rpcsx/rpcsx-gpu2/Renderer.cpp

1369 lines
48 KiB
C++
Raw Normal View History

2024-09-25 15:00:55 +02:00
#include "Renderer.hpp"
#include "Device.hpp"
#include "gnm/descriptors.hpp"
#include "gnm/gnm.hpp"
2024-09-25 15:00:55 +02:00
#include "rx/MemoryTable.hpp"
#include <amdgpu/tiler.hpp>
#include <gnm/constants.hpp>
#include <gnm/vulkan.hpp>
#include <print>
2024-09-25 15:00:55 +02:00
#include <shader/Evaluator.hpp>
#include <shader/dialect.hpp>
#include <shader/gcn.hpp>
#include <shaders/fill_red.frag.h>
#include <shaders/flip.frag.h>
#include <shaders/flip.vert.h>
#include <shaders/rect_list.geom.h>
#include <bit>
#include <vulkan/vulkan_core.h>
using namespace shader;
namespace gnm {
VkRect2D toVkRect2D(amdgpu::PaScRect rect) {
return {
.offset =
{
.x = rect.left,
.y = rect.top,
},
.extent =
{
.width = static_cast<uint32_t>(rect.right - rect.left),
.height = static_cast<uint32_t>(rect.bottom - rect.top),
},
};
}
amdgpu::PaScRect intersection(amdgpu::PaScRect rect, amdgpu::PaScRect scissor) {
amdgpu::PaScRect result{
.left = std::max(rect.left, scissor.left),
.top = std::max(rect.top, scissor.top),
.right = std::min(rect.right, scissor.right),
.bottom = std::min(rect.bottom, scissor.bottom),
};
result.top = std::min(result.top, result.bottom);
result.bottom = std::max(result.top, result.bottom);
result.left = std::min(result.left, result.right);
result.right = std::max(result.left, result.right);
return result;
}
} // namespace gnm
struct MemoryTableSlot {
std::uint64_t address;
union {
struct {
std::uint64_t size : 40;
std::uint64_t flags : 4;
};
std::uint64_t sizeAndFlags;
};
std::uint64_t deviceAddress;
};
struct MemoryTable {
std::uint32_t count;
std::uint32_t pad;
MemoryTableSlot slots[];
};
static VkShaderEXT getPrimTypeRectGeomShader(amdgpu::Cache &cache) {
static VkShaderEXT shader = VK_NULL_HANDLE;
if (shader != VK_NULL_HANDLE) {
return shader;
}
VkShaderCreateInfoEXT createInfo{
.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
.stage = VK_SHADER_STAGE_GEOMETRY_BIT,
.codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
.codeSize = sizeof(spirv_rect_list_geom),
.pCode = spirv_rect_list_geom,
.pName = "main",
.setLayoutCount =
static_cast<uint32_t>(cache.getGraphicsDescriptorSetLayouts().size()),
.pSetLayouts = cache.getGraphicsDescriptorSetLayouts().data()};
VK_VERIFY(vk::CreateShadersEXT(vk::context->device, 1, &createInfo,
vk::context->allocator, &shader));
return shader;
}
static VkShaderEXT getFillRedFragShader(amdgpu::Cache &cache) {
static VkShaderEXT shader = VK_NULL_HANDLE;
if (shader != VK_NULL_HANDLE) {
return shader;
}
VkShaderCreateInfoEXT createInfo{
.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
.codeSize = sizeof(spirv_fill_red_frag),
.pCode = spirv_fill_red_frag,
.pName = "main",
.setLayoutCount =
static_cast<uint32_t>(cache.getGraphicsDescriptorSetLayouts().size()),
.pSetLayouts = cache.getGraphicsDescriptorSetLayouts().data()};
VK_VERIFY(vk::CreateShadersEXT(vk::context->device, 1, &createInfo,
vk::context->allocator, &shader));
return shader;
}
static VkShaderEXT getFlipVertexShader(amdgpu::Cache &cache) {
static VkShaderEXT shader = VK_NULL_HANDLE;
if (shader != VK_NULL_HANDLE) {
return shader;
}
VkShaderCreateInfoEXT createInfo{
.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
.codeSize = sizeof(spirv_flip_vert),
.pCode = spirv_flip_vert,
.pName = "main",
.setLayoutCount =
static_cast<uint32_t>(cache.getGraphicsDescriptorSetLayouts().size()),
.pSetLayouts = cache.getGraphicsDescriptorSetLayouts().data()};
VK_VERIFY(vk::CreateShadersEXT(vk::context->device, 1, &createInfo,
vk::context->allocator, &shader));
return shader;
}
static VkShaderEXT getFlipFragmentShader(amdgpu::Cache &cache) {
static VkShaderEXT shader = VK_NULL_HANDLE;
if (shader != VK_NULL_HANDLE) {
return shader;
}
VkShaderCreateInfoEXT createInfo{
.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
.codeSize = sizeof(spirv_flip_frag),
.pCode = spirv_flip_frag,
.pName = "main",
.setLayoutCount =
static_cast<uint32_t>(cache.getGraphicsDescriptorSetLayouts().size()),
.pSetLayouts = cache.getGraphicsDescriptorSetLayouts().data()};
VK_VERIFY(vk::CreateShadersEXT(vk::context->device, 1, &createInfo,
vk::context->allocator, &shader));
return shader;
}
static VkPrimitiveTopology toVkPrimitiveType(gnm::PrimitiveType type) {
switch (type) {
case gnm::PrimitiveType::PointList:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
