rpcsx/rpcs3/Emu/Memory/vm.h

374 lines
9 KiB
C
Raw Normal View History

#pragma once
2015-07-11 22:44:53 +02:00
2016-02-01 22:52:49 +01:00
#include <map>
2016-05-13 16:01:48 +02:00
#include <mutex>
2015-01-07 17:44:47 +01:00
class thread_ctrl;
namespace vm
{
extern u8* const g_base_addr;
extern u8* const g_priv_addr;
2015-02-13 16:26:42 +01:00
2015-07-11 22:44:53 +02:00
enum memory_location_t : uint
{
main,
user_space,
2015-07-11 22:44:53 +02:00
video,
stack,
2015-07-11 22:44:53 +02:00
memory_location_max,
any = 0xffffffff,
};
enum page_info_t : u8
{
page_readable = (1 << 0),
page_writable = (1 << 1),
page_executable = (1 << 2),
page_fault_notification = (1 << 3),
page_no_reservations = (1 << 4),
page_allocated = (1 << 7),
};
2016-05-13 16:01:48 +02:00
// Address type
enum addr_t : u32 {};
2016-02-01 22:52:49 +01:00
struct access_violation : std::runtime_error
{
access_violation(u64 addr, const char* cause);
};
[[noreturn]] void throw_access_violation(u64 addr, const char* cause);
2015-07-21 22:14:04 +02:00
// This flag is changed by various reservation functions and may have different meaning.
// reservation_break() - true if the reservation was successfully broken.
// reservation_acquire() - true if another existing reservation was broken.
// reservation_free() - true if this thread's reservation was successfully removed.
// reservation_op() - false if reservation_update() would succeed if called instead.
// Write access to reserved memory - only set to true if the reservation was broken.
extern thread_local bool g_tls_did_break_reservation;
2015-07-11 22:44:53 +02:00
// Unconditionally break the reservation at specified address
void reservation_break(u32 addr);
// Reserve memory at the specified address for further atomic update
void reservation_acquire(void* data, u32 addr, u32 size);
// Attempt to atomically update previously reserved memory
2015-02-07 00:39:51 +01:00
bool reservation_update(u32 addr, const void* data, u32 size);
2015-07-11 22:44:53 +02:00
// Process a memory access error if it's caused by the reservation
2015-02-17 01:08:23 +01:00
bool reservation_query(u32 addr, u32 size, bool is_writing, std::function<bool()> callback);
2015-07-11 22:44:53 +02:00
2015-07-12 13:52:55 +02:00
// Returns true if the current thread owns reservation
2016-05-13 16:01:48 +02:00
bool reservation_test(thread_ctrl* current);
2015-07-12 13:52:55 +02:00
2015-07-11 22:44:53 +02:00
// Break all reservations created by the current thread
2015-02-07 00:39:51 +01:00
void reservation_free();
2015-07-11 22:44:53 +02:00
// Perform atomic operation unconditionally
2015-02-07 14:46:42 +01:00
void reservation_op(u32 addr, u32 size, std::function<void()> proc);
2015-02-07 00:39:51 +01:00
2015-07-11 22:44:53 +02:00
// Change memory protection of specified memory region
bool page_protect(u32 addr, u32 size, u8 flags_test = 0, u8 flags_set = 0, u8 flags_clear = 0);
2015-07-11 22:44:53 +02:00
// Check if existing memory range is allocated. Checking address before using it is very unsafe.
// Return value may be wrong. Even if it's true and correct, actual memory protection may be read-only and no-access.
