rpcsx/kernel/cellos/src/sys_event.cpp

733 lines
18 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "sys_event.h"
#include "Emu/IPC.h"
#include "Emu/IdManager.h"
#include "Emu/System.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/SPUThread.h"
#include "sys_process.h"
2025-10-05 18:28:03 +02:00
#include "rx/asm.hpp"
LOG_CHANNEL(sys_event);
lv2_event_queue::lv2_event_queue(u32 protocol, s32 type, s32 size, u64 name,
u64 ipc_key) noexcept
: id(idm::last_id()), protocol{static_cast<u8>(protocol)},
type(static_cast<u8>(type)), size(static_cast<u8>(size)), name(name),
key(ipc_key) {}
lv2_event_queue::lv2_event_queue(utils::serial &ar) noexcept
: id(idm::last_id()), protocol(ar), type(ar), size(ar), name(ar), key(ar) {
ar(events);
}
std::function<void(void *)> lv2_event_queue::load(utils::serial &ar) {
auto queue = make_shared<lv2_event_queue>(exact_t<utils::serial &>(ar));
return [ptr = lv2_obj::load(queue->key, queue)](void *storage) {
*static_cast<atomic_ptr<lv2_obj> *>(storage) = ptr;
};
}
void lv2_event_queue::save(utils::serial &ar) {
ar(protocol, type, size, name, key, events);
}
void lv2_event_queue::save_ptr(utils::serial &ar, lv2_event_queue *q) {
if (!lv2_obj::check(q)) {
ar(u32{0});
return;
}
ar(q->id);
}
shared_ptr<lv2_event_queue>
lv2_event_queue::load_ptr(utils::serial &ar, shared_ptr<lv2_event_queue> &queue,
std::string_view msg) {
const u32 id = ar.pop<u32>();
if (!id) {
return {};
}
if (auto q = idm::get_unlocked<lv2_obj, lv2_event_queue>(id)) {
// Already initialized
return q;
}
if (id >> 24 != id_base >> 24) {
fmt::throw_exception("Failed in event queue pointer deserialization "
"(invalid ID): location: %s, id=0x%x",
msg, id);
}
Emu.PostponeInitCode([id, &queue, msg_str = std::string{msg}]() {
// Defer resolving
queue = idm::get_unlocked<lv2_obj, lv2_event_queue>(id);
if (!queue) {
fmt::throw_exception("Failed in event queue pointer deserialization (not "
"found): location: %s, id=0x%x",
msg_str, id);
}
});
// Null until resolved
return {};
}
lv2_event_port::lv2_event_port(utils::serial &ar)
: type(ar), name(ar),
queue(lv2_event_queue::load_ptr(ar, queue, "eventport")) {}
void lv2_event_port::save(utils::serial &ar) {
ar(type, name);
lv2_event_queue::save_ptr(ar, queue.get());
}
shared_ptr<lv2_event_queue> lv2_event_queue::find(u64 ipc_key) {
if (ipc_key == SYS_EVENT_QUEUE_LOCAL) {
// Invalid IPC key
return {};
}
return g_fxo->get<ipc_manager<lv2_event_queue, u64>>().get(ipc_key);
}
extern void resume_spu_thread_group_from_waiting(spu_thread &spu);
CellError lv2_event_queue::send(lv2_event event, bool *notified_thread,
lv2_event_port *port) {
if (notified_thread) {
*notified_thread = false;
}
std::lock_guard lock(mutex);
if (!exists) {
return CELL_ENOTCONN;
}
if (!pq && !sq) {
if (events.size() < this->size + 0u) {
// Save event
events.emplace_back(event);
return {};
}
return CELL_EBUSY;
}
if (type == SYS_PPU_QUEUE) {
// Store event in registers
auto &ppu = static_cast<ppu_thread &>(*schedule<ppu_thread>(pq, protocol));
if (ppu.state & cpu_flag::again) {
if (auto cpu = get_current_cpu_thread()) {
cpu->state += cpu_flag::again;
cpu->state += cpu_flag::exit;
}
sys_event.warning("Ignored event!");
// Fake error for abort
return CELL_EAGAIN;
}
std::tie(ppu.gpr[4], ppu.gpr[5], ppu.gpr[6], ppu.gpr[7]) = event;
awake(&ppu);
if (port &&
ppu.prio.load().prio <
