevice, buf.data(), buf.size());
if (res == -1)
{
// looks like controller disconnected or read error
return DataStatus::ReadError;
}
if (res == 0)
return DataStatus::NoNewData;
u8 offset = 0;
switch (buf[0])
{
case 0x01:
{
if (res == sizeof(dualsense_input_report_bt))
{
device->data_mode = DualSenseDevice::DualSenseDataMode::Simple;
device->bt_controller = true;
}
else
{
device->data_mode = DualSenseDevice::DualSenseDataMode::Enhanced;
device->bt_controller = false;
}
offset = offsetof(dualsense_input_report_usb, common);
break;
}
case 0x31:
{
device->data_mode = DualSenseDevice::DualSenseDataMode::Enhanced;
device->bt_controller = true;
offset = offsetof(dualsense_input_report_bt, common);
const u8 btHdr = 0xA1;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(buf.data(), offsetof(dualsense_input_report_bt, crc32), crcTable, crcHdr);
const u32 crcReported = read_u32(&buf[offsetof(dualsense_input_report_bt, crc32)]);
if (crcCalc != crcReported)
{
dualsense_log.warning("Data packet CRC check failed, ignoring! Received 0x%x, Expected 0x%x", crcReported, crcCalc);
return DataStatus::NoNewData;
}
break;
}
default:
return DataStatus::NoNewData;
}
if (device->has_calib_data)
{
int calib_offset = offset + offsetof(dualsense_input_report_common, gyro);
for (int i = 0; i < CalibIndex::COUNT; ++i)
{
const s16 raw_value = read_s16(&buf[calib_offset]);
const s16 cal_value = apply_calibration(raw_value, device->calib_data[i]);
buf[calib_offset++] = (static_cast<u16>(cal_value) >> 0) & 0xFF;
buf[calib_offset++] = (static_cast<u16>(cal_value) >> 8) & 0xFF;
}
}
std::memcpy(&device->report, &buf[offset], sizeof(dualsense_input_report_common));
// For now let's only get battery info in enhanced mode
if (device->data_mode == DualSenseDevice::DualSenseDataMode::Enhanced)
{
const u8 battery_state = device->report.status;
const u8 battery_value = battery_state & 0x0F; // 10% per unit, starting with 0-9%. So 100% equals unit 10
const u8 charge_info = (battery_state & 0xF0) >> 4;
switch (charge_info)
{
case 0x0:
device->battery_level = battery_value;
device->cable_state = 0;
break;
case 0x1:
device->battery_level = battery_value;
device->cable_state = 1;
break;
case 0x2:
device->battery_level = 10;
device->cable_state = 1;
break;
default:
// We don't care about the other values. Just set battery to 0.
device->battery_level = 0;
device->cable_state = 0;
break;
}
}
return DataStatus::NewData;
}
bool dualsense_pad_handler::get_calibration_data(DualSenseDevice* dev) const
{
if (!dev || !dev->hidDevice)
{
dualsense_log.error("get_calibration_data called with null device");
return false;
}
std::array<u8, 64> buf{};
if (dev->bt_controller)
{
for (int tries = 0; tries < 3; ++tries)
{
buf = {};
buf[0] = 0x05;
if (int res = hid_get_feature_report(dev->hidDevice, buf.data(), DUALSENSE_CALIBRATION_REPORT_SIZE); res != DUALSENSE_CALIBRATION_REPORT_SIZE || buf[0] != 0x05)
{
dualsense_log.error("get_calibration_data: hid_get_feature_report 0x05 for bluetooth controller failed! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(dev->hidDevice));
return false;
}
const u8 btHdr = 0xA3;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(buf.data(), (DUALSENSE_CALIBRATION_REPORT_SIZE - 4), crcTable, crcHdr);
const u32 crcReported = read_u32(&buf[DUALSENSE_CALIBRATION_REPORT_SIZE - 4]);
if (crcCalc == crcReported)
break;
dualsense_log.warning("Calibration CRC check failed! Will retry up to 3 times. Received 0x%x, Expected 0x%x", crcReported, crcCalc);
if (tries == 2)
{