case gnm::PrimitiveType::LineList:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
case gnm::PrimitiveType::LineStrip:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case gnm::PrimitiveType::TriList:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case gnm::PrimitiveType::TriFan:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN;
case gnm::PrimitiveType::TriStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case gnm::PrimitiveType::Patch:
return VK_PRIMITIVE_TOPOLOGY_PATCH_LIST;
case gnm::PrimitiveType::LineListAdjacency:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY;
case gnm::PrimitiveType::LineStripAdjacency:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY;
case gnm::PrimitiveType::TriListAdjacency:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY;
case gnm::PrimitiveType::TriStripAdjacency:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY;
case gnm::PrimitiveType::LineLoop:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; // FIXME
case gnm::PrimitiveType::RectList:
case gnm::PrimitiveType::QuadList:
case gnm::PrimitiveType::QuadStrip:
case gnm::PrimitiveType::Polygon:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
default:
rx::die("toVkPrimitiveType: unexpected primitive type %u",
static_cast<unsigned>(type));
}
}
struct ShaderResources : eval::Evaluator {
amdgpu::Cache::Tag *cacheTag;
shader::eval::Evaluator evaluator;
std::map<std::uint32_t, std::uint32_t> slotResources;
std::span<const std::uint32_t> userSgprs;
std::uint32_t slotOffset = 0;
2024-09-25 15:00:55 +02:00
rx::MemoryTableWithPayload<Access> bufferMemoryTable;
std::vector<std::pair<std::uint32_t, std::uint64_t>> resourceSlotToAddress;
std::vector<amdgpu::Cache::Sampler> samplerResources;
std::vector<amdgpu::Cache::ImageView> imageResources[3];
using Evaluator::eval;
ShaderResources() = default;
void loadResources(shader::gcn::Resources &res,
std::span<const std::uint32_t> userSgprs) {
this->userSgprs = userSgprs;
for (auto &pointer : res.pointers) {
auto pointerBase = eval(pointer.base).zExtScalar();
auto pointerOffset = eval(pointer.offset).zExtScalar();
if (!pointerBase || !pointerOffset) {
res.dump();
rx::die("failed to evaluate pointer");
}
bufferMemoryTable.map(*pointerBase,
*pointerBase + *pointerOffset + pointer.size,
Access::Read);
resourceSlotToAddress.push_back(
{slotOffset + pointer.resourceSlot, *pointerBase});
2024-09-25 15:00:55 +02:00
}
for (auto &bufferRes : res.buffers) {
auto word0 = eval(bufferRes.words[0]).zExtScalar();
auto word1 = eval(bufferRes.words[1]).zExtScalar();
auto word2 = eval(bufferRes.words[2]).zExtScalar();
auto word3 = eval(bufferRes.words[3]).zExtScalar();
if (!word0 || !word1 || !word2 || !word3) {
res.dump();
rx::die("failed to evaluate V#");
}
gnm::VBuffer buffer{};
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer), &*word0,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 1, &*word1,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 2, &*word2,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 3, &*word3,
sizeof(std::uint32_t));
bufferMemoryTable.map(buffer.address(), buffer.address() + buffer.size(),
bufferRes.access);
resourceSlotToAddress.push_back(
{slotOffset + bufferRes.resourceSlot, buffer.address()});
2024-09-25 15:00:55 +02:00
}
for (auto &texture : res.textures) {
auto word0 = eval(texture.words[0]).zExtScalar();
auto word1 = eval(texture.words[1]).zExtScalar();
auto word2 = eval(texture.words[2]).zExtScalar();
auto word3 = eval(texture.words[3]).zExtScalar();
if (!word0 || !word1 || !word2 || !word3) {
res.dump();
rx::die("failed to evaluate 128 bit T#");
}
gnm::TBuffer buffer{};
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer), &*word0,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 1, &*word1,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 2, &*word2,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 3, &*word3,
sizeof(std::uint32_t));
if (texture.words[4] != nullptr) {
auto word4 = eval(texture.words[4]).zExtScalar();
auto word5 = eval(texture.words[5]).zExtScalar();
auto word6 = eval(texture.words[6]).zExtScalar();
auto word7 = eval(texture.words[7]).zExtScalar();
if (!word4 || !word5 || !word6 || !word7) {
res.dump();
rx::die("failed to evaluate 256 bit T#");
}