ensure(cpu_thread::get_current<ppu_thread>())->prio.load().prio) {
// Block event port disconnection for the time being of sending events
// PPU -> lower prio PPU is the only case that can cause thread blocking
port->is_busy++;
ensure(notified_thread);
*notified_thread = true;
}
} else {
// Store event in In_MBox
auto &spu = static_cast<spu_thread &>(*schedule<spu_thread>(sq, protocol));
if (spu.state & cpu_flag::again) {
if (auto cpu = get_current_cpu_thread()) {
cpu->state += cpu_flag::exit + cpu_flag::again;
}
sys_event.warning("Ignored event!");
// Fake error for abort
return CELL_EAGAIN;
}
const u32 data1 = static_cast<u32>(std::get<1>(event));
const u32 data2 = static_cast<u32>(std::get<2>(event));
const u32 data3 = static_cast<u32>(std::get<3>(event));
spu.ch_in_mbox.set_values(4, CELL_OK, data1, data2, data3);
resume_spu_thread_group_from_waiting(spu);
}
return {};
}
error_code sys_event_queue_create(cpu_thread &cpu, vm::ptr<u32> equeue_id,
vm::ptr<sys_event_queue_attribute_t> attr,
u64 ipc_key, s32 size) {
cpu.state += cpu_flag::wait;
sys_event.warning("sys_event_queue_create(equeue_id=*0x%x, attr=*0x%x, "
"ipc_key=0x%llx, size=%d)",
equeue_id, attr, ipc_key, size);
if (size <= 0 || size > 127) {
return CELL_EINVAL;
}
const u32 protocol = attr->protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY) {
sys_event.error("sys_event_queue_create(): unknown protocol (0x%x)",
protocol);
return CELL_EINVAL;
}
const u32 type = attr->type;
if (type != SYS_PPU_QUEUE && type != SYS_SPU_QUEUE) {
sys_event.error("sys_event_queue_create(): unknown type (0x%x)", type);
return CELL_EINVAL;
}
const u32 pshared = ipc_key == SYS_EVENT_QUEUE_LOCAL
? SYS_SYNC_NOT_PROCESS_SHARED
: SYS_SYNC_PROCESS_SHARED;
constexpr u32 flags = SYS_SYNC_NEWLY_CREATED;
const u64 name = attr->name_u64;
if (const auto error =
lv2_obj::create<lv2_event_queue>(pshared, ipc_key, flags, [&]() {
return make_shared<lv2_event_queue>(protocol, type, size, name,
ipc_key);
})) {
return error;
}
cpu.check_state();
*equeue_id = idm::last_id();
return CELL_OK;
}
error_code sys_event_queue_destroy(ppu_thread &ppu, u32 equeue_id, s32 mode) {
ppu.state += cpu_flag::wait;
sys_event.warning("sys_event_queue_destroy(equeue_id=0x%x, mode=%d)",
equeue_id, mode);
if (mode && mode != SYS_EVENT_QUEUE_DESTROY_FORCE) {
return CELL_EINVAL;
}
std::vector<lv2_event> events;
std::unique_lock<shared_mutex> qlock;
cpu_thread *head{};
const auto queue = idm::withdraw<lv2_obj, lv2_event_queue>(
equeue_id, [&](lv2_event_queue &queue) -> CellError {
qlock = std::unique_lock{queue.mutex};
head = queue.type == SYS_PPU_QUEUE
? static_cast<cpu_thread *>(+queue.pq)
: +queue.sq;
if (!mode && head) {
return CELL_EBUSY;
}
if (!queue.events.empty()) {
// Copy events for logging, does not empty
events.insert(events.begin(), queue.events.begin(),
queue.events.end());
}
lv2_obj::on_id_destroy(queue, queue.key);
if (!head) {
qlock.unlock();
} else {
for (auto cpu = head; cpu; cpu = cpu->get_next_cpu()) {
if (cpu->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return CELL_EAGAIN;
}
}
}
return {};
});
if (!queue) {
return CELL_ESRCH;
}
if (ppu.state & cpu_flag::again) {
return {};
}
if (queue.ret) {
return queue.ret;
}
std::string lost_data;
if (qlock.owns_lock()) {
if (sys_event.warning) {
u32 size = 0;
for (auto cpu = head; cpu; cpu = cpu->get_next_cpu()) {
size++;
}
fmt::append(lost_data, "Forcefully awaken waiters (%u):\n", size);