dualsense_log.error("Calibration CRC check failed too many times!");
return false;
}
}
}
else
{
buf[0] = 0x05;
if (int res = hid_get_feature_report(dev->hidDevice, buf.data(), DUALSENSE_CALIBRATION_REPORT_SIZE); res != DUALSENSE_CALIBRATION_REPORT_SIZE || buf[0] != 0x05)
{
dualsense_log.error("get_calibration_data: hid_get_feature_report 0x05 for wired controller failed! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(dev->hidDevice));
return false;
}
}
dev->calib_data[CalibIndex::PITCH].bias = read_s16(&buf[1]);
dev->calib_data[CalibIndex::YAW].bias = read_s16(&buf[3]);
dev->calib_data[CalibIndex::ROLL].bias = read_s16(&buf[5]);
const s16 pitch_plus = read_s16(&buf[7]);
const s16 pitch_minus = read_s16(&buf[9]);
const s16 yaw_plus = read_s16(&buf[11]);
const s16 yaw_minus = read_s16(&buf[13]);
const s16 roll_plus = read_s16(&buf[15]);
const s16 roll_minus = read_s16(&buf[17]);
// Confirm correctness. Need confirmation with dongle with no active controller
if (pitch_plus <= 0 || yaw_plus <= 0 || roll_plus <= 0 ||
pitch_minus >= 0 || yaw_minus >= 0 || roll_minus >= 0)
{
dualsense_log.error("get_calibration_data: calibration data check failed! pitch_plus=%d, pitch_minus=%d, roll_plus=%d, roll_minus=%d, yaw_plus=%d, yaw_minus=%d",
pitch_plus, pitch_minus, roll_plus, roll_minus, yaw_plus, yaw_minus);
}
const s32 gyro_speed_scale = read_s16(&buf[19]) + read_s16(&buf[21]);
dev->calib_data[CalibIndex::PITCH].sens_numer = gyro_speed_scale * DUALSENSE_GYRO_RES_PER_DEG_S;
dev->calib_data[CalibIndex::PITCH].sens_denom = pitch_plus - pitch_minus;
dev->calib_data[CalibIndex::YAW].sens_numer = gyro_speed_scale * DUALSENSE_GYRO_RES_PER_DEG_S;
dev->calib_data[CalibIndex::YAW].sens_denom = yaw_plus - yaw_minus;
dev->calib_data[CalibIndex::ROLL].sens_numer = gyro_speed_scale * DUALSENSE_GYRO_RES_PER_DEG_S;
dev->calib_data[CalibIndex::ROLL].sens_denom = roll_plus - roll_minus;
const s16 accel_x_plus = read_s16(&buf[23]);
const s16 accel_x_minus = read_s16(&buf[25]);
const s16 accel_y_plus = read_s16(&buf[27]);
const s16 accel_y_minus = read_s16(&buf[29]);
const s16 accel_z_plus = read_s16(&buf[31]);
const s16 accel_z_minus = read_s16(&buf[33]);
const s32 accel_x_range = accel_x_plus - accel_x_minus;
const s32 accel_y_range = accel_y_plus - accel_y_minus;
const s32 accel_z_range = accel_z_plus - accel_z_minus;
dev->calib_data[CalibIndex::X].bias = accel_x_plus - accel_x_range / 2;
dev->calib_data[CalibIndex::X].sens_numer = 2 * DUALSENSE_ACC_RES_PER_G;
dev->calib_data[CalibIndex::X].sens_denom = accel_x_range;
dev->calib_data[CalibIndex::Y].bias = accel_y_plus - accel_y_range / 2;
dev->calib_data[CalibIndex::Y].sens_numer = 2 * DUALSENSE_ACC_RES_PER_G;
dev->calib_data[CalibIndex::Y].sens_denom = accel_y_range;
dev->calib_data[CalibIndex::Z].bias = accel_z_plus - accel_z_range / 2;
dev->calib_data[CalibIndex::Z].sens_numer = 2 * DUALSENSE_ACC_RES_PER_G;
dev->calib_data[CalibIndex::Z].sens_denom = accel_z_range;
// Make sure data 'looks' valid, dongle will report invalid calibration data with no controller connected
for (usz i = 0; i < dev->calib_data.size(); i++)
{
CalibData& data = dev->calib_data[i];
if (data.sens_denom == 0)
{
dualsense_log.error("GetCalibrationData: Invalid accelerometer calibration data for axis %d, disabling calibration.", i);
data.bias = 0;
data.sens_numer = 4 * DUALSENSE_ACC_RES_PER_G;
data.sens_denom = std::numeric_limits<s16>::max();
}
}
return true;
}
bool dualsense_pad_handler::get_is_left_trigger(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
return keyCode == DualSenseKeyCodes::L2;