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 4, &*word4,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 5, &*word5,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 6, &*word6,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&buffer) + 7, &*word7,
sizeof(std::uint32_t));
}
std::vector<amdgpu::Cache::ImageView> *resources = nullptr;
switch (buffer.type) {
case gnm::TextureType::Array1D:
case gnm::TextureType::Dim1D:
resources = &imageResources[0];
break;
case gnm::TextureType::Dim2D:
case gnm::TextureType::Array2D:
case gnm::TextureType::Msaa2D:
case gnm::TextureType::MsaaArray2D:
case gnm::TextureType::Cube:
resources = &imageResources[1];
break;
case gnm::TextureType::Dim3D:
resources = &imageResources[2];
break;
}
rx::dieIf(resources == nullptr,
"ShaderResources: unexpected texture type %u",
static_cast<unsigned>(buffer.type));
slotResources[slotOffset + texture.resourceSlot] = resources->size();
2024-09-25 15:00:55 +02:00
resources->push_back(cacheTag->getImageView(
amdgpu::ImageViewKey::createFrom(buffer), texture.access));
}
for (auto &sampler : res.samplers) {
auto word0 = eval(sampler.words[0]).zExtScalar();
auto word1 = eval(sampler.words[1]).zExtScalar();
auto word2 = eval(sampler.words[2]).zExtScalar();
auto word3 = eval(sampler.words[3]).zExtScalar();
if (!word0 || !word1 || !word2 || !word3) {
res.dump();
rx::die("failed to evaluate S#");
}
gnm::SSampler sSampler{};
std::memcpy(reinterpret_cast<std::uint32_t *>(&sSampler), &*word0,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&sSampler) + 1, &*word1,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&sSampler) + 2, &*word2,
sizeof(std::uint32_t));
std::memcpy(reinterpret_cast<std::uint32_t *>(&sSampler) + 3, &*word3,
sizeof(std::uint32_t));
if (sampler.unorm) {
sSampler.force_unorm_coords = true;
}
slotResources[slotOffset + sampler.resourceSlot] =
samplerResources.size();
2024-09-25 15:00:55 +02:00
samplerResources.push_back(
cacheTag->getSampler(amdgpu::SamplerKey::createFrom(sSampler)));
}
slotOffset += res.slots;
2024-09-25 15:00:55 +02:00
}
void buildMemoryTable(MemoryTable &memoryTable) {
memoryTable.count = 0;
for (auto p : bufferMemoryTable) {
auto size = p.endAddress - p.beginAddress;
auto buffer = cacheTag->getBuffer(p.beginAddress, size, p.payload);
auto memoryTableSlot = memoryTable.count;
memoryTable.slots[memoryTable.count++] = {
.address = p.beginAddress,
.size = size,
.flags = static_cast<uint8_t>(p.payload),
.deviceAddress = buffer.deviceAddress,
};
for (auto [slot, address] : resourceSlotToAddress) {
if (address >= p.beginAddress && address < p.endAddress) {
slotResources[slot] = memoryTableSlot;
}
}
}
}
std::uint32_t getResourceSlot(std::uint32_t id) {
if (auto it = slotResources.find(id); it != slotResources.end()) {
return it->second;
}
return -1;
}
template <typename T> T readPointer(std::uint64_t address) {
T result{};
cacheTag->readMemory(&result, address, sizeof(result));
return result;
}
eval::Value eval(ir::InstructionId instId,
std::span<const ir::Operand> operands) override {
if (instId == ir::amdgpu::POINTER) {
auto type = operands[0].getAsValue();
auto loadSize = *operands[1].getAsInt32();
auto base = eval(operands[2]).zExtScalar();
auto offset = eval(operands[3]).zExtScalar();
if (!base || !offset) {
rx::die("failed to evaluate pointer dependency");
}
eval::Value result;
auto address = *base + *offset;
switch (loadSize) {
case 1:
result = readPointer<std::uint8_t>(address);
break;
case 2:
result = readPointer<std::uint16_t>(address);
break;
case 4:
result = readPointer<std::uint32_t>(address);
break;
case 8:
result = readPointer<std::uint64_t>(address);
break;
case 12:
result = readPointer<u32vec3>(address);
break;
case 16:
result = readPointer<u32vec4>(address);
break;
case 32:
result = readPointer<std::array<std::uint32_t, 8>>(address);
break;
default:
rx::die("unexpected pointer load size");
}
return result;
}
if (instId == ir::amdgpu::VBUFFER) {
rx::die("resource depends on buffer value");
}
if (instId == ir::amdgpu::TBUFFER) {
rx::die("resource depends on texture value");
}
if (instId == ir::amdgpu::SAMPLER) {
rx::die("resource depends on sampler value");
}
if (instId == ir::amdgpu::USER_SGPR) {
auto index = static_cast<std::uint32_t>(*operands[1].getAsInt32());
rx::dieIf(index >= userSgprs.size(), "out of user sgprs");
return userSgprs[index];
}
if (instId == ir::amdgpu::IMM) {
auto address = static_cast<std::uint64_t>(*operands[1].getAsInt64());
std::uint32_t result;
cacheTag->readMemory(&result, address, sizeof(result));
