rpcsx/kernel/cellos/src/sys_event_flag.cpp

515 lines
12 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "sys_event_flag.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "util/asm.hpp"
LOG_CHANNEL(sys_event_flag);
lv2_event_flag::lv2_event_flag(utils::serial &ar)
: protocol(ar), key(ar), type(ar), name(ar) {
ar(pattern);
}
std::function<void(void *)> lv2_event_flag::load(utils::serial &ar) {
return load_func(make_shared<lv2_event_flag>(exact_t<utils::serial &>(ar)));
}
void lv2_event_flag::save(utils::serial &ar) {
ar(protocol, key, type, name, pattern);
}
error_code sys_event_flag_create(ppu_thread &ppu, vm::ptr<u32> id,
vm::ptr<sys_event_flag_attribute_t> attr,
u64 init) {
ppu.state += cpu_flag::wait;
sys_event_flag.warning(
"sys_event_flag_create(id=*0x%x, attr=*0x%x, init=0x%llx)", id, attr,
init);
if (!id || !attr) {
return CELL_EFAULT;
}
const auto _attr = *attr;
const u32 protocol = _attr.protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY) {
sys_event_flag.error("sys_event_flag_create(): unknown protocol (0x%x)",
protocol);
return CELL_EINVAL;
}
const u32 type = _attr.type;
if (type != SYS_SYNC_WAITER_SINGLE && type != SYS_SYNC_WAITER_MULTIPLE) {
sys_event_flag.error("sys_event_flag_create(): unknown type (0x%x)", type);
return CELL_EINVAL;
}
const u64 ipc_key = lv2_obj::get_key(_attr);
if (const auto error = lv2_obj::create<lv2_event_flag>(
_attr.pshared, ipc_key, _attr.flags, [&] {
return make_shared<lv2_event_flag>(
_attr.protocol, ipc_key, _attr.type, _attr.name_u64, init);
})) {
return error;
}
ppu.check_state();
*id = idm::last_id();
return CELL_OK;
}
error_code sys_event_flag_destroy(ppu_thread &ppu, u32 id) {
ppu.state += cpu_flag::wait;
sys_event_flag.warning("sys_event_flag_destroy(id=0x%x)", id);
const auto flag = idm::withdraw<lv2_obj, lv2_event_flag>(
id, [&](lv2_event_flag &flag) -> CellError {
if (flag.sq) {
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(flag, flag.key);
return {};
});
if (!flag) {
return CELL_ESRCH;
}
if (flag.ret) {
return flag.ret;
}
return CELL_OK;
}
error_code sys_event_flag_wait(ppu_thread &ppu, u32 id, u64 bitptn, u32 mode,
vm::ptr<u64> result, u64 timeout) {
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_wait(id=0x%x, bitptn=0x%llx, mode=0x%x, "
"result=*0x%x, timeout=0x%llx)",
id, bitptn, mode, result, timeout);
// Fix function arguments for external access
ppu.gpr[3] = -1;
ppu.gpr[4] = bitptn;
ppu.gpr[5] = mode;
ppu.gpr[6] = 0;
// Always set result
struct store_result {
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept {
if (ptr) {
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode)) {
sys_event_flag.error("sys_event_flag_wait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
const auto flag = idm::get<lv2_obj, lv2_event_flag>(
id,
[&, notify = lv2_obj::notify_all_t()](lv2_event_flag &flag) -> CellError {
if (flag.pattern
.fetch_op([&](u64 &pat) {
return lv2_event_flag::check_pattern(pat, bitptn, mode,
&ppu.gpr[6]);
})
.second) {
// TODO: is it possible to return EPERM in this case?
return {};
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(flag.mutex);
if (flag.pattern
.fetch_op([&](u64 &pat) {
return lv2_event_flag::check_pattern(pat, bitptn, mode,
&ppu.gpr[6]);
})
.second) {
return {};
}
if (flag.type == SYS_SYNC_WAITER_SINGLE && flag.sq) {
return CELL_EPERM;
}
flag.sleep(ppu, timeout);
lv2_obj::emplace(flag.sq, &ppu);
return CELL_EBUSY;
});
if (!flag) {
return CELL_ESRCH;
}
if (flag.ret) {
if (flag.ret != CELL_EBUSY) {
return flag.ret;
}
} else {
store.val = ppu.gpr[6];
return CELL_OK;
}
while (auto state = +ppu.state) {
if (state & cpu_flag::signal &&
ppu.state.test_and_reset(cpu_flag::signal)) {
break;
}
if (is_stopped(state)) {
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu) {
if (cpu == &ppu) {
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++) {
busy_wait(500);
}
if (ppu.state & cpu_flag::signal) {
continue;
}
if (timeout) {
if (lv2_obj::wait_timeout(timeout, &ppu)) {
// Wait for rescheduling
if (ppu.check_state()) {
continue;
}
ppu.state += cpu_flag::wait;
if (!atomic_storage<ppu_thread *>::load(flag->sq)) {
// Waiters queue is empty, so the thread must have been signaled
flag->mutex.lock_unlock();
break;
}
std::lock_guard lock(flag->mutex);
if (!flag->unqueue(flag->sq, &ppu)) {
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
ppu.gpr[6] = flag->pattern;
break;
}
} else {
ppu.state.wait(state);
}
}
store.val = ppu.gpr[6];
return not_an_error(ppu.gpr[3]);
}
error_code sys_event_flag_trywait(ppu_thread &ppu, u32 id, u64 bitptn, u32 mode,
vm::ptr<u64> result) {
ppu.state += cpu_flag::wait;
sys_event_flag.trace(
"sys_event_flag_trywait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x)",
id, bitptn, mode, result);
// Always set result
struct store_result {
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept {
if (ptr) {
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode)) {
sys_event_flag.error("sys_event_flag_trywait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
u64 pattern{};
const auto flag =
idm::check<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag &flag) {
return flag.pattern
.fetch_op([&](u64 &pat) {
return lv2_event_flag::check_pattern(pat, bitptn, mode, &pattern);
})
.second;
});
if (!flag) {
return CELL_ESRCH;
}
if (!flag.ret) {
return not_an_error(CELL_EBUSY);
}
store.val = pattern;
return CELL_OK;
}
error_code sys_event_flag_set(cpu_thread &cpu, u32 id, u64 bitptn) {
cpu.state += cpu_flag::wait;
// Warning: may be called from SPU thread.