}
bool dualsense_pad_handler::get_is_right_trigger(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
return keyCode == DualSenseKeyCodes::R2;
}
bool dualsense_pad_handler::get_is_left_stick(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
switch (keyCode)
{
case DualSenseKeyCodes::LSXNeg:
case DualSenseKeyCodes::LSXPos:
case DualSenseKeyCodes::LSYPos:
case DualSenseKeyCodes::LSYNeg:
return true;
default:
return false;
}
}
bool dualsense_pad_handler::get_is_right_stick(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
switch (keyCode)
{
case DualSenseKeyCodes::RSXNeg:
case DualSenseKeyCodes::RSXPos:
case DualSenseKeyCodes::RSYPos:
case DualSenseKeyCodes::RSYNeg:
return true;
default:
return false;
}
}
bool dualsense_pad_handler::get_is_touch_pad_motion(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
switch (keyCode)
{
case DualSenseKeyCodes::Touch_L:
case DualSenseKeyCodes::Touch_R:
case DualSenseKeyCodes::Touch_U:
case DualSenseKeyCodes::Touch_D:
return true;
default:
return false;
}
}
PadHandlerBase::connection dualsense_pad_handler::update_connection(const std::shared_ptr<PadDevice>& device)
{
DualSenseDevice* dev = static_cast<DualSenseDevice*>(device.get());
if (!dev || dev->path == hid_enumerated_device_default)
return connection::disconnected;
if (dev->hidDevice == nullptr)
{
// try to reconnect
#ifdef ANDROID
if (hid_device* hid_dev = hid_libusb_wrap_sys_device(dev->path, -1))
#else
if (hid_device* hid_dev = hid_open_path(dev->path.c_str()))
#endif
{
if (hid_set_nonblocking(hid_dev, 1) == -1)
{
dualsense_log.error("Reconnecting Device %s: hid_set_nonblocking failed with error %s", dev->path, hid_error(hid_dev));
}
dev->hidDevice = hid_dev;
if (!dev->has_calib_data)
{
dev->has_calib_data = get_calibration_data(dev);
}
}
else
{
// nope, not there
return connection::disconnected;
}
}
if (get_data(dev) == DataStatus::ReadError)
{
// this also can mean disconnected, either way deal with it on next loop and reconnect
dev->close();
return connection::no_data;
}
return connection::connected;
}
void dualsense_pad_handler::get_extended_info(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
DualSenseDevice* dev = static_cast<DualSenseDevice*>(device.get());
if (!dev || !pad)
return;
pad->m_battery_level = dev->battery_level;
pad->m_cable_state = dev->cable_state;
const dualsense_input_report_common& input = dev->report;
// these values come already calibrated, all we need to do is convert to ds3 range
// gyro (angular velocity in degree/s)
const f32 gyro_x = static_cast<s16>(input.gyro[0]) / static_cast<f32>(DUALSENSE_GYRO_RES_PER_DEG_S) * -1.f;
const f32 gyro_y = static_cast<s16>(input.gyro[1]) / static_cast<f32>(DUALSENSE_GYRO_RES_PER_DEG_S) * -1.f;
const f32 gyro_z = static_cast<s16>(input.gyro[2]) / static_cast<f32>(DUALSENSE_GYRO_RES_PER_DEG_S) * -1.f;
// acceleration (linear velocity in m/s²)
const f32 accel_x = static_cast<s16>(input.accel[0]) / static_cast<f32>(DUALSENSE_ACC_RES_PER_G) * -1;
const f32 accel_y = static_cast<s16>(input.accel[1]) / static_cast<f32>(DUALSENSE_ACC_RES_PER_G) * -1;
const f32 accel_z = static_cast<s16>(input.accel[2]) / static_cast<f32>(DUALSENSE_ACC_RES_PER_G) * -1;
// now just use formula from ds3
pad->m_sensors[0].m_value = Clamp0To1023(accel_x * MOTION_ONE_G + 512);
pad->m_sensors[1].m_value = Clamp0To1023(accel_y * MOTION_ONE_G + 512);
pad->m_sensors[2].m_value = Clamp0To1023(accel_z * MOTION_ONE_G + 512);
// gyro_y is yaw, which is all that we need
// Convert to ds3. The ds3 resolution is 123/90°/sec.