bool check_addr(u32 addr, u32 size = 1);
2015-07-11 22:44:53 +02:00
// Search and map memory in specified memory location (don't pass alignment smaller than 4096)
u32 alloc(u32 size, memory_location_t location, u32 align = 4096);
// Map memory at specified address (in optionally specified memory location)
u32 falloc(u32 addr, u32 size, memory_location_t location = any);
// Unmap memory at specified address (in optionally specified memory location)
bool dealloc(u32 addr, memory_location_t location = any);
// dealloc() with no return value and no exceptions
void dealloc_verbose_nothrow(u32 addr, memory_location_t location = any) noexcept;
// Object that handles memory allocations inside specific constant bounds ("location")
2015-07-12 13:52:55 +02:00
class block_t final
2015-07-11 22:44:53 +02:00
{
std::map<u32, u32> m_map; // addr -> size mapping of mapped locations
std::mutex m_mutex;
bool try_alloc(u32 addr, u32 size);
public:
2015-07-12 13:52:55 +02:00
block_t(u32 addr, u32 size, u64 flags = 0)
2015-07-11 22:44:53 +02:00
: addr(addr)
, size(size)
2015-07-12 13:52:55 +02:00
, flags(flags)
, used(0)
2015-07-11 22:44:53 +02:00
{
}
~block_t();
public:
const u32 addr; // start address
const u32 size; // total size
2015-07-12 13:52:55 +02:00
const u64 flags; // currently unused
2015-07-11 22:44:53 +02:00
atomic_t<u32> used; // amount of memory used, may be increased manually to prevent some memory from allocating
2015-07-11 22:44:53 +02:00
// Search and map memory (don't pass alignment smaller than 4096)
u32 alloc(u32 size, u32 align = 4096);
// Try to map memory at fixed location
u32 falloc(u32 addr, u32 size);
// Unmap memory at specified location previously returned by alloc()
bool dealloc(u32 addr);
};
// create new memory block with specified parameters and return it
2015-07-12 13:52:55 +02:00
std::shared_ptr<block_t> map(u32 addr, u32 size, u64 flags = 0);
2015-07-11 22:44:53 +02:00
// delete existing memory block with specified start address
std::shared_ptr<block_t> unmap(u32 addr);
// get memory block associated with optionally specified memory location or optionally specified address
std::shared_ptr<block_t> get(memory_location_t location, u32 addr = 0);
2014-08-31 11:54:12 +02:00
// Get PS3/PSV virtual memory address from the provided pointer (nullptr always converted to 0)
2016-05-13 16:01:48 +02:00
inline vm::addr_t get_addr(const void* real_ptr)
2015-02-07 00:39:51 +01:00
{
if (!real_ptr)
{
2016-05-13 16:01:48 +02:00
return vm::addr_t{};
}
2015-02-07 00:39:51 +01:00
const std::ptrdiff_t diff = static_cast<const u8*>(real_ptr) - g_base_addr;
const u32 res = static_cast<u32>(diff);
if (res == diff)
{
2016-05-13 16:01:48 +02:00
return static_cast<vm::addr_t>(res);
}
2016-02-01 22:52:49 +01:00
throw fmt::exception("Not a virtual memory pointer (%p)", real_ptr);
}
// Convert pointer-to-member to a vm address compatible offset
template<typename MT, typename T> inline u32 get_offset(MT T::*const member_ptr)
{
2016-01-14 18:13:41 +01:00
return static_cast<u32>(reinterpret_cast<std::uintptr_t>(&reinterpret_cast<char const volatile&>(reinterpret_cast<T*>(0ull)->*member_ptr)));
}
2016-02-01 22:52:49 +01:00
template<typename T>
struct cast_impl
2015-01-14 14:57:19 +01:00
{
2016-02-01 22:52:49 +01:00
static_assert(std::is_same<T, u32>::value, "vm::cast() error: unsupported type");
2015-01-14 14:57:19 +01:00
};
2016-02-01 22:52:49 +01:00
template<>
struct cast_impl<u32>
2015-01-14 14:57:19 +01:00
{
2016-05-13 16:01:48 +02:00
static vm::addr_t cast(u32 addr, const char* loc)
{
return static_cast<vm::addr_t>(addr);
}
static vm::addr_t cast(u32 addr)
2015-01-14 14:57:19 +01:00
{
2016-05-13 16:01:48 +02:00
return static_cast<vm::addr_t>(addr);
2015-01-14 14:57:19 +01:00
}
};
2016-02-01 22:52:49 +01:00
template<>
struct cast_impl<u64>
2015-01-14 14:57:19 +01:00
{
2016-05-13 16:01:48 +02:00
static vm::addr_t cast(u64 addr, const char* loc)
{
return static_cast<vm::addr_t>(fmt::narrow<u32>("Memory address out of range: 0x%llx%s", addr, loc));
}
static vm::addr_t cast(u64 addr)
2015-01-14 14:57:19 +01:00
{
2016-05-13 16:01:48 +02:00
return static_cast<vm::addr_t>(fmt::narrow<u32>("Memory address out of range: 0x%llx", addr));
2015-01-14 14:57:19 +01:00
}
};
2016-02-01 22:52:49 +01:00
template<typename T, bool Se>
struct cast_impl<se_t<T, Se>>