for (auto cpu = head; cpu; cpu = cpu->get_next_cpu()) {
lost_data += cpu->get_name();
lost_data += '\n';
}
}
if (queue->type == SYS_PPU_QUEUE) {
for (auto cpu = +queue->pq; cpu; cpu = cpu->next_cpu) {
cpu->gpr[3] = CELL_ECANCELED;
queue->append(cpu);
}
atomic_storage<ppu_thread *>::release(queue->pq, nullptr);
lv2_obj::awake_all();
} else {
for (auto cpu = +queue->sq; cpu; cpu = cpu->next_cpu) {
cpu->ch_in_mbox.set_values(1, CELL_ECANCELED);
resume_spu_thread_group_from_waiting(*cpu);
}
atomic_storage<spu_thread *>::release(queue->sq, nullptr);
}
qlock.unlock();
}
if (sys_event.warning) {
if (!events.empty()) {
fmt::append(lost_data, "Unread queue events (%u):\n", events.size());
}
for (const lv2_event &evt : events) {
fmt::append(lost_data, "data0=0x%x, data1=0x%x, data2=0x%x, data3=0x%x\n",
std::get<0>(evt), std::get<1>(evt), std::get<2>(evt),
std::get<3>(evt));
}
if (!lost_data.empty()) {
sys_event.warning("sys_event_queue_destroy(): %s", lost_data);
}
}
return CELL_OK;
}
error_code sys_event_queue_tryreceive(ppu_thread &ppu, u32 equeue_id,
vm::ptr<sys_event_t> event_array,
s32 size, vm::ptr<u32> number) {
ppu.state += cpu_flag::wait;
sys_event.trace("sys_event_queue_tryreceive(equeue_id=0x%x, "
"event_array=*0x%x, size=%d, number=*0x%x)",
equeue_id, event_array, size, number);
const auto queue = idm::get_unlocked<lv2_obj, lv2_event_queue>(equeue_id);
if (!queue) {
return CELL_ESRCH;
}
if (queue->type != SYS_PPU_QUEUE) {
return CELL_EINVAL;
}
std::array<sys_event_t, 127> events;
std::unique_lock lock(queue->mutex);
if (!queue->exists) {
return CELL_ESRCH;
}
s32 count = 0;
while (count < size && !queue->events.empty()) {
auto &dest = events[count++];
std::tie(dest.source, dest.data1, dest.data2, dest.data3) =
queue->events.front();
queue->events.pop_front();
}
lock.unlock();
ppu.check_state();
std::copy_n(events.begin(), count, event_array.get_ptr());
*number = count;
return CELL_OK;
}
error_code sys_event_queue_receive(ppu_thread &ppu, u32 equeue_id,
vm::ptr<sys_event_t> dummy_event,
u64 timeout) {
ppu.state += cpu_flag::wait;
sys_event.trace(
"sys_event_queue_receive(equeue_id=0x%x, *0x%x, timeout=0x%llx)",
equeue_id, dummy_event, timeout);
ppu.gpr[3] = CELL_OK;
const auto queue = idm::get<lv2_obj, lv2_event_queue>(
equeue_id,
[&,
notify = lv2_obj::notify_all_t()](lv2_event_queue &queue) -> CellError {
if (queue.type != SYS_PPU_QUEUE) {
return CELL_EINVAL;
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(queue.mutex);
// "/dev_flash/vsh/module/msmw2.sprx" seems to rely on some cryptic
// shared memory behaviour that we don't emulate correctly
// This is a hack to avoid waiting for 1m40s every time we boot vsh
if (queue.key == 0x8005911000000012 && Emu.IsVsh()) {
sys_event.todo("sys_event_queue_receive(equeue_id=0x%x, *0x%x, "
"timeout=0x%llx) Bypassing timeout for msmw2.sprx",
equeue_id, dummy_event, timeout);
timeout = 1;
}
if (queue.events.empty()) {
queue.sleep(ppu, timeout);
lv2_obj::emplace(queue.pq, &ppu);
return CELL_EBUSY;
}
std::tie(ppu.gpr[4], ppu.gpr[5], ppu.gpr[6], ppu.gpr[7]) =
queue.events.front();
queue.events.pop_front();
return {};
});
if (!queue) {
return CELL_ESRCH;
}
if (queue.ret) {
if (queue.ret != CELL_EBUSY) {
return queue.ret;
}
} else {
return CELL_OK;
}
// If cancelled, gpr[3] will be non-zero. Other registers must contain event
// data.