pad->m_sensors[3].m_value = Clamp0To1023(gyro_y * (123.f / 90.f) + 512);
// Set raw orientation
set_raw_orientation(pad->move_data, accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z);
}
std::unordered_map<u64, u16> dualsense_pad_handler::get_button_values(const std::shared_ptr<PadDevice>& device)
{
std::unordered_map<u64, u16> keyBuffer;
DualSenseDevice* dev = static_cast<DualSenseDevice*>(device.get());
if (!dev)
return keyBuffer;
const dualsense_input_report_common& input = dev->report;
const bool is_simple_mode = dev->data_mode == DualSenseDevice::DualSenseDataMode::Simple;
// Left Stick X Axis
keyBuffer[DualSenseKeyCodes::LSXNeg] = Clamp0To255((127.5f - input.x) * 2.0f);
keyBuffer[DualSenseKeyCodes::LSXPos] = Clamp0To255((input.x - 127.5f) * 2.0f);
// Left Stick Y Axis (Up is the negative for some reason)
keyBuffer[DualSenseKeyCodes::LSYNeg] = Clamp0To255((input.y - 127.5f) * 2.0f);
keyBuffer[DualSenseKeyCodes::LSYPos] = Clamp0To255((127.5f - input.y) * 2.0f);
// Right Stick X Axis
keyBuffer[DualSenseKeyCodes::RSXNeg] = Clamp0To255((127.5f - input.rx) * 2.0f);
keyBuffer[DualSenseKeyCodes::RSXPos] = Clamp0To255((input.rx - 127.5f) * 2.0f);
// Right Stick Y Axis (Up is the negative for some reason)
keyBuffer[DualSenseKeyCodes::RSYNeg] = Clamp0To255((input.ry - 127.5f) * 2.0f);
keyBuffer[DualSenseKeyCodes::RSYPos] = Clamp0To255((127.5f - input.ry) * 2.0f);
keyBuffer[DualSenseKeyCodes::L2] = is_simple_mode ? input.buttons[0] : input.z;
keyBuffer[DualSenseKeyCodes::R2] = is_simple_mode ? input.buttons[1] : input.rz;
u8 data = (is_simple_mode ? input.z : input.buttons[0]) & 0xf;
switch (data)
{
case 0x08: // none pressed
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
case 0x07: // NW...left and up
keyBuffer[DualSenseKeyCodes::Up] = 255;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 255;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
case 0x06: // W..left
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 255;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
case 0x05: // SW..left down
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 255;
keyBuffer[DualSenseKeyCodes::Left] = 255;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
case 0x04: // S..down
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 255;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
case 0x03: // SE..down and right
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 255;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 255;
break;
case 0x02: // E... right
keyBuffer[DualSenseKeyCodes::Up] = 0;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 255;
break;
case 0x01: // NE.. up right
keyBuffer[DualSenseKeyCodes::Up] = 255;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 255;
break;
case 0x00: // n.. up
keyBuffer[DualSenseKeyCodes::Up] = 255;
keyBuffer[DualSenseKeyCodes::Down] = 0;
keyBuffer[DualSenseKeyCodes::Left] = 0;
keyBuffer[DualSenseKeyCodes::Right] = 0;
break;
default:
fmt::throw_exception("dualsense dpad state encountered unexpected input");
}
data = (is_simple_mode ? input.z : input.buttons[0]) >> 4;
keyBuffer[DualSenseKeyCodes::Square] = ((data & 0x01) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::Cross] = ((data & 0x02) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::Circle] = ((data & 0x04) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::Triangle] = ((data & 0x08) != 0) ? 255 : 0;
data = (is_simple_mode ? input.rz : input.buttons[1]);
keyBuffer[DualSenseKeyCodes::L1] = ((data & 0x01) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::R1] = ((data & 0x02) != 0) ? 255 : 0;
