rpcsx/kernel/cellos/src/sys_mutex.cpp

339 lines
7.7 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "util/asm.hpp"
#include "sys_mutex.h"
LOG_CHANNEL(sys_mutex);
lv2_mutex::lv2_mutex(utils::serial &ar)
: protocol(ar), recursive(ar), adaptive(ar), key(ar), name(ar) {
ar(lock_count, control.raw().owner);
// For backwards compatibility
control.raw().owner >>= 1;
}
std::function<void(void *)> lv2_mutex::load(utils::serial &ar) {
return load_func(make_shared<lv2_mutex>(exact_t<utils::serial &>(ar)));
}
void lv2_mutex::save(utils::serial &ar) {
ar(protocol, recursive, adaptive, key, name, lock_count,
control.raw().owner << 1);
}
error_code sys_mutex_create(ppu_thread &ppu, vm::ptr<u32> mutex_id,
vm::ptr<sys_mutex_attribute_t> attr) {
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_create(mutex_id=*0x%x, attr=*0x%x)", mutex_id,
attr);
if (!mutex_id || !attr) {
return CELL_EFAULT;
}
const auto _attr = *attr;
const u64 ipc_key = lv2_obj::get_key(_attr);
if (ipc_key) {
sys_mutex.warning(
"sys_mutex_create(mutex_id=*0x%x, attr=*0x%x): IPC=0x%016x", mutex_id,
attr, ipc_key);
}
switch (_attr.protocol) {
case SYS_SYNC_FIFO:
break;
case SYS_SYNC_PRIORITY:
break;
case SYS_SYNC_PRIORITY_INHERIT:
sys_mutex.warning("sys_mutex_create(): SYS_SYNC_PRIORITY_INHERIT");
break;
default: {
sys_mutex.error("sys_mutex_create(): unknown protocol (0x%x)",
_attr.protocol);
return CELL_EINVAL;
}
}
switch (_attr.recursive) {
case SYS_SYNC_RECURSIVE:
break;
case SYS_SYNC_NOT_RECURSIVE:
break;
default: {
sys_mutex.error("sys_mutex_create(): unknown recursive (0x%x)",
_attr.recursive);
return CELL_EINVAL;
}
}
if (_attr.adaptive != SYS_SYNC_NOT_ADAPTIVE) {
sys_mutex.todo("sys_mutex_create(): unexpected adaptive (0x%x)",
_attr.adaptive);
}
if (auto error = lv2_obj::create<lv2_mutex>(
_attr.pshared, _attr.ipc_key, _attr.flags, [&]() {
return make_shared<lv2_mutex>(_attr.protocol, _attr.recursive,
_attr.adaptive, ipc_key,
_attr.name_u64);
})) {
return error;
}
ppu.check_state();
*mutex_id = idm::last_id();
return CELL_OK;
}
error_code sys_mutex_destroy(ppu_thread &ppu, u32 mutex_id) {
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_destroy(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::withdraw<lv2_obj, lv2_mutex>(
mutex_id, [](lv2_mutex &mutex) -> CellError {
std::lock_guard lock(mutex.mutex);
if (atomic_storage<u32>::load(mutex.control.raw().owner)) {
return CELL_EBUSY;
}
if (mutex.cond_count) {
return CELL_EPERM;
}
lv2_obj::on_id_destroy(mutex, mutex.key);
return {};
});
if (!mutex) {
return CELL_ESRCH;
}
if (mutex->key) {
sys_mutex.warning("sys_mutex_destroy(mutex_id=0x%x): IPC=0x%016x", mutex_id,
mutex->key);
}
if (mutex.ret) {
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_lock(ppu_thread &ppu, u32 mutex_id, u64 timeout) {
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_lock(mutex_id=0x%x, timeout=0x%llx)", mutex_id,
timeout);
const auto mutex = idm::get<lv2_obj, lv2_mutex>(
mutex_id, [&, notify = lv2_obj::notify_all_t()](lv2_mutex &mutex) {
CellError result = mutex.try_lock(ppu);
if (result == CELL_EBUSY &&
!atomic_storage<ppu_thread *>::load(mutex.control.raw().sq)) {
// Try busy waiting a bit if advantageous
for (u32 i = 0, end = lv2_obj::has_ppus_in_running_state() ? 3 : 10;
id_manager::g_mutex.is_lockable() && i < end; i++) {
busy_wait(300);
result = mutex.try_lock(ppu);
if (!result ||
atomic_storage<ppu_thread *>::load(mutex.control.raw().sq)) {
break;
}
}
}
if (result == CELL_EBUSY) {
lv2_obj::prepare_for_sleep(ppu);
ppu.cancel_sleep = 1;
if (mutex.try_own(ppu) || !mutex.sleep(ppu, timeout)) {
result = {};
}
if (ppu.cancel_sleep != 1) {
notify.cleanup();
}
ppu.cancel_sleep = 0;
}
return result;
});
if (!mutex) {
return CELL_ESRCH;
}
if (mutex.ret) {
if (mutex.ret != CELL_EBUSY) {
return mutex.ret;
}
} else {
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (auto state = +ppu.state) {
if (state & cpu_flag::signal &&
ppu.state.test_and_reset(cpu_flag::signal)) {
break;
}
if (is_stopped(state)) {
std::lock_guard lock(mutex->mutex);
for (auto cpu =
atomic_storage<ppu_thread *>::load(mutex->control.raw().sq);
cpu; cpu = cpu->next_cpu) {
if (cpu == &ppu) {
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 40; i++) {
busy_wait(500);
}
if (ppu.state & cpu_flag::signal) {
continue;
}
if (timeout) {
if (lv2_obj::wait_timeout(timeout, &ppu)) {
// Wait for rescheduling
if (ppu.check_state()) {
continue;
}
ppu.state += cpu_flag::wait;
if (!atomic_storage<ppu_thread *>::load(mutex->control.raw().sq)) {
// Waiters queue is empty, so the thread must have been signaled
mutex->mutex.lock_unlock();
break;
}
std::lock_guard lock(mutex->mutex);
bool success = false;
mutex->control.fetch_op([&](lv2_mutex::control_data_t &data) {
success = false;
ppu_thread *sq = static_cast<ppu_thread *>(data.sq);
const bool retval = &ppu == sq;
if (!mutex->unqueue<false>(sq, &ppu)) {
return false;
}
success = true;
if (!retval) {
return false;
}
data.sq = sq;
return true;
});
if (success) {
ppu.next_cpu = nullptr;
ppu.gpr[3] = CELL_ETIMEDOUT;
}
break;
}
} else {
ppu.state.wait(state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_mutex_trylock(ppu_thread &ppu, u32 mutex_id) {
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_trylock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(
mutex_id, [&](lv2_mutex &mutex) { return mutex.try_lock(ppu); });
if (!mutex) {
return CELL_ESRCH;
}
if (mutex.ret) {
if (mutex.ret == CELL_EBUSY) {
return not_an_error(CELL_EBUSY);
}
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_unlock(ppu_thread &ppu, u32 mutex_id) {
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_unlock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(
mutex_id,
[&, notify = lv2_obj::notify_all_t()](lv2_mutex &mutex) -> CellError {
auto result = mutex.try_unlock(ppu);
if (result == CELL_EBUSY) {
std::lock_guard lock(mutex.mutex);
if (auto cpu = mutex.reown<ppu_thread>()) {
if (cpu->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return {};
}
mutex.awake(cpu);
}
result = {};
}
notify.cleanup();
return result;
});
if (!mutex) {
return CELL_ESRCH;
}
if (mutex.ret) {
return mutex.ret;
}
return CELL_OK;
}