while (auto state = +ppu.state) {
if (state & cpu_flag::signal &&
ppu.state.test_and_reset(cpu_flag::signal)) {
break;
}
if (is_stopped(state)) {
std::lock_guard lock_rsx(queue->mutex);
for (auto cpu = +queue->pq; cpu; cpu = cpu->next_cpu) {
if (cpu == &ppu) {
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++) {
2025-10-05 18:28:03 +02:00
rx::busy_wait(500);
}
if (ppu.state & cpu_flag::signal) {
continue;
}
if (timeout) {
if (lv2_obj::wait_timeout(timeout, &ppu)) {
// Wait for rescheduling
if (ppu.check_state()) {
continue;
}
ppu.state += cpu_flag::wait;
if (!atomic_storage<ppu_thread *>::load(queue->pq)) {
// Waiters queue is empty, so the thread must have been signaled
queue->mutex.lock_unlock();
break;
}
std::lock_guard lock(queue->mutex);
if (!queue->unqueue(queue->pq, &ppu)) {
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
} else {
ppu.state.wait(state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_event_queue_drain(ppu_thread &ppu, u32 equeue_id) {
ppu.state += cpu_flag::wait;
sys_event.trace("sys_event_queue_drain(equeue_id=0x%x)", equeue_id);
const auto queue = idm::check<lv2_obj, lv2_event_queue>(
equeue_id, [&](lv2_event_queue &queue) {
std::lock_guard lock(queue.mutex);
queue.events.clear();
});
if (!queue) {
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_event_port_create(cpu_thread &cpu, vm::ptr<u32> eport_id,
s32 port_type, u64 name) {
cpu.state += cpu_flag::wait;
sys_event.warning(
"sys_event_port_create(eport_id=*0x%x, port_type=%d, name=0x%llx)",
eport_id, port_type, name);
if (port_type != SYS_EVENT_PORT_LOCAL && port_type != 3) {
sys_event.error("sys_event_port_create(): unknown port type (%d)",
port_type);
return CELL_EINVAL;
}
if (const u32 id = idm::make<lv2_obj, lv2_event_port>(port_type, name)) {
cpu.check_state();
*eport_id = id;
return CELL_OK;
}
return CELL_EAGAIN;
}
error_code sys_event_port_destroy(ppu_thread &ppu, u32 eport_id) {
ppu.state += cpu_flag::wait;
sys_event.warning("sys_event_port_destroy(eport_id=0x%x)", eport_id);
const auto port = idm::withdraw<lv2_obj, lv2_event_port>(
eport_id, [](lv2_event_port &port) -> CellError {
if (lv2_obj::check(port.queue)) {
return CELL_EISCONN;
}
return {};
});
if (!port) {
return CELL_ESRCH;
}
if (port.ret) {
return port.ret;
}
return CELL_OK;
}
error_code sys_event_port_connect_local(cpu_thread &cpu, u32 eport_id,
u32 equeue_id) {
cpu.state += cpu_flag::wait;
sys_event.warning(
"sys_event_port_connect_local(eport_id=0x%x, equeue_id=0x%x)", eport_id,
equeue_id);
std::lock_guard lock(id_manager::g_mutex);
const auto port = idm::check_unlocked<lv2_obj, lv2_event_port>(eport_id);
if (!port || !idm::check_unlocked<lv2_obj, lv2_event_queue>(equeue_id)) {