// keyBuffer[DualSenseKeyCodes::L2] = ((data & 0x04) != 0) ? 255 : 0; // active when L2 is pressed
// keyBuffer[DualSenseKeyCodes::R2] = ((data & 0x08) != 0) ? 255 : 0; // active when R2 is pressed
keyBuffer[DualSenseKeyCodes::Share] = ((data & 0x10) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::Options] = ((data & 0x20) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::L3] = ((data & 0x40) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::R3] = ((data & 0x80) != 0) ? 255 : 0;
data = (is_simple_mode ? input.seq_number : input.buttons[2]);
keyBuffer[DualSenseKeyCodes::PSButton] = ((data & 0x01) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::TouchPad] = ((data & 0x02) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::Mic] = ((data & 0x04) != 0) ? 255 : 0;
// Touch Pad
for (const dualsense_touch_point& point : input.points)
{
if (!(point.contact & DUALSENSE_TOUCH_POINT_INACTIVE))
{
const s32 x = (point.x_hi << 8) | point.x_lo;
const s32 y = (point.y_hi << 4) | point.y_lo;
const f32 x_scaled = ScaledInput(static_cast<float>(x), 0.0f, static_cast<float>(DUALSENSE_TOUCHPAD_WIDTH), 0.0f, 255.0f);
const f32 y_scaled = ScaledInput(static_cast<float>(y), 0.0f, static_cast<float>(DUALSENSE_TOUCHPAD_HEIGHT), 0.0f, 255.0f);
keyBuffer[DualSenseKeyCodes::Touch_L] = Clamp0To255((127.5f - x_scaled) * 2.0f);
keyBuffer[DualSenseKeyCodes::Touch_R] = Clamp0To255((x_scaled - 127.5f) * 2.0f);
keyBuffer[DualSenseKeyCodes::Touch_U] = Clamp0To255((127.5f - y_scaled) * 2.0f);
keyBuffer[DualSenseKeyCodes::Touch_D] = Clamp0To255((y_scaled - 127.5f) * 2.0f);
}
}
if (dev->feature_set == DualSenseDevice::DualSenseFeatureSet::Edge)
{
keyBuffer[DualSenseKeyCodes::EdgeFnL] = ((data & 0x10) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::EdgeFnR] = ((data & 0x20) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::EdgeLB] = ((data & 0x40) != 0) ? 255 : 0;
keyBuffer[DualSenseKeyCodes::EdgeRB] = ((data & 0x80) != 0) ? 255 : 0;
}
return keyBuffer;
}
pad_preview_values dualsense_pad_handler::get_preview_values(const std::unordered_map<u64, u16>& data)
{
return {
::at32(data, L2),
::at32(data, R2),
::at32(data, LSXPos) - ::at32(data, LSXNeg),
::at32(data, LSYPos) - ::at32(data, LSYNeg),
::at32(data, RSXPos) - ::at32(data, RSXNeg),
::at32(data, RSYPos) - ::at32(data, RSYNeg)};
}
dualsense_pad_handler::~dualsense_pad_handler()
{
for (auto& controller : m_controllers)
{
if (controller.second && controller.second->hidDevice)
{
// Disable vibration
controller.second->small_motor = 0;
controller.second->large_motor = 0;
// Turns off the lights (disabled due to user complaints)
// controller.second->release_leds = true;
if (send_output_report(controller.second.get()) == -1)
{
dualsense_log.error("~dualsense_pad_handler: send_output_report failed! Reason: %s", hid_error(controller.second->hidDevice));
}
}
}
}
int dualsense_pad_handler::send_output_report(DualSenseDevice* device)
{
if (!device || !device->hidDevice)
return -2;
const cfg_pad* config = device->config;
if (config == nullptr)
return -2; // hid_write returns -1 on error
dualsense_output_report_common common{};
// Only initialize lightbar in the first output report. The controller didn't seem to update the player LEDs correctly otherwise. (Might be placebo)
if (device->init_lightbar)
{
device->init_lightbar = false;
device->lightbar_on = true;
device->lightbar_on_old = true;
common.valid_flag_2 |= VALID_FLAG_2_LIGHTBAR_SETUP_CONTROL_ENABLE;
common.lightbar_setup = LIGHTBAR_SETUP_LIGHT_OFF; // Fade light out.