return result;
}
return Evaluator::eval(instId, operands);
}
};
void amdgpu::draw(GraphicsPipe &pipe, int vmId, std::uint32_t firstVertex,
std::uint32_t vertexCount, std::uint32_t firstInstance,
std::uint32_t instanceCount, std::uint64_t indiciesAddress,
std::uint32_t indexCount) {
if (pipe.uConfig.vgtPrimitiveType == gnm::PrimitiveType::None) {
return;
}
if (pipe.context.cbColorControl.mode == gnm::CbMode::Disable) {
return;
}
if (pipe.context.cbColorControl.mode != gnm::CbMode::Normal) {
std::println("unimplemented context.cbColorControl.mode = {}",
static_cast<int>(pipe.context.cbColorControl.mode));
return;
}
if (pipe.context.cbTargetMask.raw == 0) {
return;
}
2024-09-25 15:00:55 +02:00
auto cacheTag = pipe.device->getCacheTag(vmId, pipe.scheduler);
auto targetMask = pipe.context.cbTargetMask.raw;
VkRenderingAttachmentInfo colorAttachments[8]{};
VkBool32 colorBlendEnable[8]{};
VkColorBlendEquationEXT colorBlendEquation[8]{};
VkColorComponentFlags colorWriteMask[8]{};
VkViewport viewPorts[8]{};
VkRect2D viewPortScissors[8]{};
unsigned renderTargets = 0;
VkRenderingAttachmentInfo depthAttachment{};
VkRenderingAttachmentInfo stencilAttachment{};
auto depthAccess = Access::None;
auto stencilAccess = Access::None;
if (pipe.context.dbDepthControl.depthEnable) {
if (!pipe.context.dbRenderControl.depthClearEnable) {
depthAccess |= Access::Read;
}
if (!pipe.context.dbDepthView.zReadOnly) {
depthAccess |= Access::Write;
}
}
if (pipe.context.dbDepthControl.stencilEnable) {
if (!pipe.context.dbRenderControl.stencilClearEnable) {
stencilAccess |= Access::Read;
}
if (!pipe.context.dbDepthView.stencilReadOnly) {
stencilAccess |= Access::Write;
}
}
if (depthAccess != Access::None) {
auto viewPortScissor = pipe.context.paScScreenScissor;
auto viewPortRect = gnm::toVkRect2D(viewPortScissor);
auto imageView = cacheTag.getImageView(
{{
.readAddress = pipe.context.dbZReadBase,
.writeAddress = pipe.context.dbZWriteBase,
.dfmt = gnm::getDataFormat(pipe.context.dbZInfo.format),
.nfmt = gnm::getNumericFormat(pipe.context.dbZInfo.format),
.extent =
{
.width = viewPortRect.extent.width,
.height = viewPortRect.extent.height,
.depth = 1,
},
.pitch = viewPortRect.extent.width,
.kind = ImageKind::Depth,
}},
depthAccess);
depthAttachment = {
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
.imageView = imageView.handle,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
};
if ((depthAccess & Access::Read) == Access::None) {
depthAttachment.clearValue.depthStencil.depth = pipe.context.dbDepthClear;
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
}
if ((depthAccess & Access::Write) == Access::None) {
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_NONE;
}
}
2024-09-25 15:00:55 +02:00
for (auto &cbColor : pipe.context.cbColor) {
if (targetMask == 0) {
break;
}
if (cbColor.info.dfmt == gnm::kDataFormatInvalid) {
continue;
}
2024-09-25 15:00:55 +02:00
auto viewPortScissor = pipe.context.paScScreenScissor;
// viewPortScissor = gnm::intersection(
// viewPortScissor, pipe.context.paScVportScissor[renderTargets]);
// viewPortScissor =
// gnm::intersection(viewPortScissor, pipe.context.paScWindowScissor);
// viewPortScissor =
// gnm::intersection(viewPortScissor, pipe.context.paScGenericScissor);
auto viewPortRect = gnm::toVkRect2D(viewPortScissor);
viewPorts[renderTargets].x = viewPortRect.offset.x;
viewPorts[renderTargets].y = viewPortRect.offset.y;
viewPorts[renderTargets].width = viewPortRect.extent.width;
viewPorts[renderTargets].height = viewPortRect.extent.height;
viewPorts[renderTargets].minDepth =
pipe.context.paScVportZ[renderTargets].min;
viewPorts[renderTargets].maxDepth =
pipe.context.paScVportZ[renderTargets].max;
auto vkViewPortScissor = gnm::toVkRect2D(viewPortScissor);
viewPortScissors[renderTargets] = vkViewPortScissor;
ImageViewKey renderTargetInfo{};
renderTargetInfo.type = gnm::TextureType::Dim2D;
renderTargetInfo.pitch = vkViewPortScissor.extent.width;
renderTargetInfo.readAddress = static_cast<std::uint64_t>(cbColor.base)
<< 8;
renderTargetInfo.writeAddress = renderTargetInfo.readAddress;
2024-09-25 15:00:55 +02:00
renderTargetInfo.extent.width = vkViewPortScissor.extent.width;
renderTargetInfo.extent.height = vkViewPortScissor.extent.height;
renderTargetInfo.extent.depth = 1;
renderTargetInfo.dfmt = cbColor.info.dfmt;
renderTargetInfo.nfmt = cbColor.info.nfmt;
renderTargetInfo.mipCount = 1;