return CELL_ESRCH;
}
if (port->type != SYS_EVENT_PORT_LOCAL) {
return CELL_EINVAL;
}
if (lv2_obj::check(port->queue)) {
return CELL_EISCONN;
}
port->queue = idm::get_unlocked<lv2_obj, lv2_event_queue>(equeue_id);
return CELL_OK;
}
error_code sys_event_port_connect_ipc(ppu_thread &ppu, u32 eport_id,
u64 ipc_key) {
ppu.state += cpu_flag::wait;
sys_event.warning("sys_event_port_connect_ipc(eport_id=0x%x, ipc_key=0x%x)",
eport_id, ipc_key);
if (ipc_key == 0) {
return CELL_EINVAL;
}
auto queue = lv2_event_queue::find(ipc_key);
std::lock_guard lock(id_manager::g_mutex);
const auto port = idm::check_unlocked<lv2_obj, lv2_event_port>(eport_id);
if (!port || !queue) {
return CELL_ESRCH;
}
if (port->type != SYS_EVENT_PORT_IPC) {
return CELL_EINVAL;
}
if (lv2_obj::check(port->queue)) {
return CELL_EISCONN;
}
port->queue = std::move(queue);
return CELL_OK;
}
error_code sys_event_port_disconnect(ppu_thread &ppu, u32 eport_id) {
ppu.state += cpu_flag::wait;
sys_event.warning("sys_event_port_disconnect(eport_id=0x%x)", eport_id);
std::lock_guard lock(id_manager::g_mutex);
const auto port = idm::check_unlocked<lv2_obj, lv2_event_port>(eport_id);
if (!port) {
return CELL_ESRCH;
}
if (!lv2_obj::check(port->queue)) {
return CELL_ENOTCONN;
}
if (port->is_busy) {
return CELL_EBUSY;
}
port->queue.reset();
return CELL_OK;
}
error_code sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3) {
const auto cpu = cpu_thread::get_current();
const auto ppu = cpu ? cpu->try_get<ppu_thread>() : nullptr;
if (cpu) {
cpu->state += cpu_flag::wait;
}
sys_event.trace("sys_event_port_send(eport_id=0x%x, data1=0x%llx, "
"data2=0x%llx, data3=0x%llx)",
eport_id, data1, data2, data3);
bool notified_thread = false;
const auto port = idm::check<lv2_obj, lv2_event_port>(
eport_id,
[&, notify = lv2_obj::notify_all_t()](lv2_event_port &port) -> CellError {
if (ppu && ppu->loaded_from_savestate) {
port.is_busy++;
notified_thread = true;
return {};
}
if (lv2_obj::check(port.queue)) {
const u64 source =
port.name ? port.name
: (u64{process_getpid() + 0u} << 32) | u64{eport_id};
return port.queue->send(
source, data1, data2, data3, &notified_thread,
ppu && port.queue->type == SYS_PPU_QUEUE ? &port : nullptr);
}
return CELL_ENOTCONN;
});
if (!port) {
return CELL_ESRCH;
}
if (ppu && notified_thread) {
// Wait to be requeued
if (ppu->test_stopped()) {
// Wait again on savestate load
ppu->state += cpu_flag::again;
}
port->is_busy--;
return CELL_OK;
}
if (port.ret) {
if (port.ret == CELL_EAGAIN) {
// Not really an error code exposed to games (thread has raised
// cpu_flag::again)
return not_an_error(CELL_EAGAIN);
}
if (port.ret == CELL_EBUSY) {
return not_an_error(CELL_EBUSY);
}
return port.ret;
}
return CELL_OK;
}