}
else if (device->release_leds)
{
common.valid_flag_1 |= VALID_FLAG_1_RELEASE_LEDS;
device->release_leds = false;
}
else
{
common.valid_flag_0 |= VALID_FLAG_0_COMPATIBLE_VIBRATION;
common.valid_flag_0 |= VALID_FLAG_0_HAPTICS_SELECT;
common.valid_flag_1 |= VALID_FLAG_1_POWER_SAVE_CONTROL_ENABLE;
common.valid_flag_2 |= VALID_FLAG_2_IMPROVED_RUMBLE_EMULATION;
common.motor_left = device->large_motor;
common.motor_right = device->small_motor;
if (device->update_lightbar)
{
device->update_lightbar = false;
common.valid_flag_1 |= VALID_FLAG_1_LIGHTBAR_CONTROL_ENABLE;
if (device->lightbar_on)
{
common.lightbar_r = config->colorR; // red
common.lightbar_g = config->colorG; // green
common.lightbar_b = config->colorB; // blue
}
else
{
common.lightbar_r = 0;
common.lightbar_g = 0;
common.lightbar_b = 0;
}
device->lightbar_on_old = device->lightbar_on;
}
if (device->update_player_leds)
{
device->update_player_leds = false;
// The dualsense controller uses 5 LEDs to indicate the player ID.
// Use OR with 0x1, 0x2, 0x4, 0x8 and 0x10 to enable the LEDs (from leftmost to rightmost).
common.valid_flag_1 |= VALID_FLAG_1_PLAYER_INDICATOR_CONTROL_ENABLE;
if (config->player_led_enabled)
{
switch (device->player_id)
{
case 0: common.player_leds = 0b00100; break;
case 1: common.player_leds = 0b01010; break;
case 2: common.player_leds = 0b10101; break;
case 3: common.player_leds = 0b11011; break;
case 4: common.player_leds = 0b11111; break;
case 5: common.player_leds = 0b10111; break;
case 6: common.player_leds = 0b11101; break;
default:
fmt::throw_exception("Dualsense is using forbidden player id %d", device->player_id);
}
}
else
{
common.player_leds = 0;
}
}
}
if (device->bt_controller)
{
const u8 seq_tag = (device->bt_sequence << 4) | 0x0;
if (++device->bt_sequence >= 16)
device->bt_sequence = 0;
dualsense_output_report_bt report{};
report.report_id = 0x31; // report id for bluetooth
report.seq_tag = seq_tag;
report.tag = 0x10; // magic number
report.common = std::move(common);
const u8 btHdr = 0xA2;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(&report.report_id, (sizeof(dualsense_output_report_bt) - 4), crcTable, crcHdr);
write_to_ptr(report.crc32, crcCalc);
return hid_write(device->hidDevice, &report.report_id, sizeof(dualsense_output_report_bt));
}
dualsense_output_report_usb report{};
report.report_id = 0x02; // report id for usb
report.common = std::move(common);
return hid_write(device->hidDevice, &report.report_id, DUALSENSE_USB_REPORT_SIZE);
}
void dualsense_pad_handler::apply_pad_data(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
DualSenseDevice* dev = static_cast<DualSenseDevice*>(device.get());
if (!dev || !dev->hidDevice || !dev->config || !pad)
return;
cfg_pad* config = dev->config;
// Attempt to send rumble no matter what
const u8 speed_large = config->get_large_motor_speed(pad->m_vibrateMotors);
const u8 speed_small = config->get_small_motor_speed(pad->m_vibrateMotors);
const bool wireless = dev->cable_state == 0;
const bool low_battery = dev->battery_level <= 1;
const bool is_blinking = dev->led_delay_on > 0 || dev->led_delay_off > 0;
// Blink LED when battery is low
if (config->led_low_battery_blink)
{
// we are now wired or have okay battery level -> stop blinking
if (is_blinking && !(wireless && low_battery))
{
dev->lightbar_on = true;
dev->led_delay_on = 0;
dev->led_delay_off = 0;
dev->update_lightbar = true;
}
// we are now wireless and low on battery -> blink
else if (!is_blinking && wireless && low_battery)
{
dev->led_delay_on = 100;
dev->led_delay_off = 100;
dev->update_lightbar = true;
}
// Turn lightbar on and off in an interval. I wanted to do an automatic pulse, but I haven't found out how to do that yet.