sys_event_flag.trace("sys_event_flag_set(id=0x%x, bitptn=0x%llx)", id,
bitptn);
const auto flag = idm::get_unlocked<lv2_obj, lv2_event_flag>(id);
if (!flag) {
return CELL_ESRCH;
}
if ((flag->pattern & bitptn) == bitptn) {
return CELL_OK;
}
if (lv2_obj::notify_all_t notify; true) {
std::lock_guard lock(flag->mutex);
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu) {
if (ppu->state & cpu_flag::again) {
cpu.state += cpu_flag::again;
// Fake error for abort
return not_an_error(CELL_EAGAIN);
}
}
u32 count = 0;
// Process all waiters in single atomic op
for (u64 pattern = flag->pattern, to_write = pattern, dependant_mask = 0;;
to_write = pattern, dependant_mask = 0) {
count = 0;
to_write |= bitptn;
dependant_mask = 0;
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu) {
ppu->gpr[7] = 0;
}
auto first = +flag->sq;
auto get_next = [&]() -> ppu_thread * {
s32 prio = smax;
ppu_thread *it{};
for (auto ppu = first; ppu; ppu = ppu->next_cpu) {
if (!ppu->gpr[7] && (flag->protocol != SYS_SYNC_PRIORITY ||
ppu->prio.load().prio <= prio)) {
it = ppu;
prio = ppu->prio.load().prio;
}
}
if (it) {
// Mark it so it won't reappear
it->gpr[7] = 1;
}
return it;
};
while (auto it = get_next()) {
auto &ppu = *it;
const u64 pattern = ppu.gpr[4];
const u64 mode = ppu.gpr[5];
// If it's OR mode, set bits must have waken up the thread therefore no
// dependency on old value
const u64 dependant_mask_or =
((mode & 0xf) == SYS_EVENT_FLAG_WAIT_OR ||
(bitptn & pattern & to_write) == pattern
? 0
: pattern);
if (lv2_event_flag::check_pattern(to_write, pattern, mode,
&ppu.gpr[6])) {
dependant_mask |= dependant_mask_or;
ppu.gpr[3] = CELL_OK;
count++;
if (!to_write) {
break;
}
} else {
ppu.gpr[3] = -1;
}
}
dependant_mask &= ~bitptn;
auto [new_val, ok] = flag->pattern.fetch_op([&](u64 &x) {
if ((x ^ pattern) & dependant_mask) {
return false;
}
x |= bitptn;
// Clear the bit-wise difference
x &= ~((pattern | bitptn) & ~to_write);
return true;
});
if (ok) {
break;
}
pattern = new_val;
}
if (!count) {
return CELL_OK;
}
// Remove waiters
for (auto next_cpu = &flag->sq; *next_cpu;) {
auto &ppu = **next_cpu;
if (ppu.gpr[3] == CELL_OK) {
atomic_storage<ppu_thread *>::release(*next_cpu, ppu.next_cpu);
ppu.next_cpu = nullptr;
flag->append(&ppu);
continue;
}
next_cpu = &ppu.next_cpu;
};
lv2_obj::awake_all();
}
return CELL_OK;
}
error_code sys_event_flag_clear(ppu_thread &ppu, u32 id, u64 bitptn) {
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_clear(id=0x%x, bitptn=0x%llx)", id,
bitptn);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(
id, [&](lv2_event_flag &flag) { flag.pattern &= bitptn; });
if (!flag) {
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_event_flag_cancel(ppu_thread &ppu, u32 id, vm::ptr<u32> num) {
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_cancel(id=0x%x, num=*0x%x)", id, num);
if (num)
*num = 0;
const auto flag = idm::get_unlocked<lv2_obj, lv2_event_flag>(id);
if (!flag) {
return CELL_ESRCH;
}
u32 value = 0;
{
lv2_obj::notify_all_t notify;
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu) {
if (cpu->state & cpu_flag::again) {
ppu.state += cpu_flag::again;
return {};
}
}
// Get current pattern
const u64 pattern = flag->pattern;
// Signal all threads to return CELL_ECANCELED (protocol does not matter)
while (auto ppu = flag->schedule<ppu_thread>(flag->sq, SYS_SYNC_FIFO)) {
ppu->gpr[3] = CELL_ECANCELED;
ppu->gpr[6] = pattern;
value++;
flag->append(ppu);
}
if (value) {
lv2_obj::awake_all();
}
}
static_cast<void>(ppu.test_stopped());
if (num)
*num = value;
return CELL_OK;
}
error_code sys_event_flag_get(ppu_thread &ppu, u32 id, vm::ptr<u64> flags) {
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_get(id=0x%x, flags=*0x%x)", id, flags);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(
id, [](lv2_event_flag &flag) { return +flag.pattern; });
ppu.check_state();
if (!flag) {
if (flags)
*flags = 0;
return CELL_ESRCH;
}
if (!flags) {
return CELL_EFAULT;
}
*flags = flag.ret;
return CELL_OK;
}