renderTargetInfo.arrayLayerCount = 1;
renderTargetInfo.tileMode =
cbColor.info.linearGeneral
? TileMode{.raw = 0}
: getDefaultTileModes()[cbColor.attrib.tileModeIndex];
2024-09-25 15:00:55 +02:00
// std::printf("draw to %lx\n", renderTargetInfo.address);
auto access = Access::None;
if (!cbColor.info.fastClear) {
access |= Access::Read;
}
if (targetMask & 0xf) {
access |= Access::Write;
}
auto imageView = cacheTag.getImageView(renderTargetInfo, access);
colorAttachments[renderTargets] = {
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
.imageView = imageView.handle,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
.loadOp = cbColor.info.fastClear ? VK_ATTACHMENT_LOAD_OP_CLEAR
: VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.clearValue =
{
.color =
{
.uint32 =
{
cbColor.clearWord0,
cbColor.clearWord1,
cbColor.clearWord2,
},
},
},
};
auto &blendControl = pipe.context.cbBlendControl[renderTargets];
colorBlendEnable[renderTargets] = blendControl.enable;
colorBlendEquation[renderTargets] = VkColorBlendEquationEXT{
.srcColorBlendFactor = gnm::toVkBlendFactor(blendControl.colorSrcBlend),
.dstColorBlendFactor = gnm::toVkBlendFactor(blendControl.colorDstBlend),
.colorBlendOp = gnm::toVkBlendOp(blendControl.colorCombFcn),
.srcAlphaBlendFactor =
blendControl.separateAlphaBlend
? gnm::toVkBlendFactor(blendControl.alphaSrcBlend)
: gnm::toVkBlendFactor(blendControl.colorSrcBlend),
.dstAlphaBlendFactor =
blendControl.separateAlphaBlend
? gnm::toVkBlendFactor(blendControl.alphaDstBlend)
: gnm::toVkBlendFactor(blendControl.colorDstBlend),
.alphaBlendOp = blendControl.separateAlphaBlend
? gnm::toVkBlendOp(blendControl.alphaCombFcn)
: gnm::toVkBlendOp(blendControl.colorCombFcn),
};
colorWriteMask[renderTargets] =
((targetMask & 1) ? VK_COLOR_COMPONENT_R_BIT : 0) |
((targetMask & 2) ? VK_COLOR_COMPONENT_G_BIT : 0) |
((targetMask & 4) ? VK_COLOR_COMPONENT_B_BIT : 0) |
((targetMask & 8) ? VK_COLOR_COMPONENT_A_BIT : 0);
renderTargets++;
targetMask >>= 4;
}
if (renderTargets == 0) {
return;
}
2024-09-25 15:00:55 +02:00
// if (pipe.context.cbTargetMask == 0) {
// return;
// }
// auto cache = pipe.device->getCache(vmId);
if (indiciesAddress == 0) {
indexCount = vertexCount;
}
auto indexBuffer = cacheTag.getIndexBuffer(indiciesAddress, indexCount,
pipe.uConfig.vgtPrimitiveType,
pipe.uConfig.vgtIndexType);
auto stages = Cache::kGraphicsStages;
VkShaderEXT shaders[stages.size()]{};
auto pipelineLayout = cacheTag.getGraphicsPipelineLayout();
auto descriptorSets = cacheTag.createGraphicsDescriptorSets();
std::vector<std::uint32_t *> descriptorBuffers;
auto &memoryTableBuffer = cacheTag.getCache()->getMemoryTableBuffer();
std::uint64_t memoryTableAddress = memoryTableBuffer.getAddress();
auto memoryTable = std::bit_cast<MemoryTable *>(memoryTableBuffer.getData());
std::uint64_t gdsAddress = cacheTag.getCache()->getGdsBuffer().getAddress();
ShaderResources shaderResources;
shaderResources.cacheTag = &cacheTag;
struct MemoryTableConfigSlot {
std::uint32_t bufferIndex;
std::uint32_t configIndex;
std::uint32_t resourceSlot;
};
std::vector<MemoryTableConfigSlot> memoryTableConfigSlots;
auto addShader = [&](const SpiShaderPgm &pgm, shader::gcn::Stage stage) {
shader::gcn::Environment env{
.vgprCount = pgm.rsrc1.getVGprCount(),
.sgprCount = pgm.rsrc1.getSGprCount(),
.userSgprs = std::span(pgm.userData.data(), pgm.rsrc2.userSgpr),
// .supportsBarycentric = vk::context->supportsBarycentric,
2024-09-25 15:00:55 +02:00
.supportsInt8 = vk::context->supportsInt8,
.supportsInt64Atomics = vk::context->supportsInt64Atomics,
};
auto shader = cacheTag.getShader({
.address = pgm.address << 8,
.stage = stage,
.env = env,
});
std::uint32_t slotOffset = shaderResources.slotOffset;
2024-09-25 15:00:55 +02:00
shaderResources.loadResources(
shader.info->resources,
std::span(pgm.userData.data(), pgm.rsrc2.userSgpr));
const auto &configSlots = shader.info->configSlots;
auto configSize = configSlots.size() * sizeof(std::uint32_t);
auto configBuffer = cacheTag.getInternalBuffer(configSize);
auto configPtr = reinterpret_cast<std::uint32_t *>(configBuffer.data);
shader::gcn::PsVGprInput
psVgprInput[static_cast<std::size_t>(shader::gcn::PsVGprInput::Count)];
std::size_t psVgprInputs = 0;
if (stage == shader::gcn::Stage::Ps) {
SpiPsInput spiInputAddr = pipe.context.spiPsInputAddr;
if (spiInputAddr.perspSampleEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::IPerspSample;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JPerspSample;