if (dev->led_delay_on > 0)
{
if (const steady_clock::time_point now = steady_clock::now(); (now - dev->last_lightbar_time) > 500ms)
{
dev->lightbar_on = !dev->lightbar_on;
dev->last_lightbar_time = now;
dev->update_lightbar = true;
}
}
}
else if (!dev->lightbar_on)
{
dev->lightbar_on = true;
dev->update_lightbar = true;
}
// Use LEDs to indicate battery level
if (config->led_battery_indicator)
{
// This makes sure that the LED color doesn't update every 1ms. DS4 only reports battery level in 10% increments
if (dev->last_battery_level != dev->battery_level)
{
const u32 combined_color = get_battery_color(dev->battery_level, config->led_battery_indicator_brightness);
config->colorR.set(combined_color >> 8);
config->colorG.set(combined_color & 0xff);
config->colorB.set(0);
dev->update_lightbar = true;
dev->last_battery_level = dev->battery_level;
}
}
if (dev->enable_player_leds != config->player_led_enabled.get())
{
dev->enable_player_leds = config->player_led_enabled.get();
dev->update_player_leds = true;
}
dev->new_output_data |= dev->release_leds || dev->update_player_leds || dev->update_lightbar || dev->large_motor != speed_large || dev->small_motor != speed_small;
dev->large_motor = speed_large;
dev->small_motor = speed_small;
const auto now = steady_clock::now();
const auto elapsed = now - dev->last_output;
if (dev->new_output_data || elapsed > min_output_interval)
{
if (const int res = send_output_report(dev); res >= 0)
{
dev->new_output_data = false;
dev->last_output = now;
}
else if (res == -1)
{
dualsense_log.error("apply_pad_data: send_output_report failed! error=%s", hid_error(dev->hidDevice));
}
}
}
void dualsense_pad_handler::SetPadData(const std::string& padId, u8 player_id, u8 large_motor, u8 small_motor, s32 r, s32 g, s32 b, bool player_led, bool battery_led, u32 battery_led_brightness)
{
std::shared_ptr<DualSenseDevice> device = get_hid_device(padId);
if (device == nullptr || device->hidDevice == nullptr)
return;
// Set the device's motor speeds to our requested values 0-255
device->large_motor = large_motor;
device->small_motor = small_motor;
device->player_id = player_id;
device->config = get_config(padId);
ensure(device->config);
device->update_lightbar = true;
device->update_player_leds = true;
device->config->player_led_enabled.set(player_led);
// Set new LED color (see ds4_pad_handler)
if (battery_led)
{
const u32 combined_color = get_battery_color(device->battery_level, battery_led_brightness);
device->config->colorR.set(combined_color >> 8);
device->config->colorG.set(combined_color & 0xff);
device->config->colorB.set(0);
}
else if (r >= 0 && g >= 0 && b >= 0 && r <= 255 && g <= 255 && b <= 255)
{
device->config->colorR.set(r);
device->config->colorG.set(g);
device->config->colorB.set(b);
}
if (device->init_lightbar)
{
// Initialize first
if (send_output_report(device.get()) == -1)
{
dualsense_log.error("SetPadData: send_output_report failed! Reason: %s", hid_error(device->hidDevice));
}
}
// Start/Stop the engines :)
if (send_output_report(device.get()) == -1)
{
dualsense_log.error("SetPadData: send_output_report failed! Reason: %s", hid_error(device->hidDevice));
}
}
u32 dualsense_pad_handler::get_battery_level(const std::string& padId)
{
const std::shared_ptr<DualSenseDevice> device = get_hid_device(padId);
if (device == nullptr || device->hidDevice == nullptr)
{
return 0;
}
return std::min<u32>(device->battery_level * 10 + 5, 100); // 10% per unit, starting with 0-9%. So 100% equals unit 10
}