2015-01-14 14:57:19 +01:00
{
2016-05-13 16:01:48 +02:00
static vm::addr_t cast(const se_t<T, Se>& addr, const char* loc)
2015-01-14 14:57:19 +01:00
{
2016-02-01 22:52:49 +01:00
return cast_impl<T>::cast(addr, loc);
2015-06-21 01:04:01 +02:00
}
2016-05-13 16:01:48 +02:00
static vm::addr_t cast(const se_t<T, Se>& addr)
{
return cast_impl<T>::cast(addr);
}
2015-06-21 01:04:01 +02:00
};
2016-02-01 22:52:49 +01:00
template<typename T>
2016-05-13 16:01:48 +02:00
vm::addr_t cast(const T& addr, const char* loc)
2015-01-14 14:57:19 +01:00
{
2016-02-01 22:52:49 +01:00
return cast_impl<T>::cast(addr, loc);
2015-01-14 14:57:19 +01:00
}
2016-05-13 16:01:48 +02:00
template<typename T>
vm::addr_t cast(const T& addr)
{
return cast_impl<T>::cast(addr);
}
// Convert specified PS3/PSV virtual memory address to a pointer for common access
inline void* base(u32 addr)
{
return g_base_addr + addr;
}
// Convert specified PS3/PSV virtual memory address to a pointer for privileged access (always readable/writable if allocated)
inline void* base_priv(u32 addr)
{
return g_priv_addr + addr;
}
inline const u8& read8(u32 addr)
2014-08-31 11:54:12 +02:00
{
return g_base_addr[addr];
}
inline void write8(u32 addr, u8 value)
{
g_base_addr[addr] = value;
}
2014-09-15 00:17:24 +02:00
namespace ps3
{
// Convert specified PS3 address to a pointer of specified (possibly converted to BE) type
template<typename T> inline to_be_t<T>* _ptr(u32 addr)
{
return static_cast<to_be_t<T>*>(base(addr));
}
template<typename T> inline to_be_t<T>* _ptr_priv(u32 addr)
{
return static_cast<to_be_t<T>*>(base_priv(addr));
}
// Convert specified PS3 address to a reference of specified (possibly converted to BE) type
template<typename T> inline to_be_t<T>& _ref(u32 addr)
{
return *_ptr<T>(addr);
}
template<typename T> inline to_be_t<T>& _ref_priv(u32 addr)
{
return *_ptr_priv<T>(addr);
}
2014-09-15 00:17:24 +02:00
2015-06-21 01:04:01 +02:00
inline const be_t<u16>& read16(u32 addr)
2014-08-31 11:54:12 +02:00
{
return _ref<u16>(addr);
2014-09-15 00:17:24 +02:00
}
2015-06-21 01:04:01 +02:00
inline void write16(u32 addr, be_t<u16> value)
2014-08-31 11:54:12 +02:00
{
_ref<u16>(addr) = value;
2014-09-15 00:17:24 +02:00
}
2015-06-21 01:04:01 +02:00
inline const be_t<u32>& read32(u32 addr)
{
return _ref<u32>(addr);
2014-08-31 11:54:12 +02:00
}
2015-06-21 01:04:01 +02:00
inline void write32(u32 addr, be_t<u32> value)
2014-08-31 11:54:12 +02:00
{
_ref<u32>(addr) = value;
2014-08-31 11:54:12 +02:00
}
2015-06-21 01:04:01 +02:00
inline const be_t<u64>& read64(u32 addr)
{
return _ref<u64>(addr);
}
2015-06-21 01:04:01 +02:00
inline void write64(u32 addr, be_t<u64> value)
{
_ref<u64>(addr) = value;
}
void init();
}
namespace psv
{
template<typename T> inline to_le_t<T>* _ptr(u32 addr)
{
return static_cast<to_le_t<T>*>(base(addr));
}
template<typename T> inline to_le_t<T>* _ptr_priv(u32 addr)
2014-08-31 11:54:12 +02:00
{
return static_cast<to_le_t<T>*>(base_priv(addr));
2014-09-15 00:17:24 +02:00
}
template<typename T> inline to_le_t<T>& _ref(u32 addr)
2014-08-31 11:54:12 +02:00
{
return *_ptr<T>(addr);
}
template<typename T> inline to_le_t<T>& _ref_priv(u32 addr)
{
return *_ptr_priv<T>(addr);
2014-09-15 00:17:24 +02:00
}
2015-06-21 01:04:01 +02:00
inline const le_t<u16>& read16(u32 addr)
{
return _ref<u16>(addr);
2015-06-21 01:04:01 +02:00
}
inline void write16(u32 addr, le_t<u16> value)
{
_ref<u16>(addr) = value;
2015-06-21 01:04:01 +02:00
}
inline const le_t<u32>& read32(u32 addr)
{
return _ref<u32>(addr);
2015-06-21 01:04:01 +02:00
}
inline void write32(u32 addr, le_t<u32> value)
2014-08-31 11:54:12 +02:00
{
_ref<u32>(addr) = value;
2014-08-31 11:54:12 +02:00
}
2015-06-21 01:04:01 +02:00
inline const le_t<u64>& read64(u32 addr)
2014-08-31 11:54:12 +02:00
{
return _ref<u64>(addr);
2014-08-31 11:54:12 +02:00
}
2015-06-21 01:04:01 +02:00
inline void write64(u32 addr, le_t<u64> value)
2014-08-31 11:54:12 +02:00
{
_ref<u64>(addr) = value;
2014-08-31 11:54:12 +02:00
}
void init();
2014-08-31 11:54:12 +02:00
}
namespace psp
{
using namespace psv;
void init();
}
void close();
2016-02-01 22:52:49 +01:00
u32 stack_push(u32 size, u32 align_v);
void stack_pop_verbose(u32 addr, u32 size) noexcept;
2016-02-01 22:52:49 +01:00
extern thread_local u64 g_tls_fault_count;
}
#include "vm_var.h"