}
if (spiInputAddr.perspCenterEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::IPerspCenter;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JPerspCenter;
}
if (spiInputAddr.perspCentroidEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::IPerspCentroid;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JPerspCentroid;
}
if (spiInputAddr.perspPullModelEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::IW;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JW;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::_1W;
}
if (spiInputAddr.linearSampleEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::ILinearSample;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JLinearSample;
}
if (spiInputAddr.linearCenterEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::ILinearCenter;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JLinearCenter;
}
if (spiInputAddr.linearCentroidEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::ILinearCentroid;
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::JLinearCentroid;
}
if (spiInputAddr.posXFloatEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::X;
}
if (spiInputAddr.posYFloatEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::Y;
}
if (spiInputAddr.posZFloatEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::Z;
}
if (spiInputAddr.posWFloatEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::W;
}
if (spiInputAddr.frontFaceEna) {
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::FrontFace;
}
if (spiInputAddr.ancillaryEna) {
rx::die("unimplemented ancillary fs input");
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::Ancillary;
}
if (spiInputAddr.sampleCoverageEna) {
rx::die("unimplemented sample coverage fs input");
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::SampleCoverage;
}
if (spiInputAddr.posFixedPtEna) {
rx::die("unimplemented pos fixed fs input");
psVgprInput[psVgprInputs++] = shader::gcn::PsVGprInput::PosFixed;
}
}
for (std::size_t index = 0; const auto &slot : configSlots) {
switch (slot.type) {
case shader::gcn::ConfigType::Imm:
cacheTag.readMemory(&configPtr[index], slot.data,
sizeof(std::uint32_t));
break;
case shader::gcn::ConfigType::UserSgpr:
configPtr[index] = pgm.userData[slot.data];
break;
case shader::gcn::ConfigType::ViewPortOffsetX:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].xOffset /
(viewPorts[0].width / 2.f) -
2024-09-25 15:00:55 +02:00
1);
break;
case shader::gcn::ConfigType::ViewPortOffsetY:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].yOffset /
(viewPorts[slot.data].height / 2.f) -
2024-09-25 15:00:55 +02:00
1);
break;
case shader::gcn::ConfigType::ViewPortOffsetZ:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].zOffset);
2024-09-25 15:00:55 +02:00
break;
case shader::gcn::ConfigType::ViewPortScaleX:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].xScale /
(viewPorts[slot.data].width / 2.f));
2024-09-25 15:00:55 +02:00
break;
case shader::gcn::ConfigType::ViewPortScaleY:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].yScale /
(viewPorts[slot.data].height / 2.f));
2024-09-25 15:00:55 +02:00
break;
case shader::gcn::ConfigType::ViewPortScaleZ:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.paClVports[slot.data].zScale);
2024-09-25 15:00:55 +02:00
break;
case shader::gcn::ConfigType::PsInputVGpr:
if (slot.data > psVgprInputs) {
configPtr[index] = ~0;
} else {
configPtr[index] =
std::bit_cast<std::uint32_t>(psVgprInput[slot.data]);
}
break;
case shader::gcn::ConfigType::VsPrimType:
if (indexBuffer.handle == VK_NULL_HANDLE &&
pipe.uConfig.vgtPrimitiveType != indexBuffer.primType) {
configPtr[index] =
static_cast<std::uint32_t>(pipe.uConfig.vgtPrimitiveType.value);
} else {
configPtr[index] = 0;
}
break;
case shader::gcn::ConfigType::ResourceSlot:
memoryTableConfigSlots.push_back({
.bufferIndex = static_cast<std::uint32_t>(descriptorBuffers.size()),
.configIndex = static_cast<std::uint32_t>(index),
.resourceSlot = static_cast<std::uint32_t>(slotOffset + slot.data),
2024-09-25 15:00:55 +02:00
});
break;
case shader::gcn::ConfigType::MemoryTable:
if (slot.data == 0) {
configPtr[index] = static_cast<std::uint32_t>(memoryTableAddress);
} else {
configPtr[index] =
static_cast<std::uint32_t>(memoryTableAddress >> 32);
}
break;
case shader::gcn::ConfigType::Gds:
if (slot.data == 0) {
configPtr[index] = static_cast<std::uint32_t>(gdsAddress);
} else {
configPtr[index] = static_cast<std::uint32_t>(gdsAddress >> 32);
}
break;
case shader::gcn::ConfigType::CbCompSwap:
configPtr[index] = std::bit_cast<std::uint32_t>(
pipe.context.cbColor[slot.data].info.compSwap);
break;
}
++index;
}
VkDescriptorBufferInfo bufferInfo{
.buffer = configBuffer.handle,
.offset = configBuffer.offset,
.range = configSize,
};
auto stageIndex = Cache::getStageIndex(shader.stage);
VkWriteDescriptorSet writeDescSet{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = descriptorSets[stageIndex],
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.pBufferInfo = &bufferInfo,
};
vkUpdateDescriptorSets(vk::context->device, 1, &writeDescSet, 0, nullptr);
shaders[stageIndex] = shader.handle
? shader.handle
: getFillRedFragShader(*cacheTag.getCache());
descriptorBuffers.push_back(configPtr);
};
if (pipe.context.vgtShaderStagesEn.vsEn == amdgpu::VsStage::VsReal) {
addShader(pipe.sh.spiShaderPgmVs, shader::gcn::Stage::VsVs);
}
if (true) {
addShader(pipe.sh.spiShaderPgmPs, shader::gcn::Stage::Ps);
} else {
shaders[Cache::getStageIndex(VK_SHADER_STAGE_FRAGMENT_BIT)] =
getFillRedFragShader(*cacheTag.getCache());
}
if (pipe.uConfig.vgtPrimitiveType == gnm::PrimitiveType::RectList) {
shaders[Cache::getStageIndex(VK_SHADER_STAGE_GEOMETRY_BIT)] =
getPrimTypeRectGeomShader(*cacheTag.getCache());
}
if (indiciesAddress == 0) {
vertexCount = indexBuffer.indexCount;
}
auto commandBuffer = pipe.scheduler.getCommandBuffer();
VkRenderingInfo renderInfo{
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
.renderArea = gnm::toVkRect2D(pipe.context.paScScreenScissor),
.layerCount = 1,
.colorAttachmentCount = renderTargets,
.pColorAttachments = colorAttachments,
.pDepthAttachment = &depthAttachment,
// .pStencilAttachment = &stencilAttachment,
2024-09-25 15:00:55 +02:00
};
vkCmdBeginRendering(commandBuffer, &renderInfo);
vkCmdSetRasterizerDiscardEnable(commandBuffer, VK_FALSE);
vkCmdSetViewportWithCount(commandBuffer, renderTargets, viewPorts);
vkCmdSetScissorWithCount(commandBuffer, renderTargets, viewPortScissors);
vk::CmdSetColorBlendEnableEXT(commandBuffer, 0, renderTargets,
colorBlendEnable);
vk::CmdSetColorBlendEquationEXT(commandBuffer, 0, renderTargets,
colorBlendEquation);
vk::CmdSetDepthClampEnableEXT(commandBuffer, VK_FALSE);
vkCmdSetDepthCompareOp(commandBuffer,
gnm::toVkCompareOp(pipe.context.dbDepthControl.zFunc));
vkCmdSetDepthTestEnable(commandBuffer, pipe.context.dbDepthControl.depthEnable
? VK_TRUE
: VK_FALSE);
vkCmdSetDepthWriteEnable(
commandBuffer,
pipe.context.dbDepthControl.depthWriteEnable ? VK_TRUE : VK_FALSE);
vkCmdSetDepthBounds(commandBuffer, pipe.context.dbDepthBoundsMin,
pipe.context.dbDepthBoundsMax);
vkCmdSetDepthBoundsTestEnable(
commandBuffer,
pipe.context.dbDepthControl.depthBoundsEnable ? VK_TRUE : VK_FALSE);
// vkCmdSetStencilOp(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK,
// VK_STENCIL_OP_KEEP, VK_STENCIL_OP_KEEP,
// VK_STENCIL_OP_KEEP, VK_COMPARE_OP_ALWAYS);
vkCmdSetDepthBiasEnable(commandBuffer, VK_FALSE);
vkCmdSetDepthBias(commandBuffer, 0, 1, 1);
vkCmdSetPrimitiveRestartEnable(commandBuffer, VK_FALSE);
vk::CmdSetAlphaToOneEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetLogicOpEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetLogicOpEXT(commandBuffer, VK_LOGIC_OP_AND);
vk::CmdSetPolygonModeEXT(commandBuffer, VK_POLYGON_MODE_FILL);
vk::CmdSetRasterizationSamplesEXT(commandBuffer, VK_SAMPLE_COUNT_1_BIT);
VkSampleMask sampleMask = ~0;
vk::CmdSetSampleMaskEXT(commandBuffer, VK_SAMPLE_COUNT_1_BIT, &sampleMask);
vk::CmdSetTessellationDomainOriginEXT(
commandBuffer, VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT);
vk::CmdSetAlphaToCoverageEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetVertexInputEXT(commandBuffer, 0, nullptr, 0, nullptr);
vk::CmdSetColorWriteMaskEXT(commandBuffer, 0, renderTargets, colorWriteMask);
vkCmdSetStencilCompareMask(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
vkCmdSetStencilWriteMask(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
vkCmdSetStencilReference(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
VkCullModeFlags cullMode = VK_CULL_MODE_NONE;
if (pipe.context.paSuScModeCntl.cullBack) {
cullMode |= VK_CULL_MODE_BACK_BIT;
}
if (pipe.context.paSuScModeCntl.cullFront) {
cullMode |= VK_CULL_MODE_FRONT_BIT;
}
vkCmdSetCullMode(commandBuffer, cullMode);
vkCmdSetFrontFace(commandBuffer,
gnm::toVkFrontFace(pipe.context.paSuScModeCntl.face));
vkCmdSetPrimitiveTopology(commandBuffer,
toVkPrimitiveType(pipe.uConfig.vgtPrimitiveType));
vkCmdSetStencilTestEnable(commandBuffer, VK_FALSE);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipelineLayout, 0, descriptorSets.size(),
descriptorSets.data(), 0, nullptr);
vk::CmdBindShadersEXT(commandBuffer, stages.size(), stages.data(), shaders);
shaderResources.buildMemoryTable(*memoryTable);
for (auto &sampler : shaderResources.samplerResources) {
uint32_t index = &sampler - shaderResources.samplerResources.data();
VkDescriptorImageInfo samplerInfo{.sampler = sampler.handle};
VkWriteDescriptorSet writeDescSet{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = descriptorSets[0],
.dstBinding = Cache::getDescriptorBinding(VK_DESCRIPTOR_TYPE_SAMPLER),
.dstArrayElement = index,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER,
.pImageInfo = &samplerInfo,
};
vkUpdateDescriptorSets(vk::context->device, 1, &writeDescSet, 0, nullptr);
}
for (auto &imageResources : shaderResources.imageResources) {
auto dim = (&imageResources - shaderResources.imageResources) + 1;
for (auto &image : imageResources) {
uint32_t index = &image - imageResources.data();
VkDescriptorImageInfo imageInfo{
.imageView = image.handle,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
VkWriteDescriptorSet writeDescSet{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = descriptorSets[0],
.dstBinding = static_cast<uint32_t>(Cache::getDescriptorBinding(
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, dim)),
.dstArrayElement = index,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = &imageInfo,
};
vkUpdateDescriptorSets(vk::context->device, 1, &writeDescSet, 0, nullptr);
}
}
for (auto &mtConfig : memoryTableConfigSlots) {
auto config = descriptorBuffers[mtConfig.bufferIndex];
config[mtConfig.configIndex] =
shaderResources.getResourceSlot(mtConfig.resourceSlot);
}
if (indexBuffer.handle != VK_NULL_HANDLE) {
vkCmdBindIndexBuffer(commandBuffer, indexBuffer.handle, indexBuffer.offset,
gnm::toVkIndexType(indexBuffer.indexType));
vkCmdDrawIndexed(commandBuffer, indexCount, instanceCount, 0, firstVertex,
firstInstance);
} else {
vkCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex,
firstInstance);
}
vkCmdEndRendering(commandBuffer);
pipe.scheduler.submit();
pipe.scheduler.then([=, cacheTag = std::move(cacheTag),
shaderResources = std::move(shaderResources)] {});
}
static void
transitionImageLayout(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout oldLayout, VkImageLayout newLayout,
const VkImageSubresourceRange &subresourceRange) {
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = oldLayout;
barrier.newLayout = newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = subresourceRange;
auto layoutToStageAccess = [](VkImageLayout layout)
-> std::pair<VkPipelineStageFlags, VkAccessFlags> {
switch (layout) {
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
case VK_IMAGE_LAYOUT_GENERAL:
return {VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0};
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
return {VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT};
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
return {VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_READ_BIT};
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
return {VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_ACCESS_SHADER_READ_BIT};
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
return {VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT};
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
return {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT};
default:
std::abort();
}
};
auto [sourceStage, sourceAccess] = layoutToStageAccess(oldLayout);
auto [destinationStage, destinationAccess] = layoutToStageAccess(newLayout);
barrier.srcAccessMask = sourceAccess;
barrier.dstAccessMask = destinationAccess;
vkCmdPipelineBarrier(commandBuffer, sourceStage, destinationStage, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
}
void amdgpu::flip(Cache::Tag &cacheTag, VkCommandBuffer commandBuffer,
VkExtent2D targetExtent, std::uint64_t address,
VkImageView target, VkExtent2D imageExtent,
CbCompSwap compSwap, TileMode tileMode, gnm::DataFormat dfmt,
gnm::NumericFormat nfmt) {
auto pipelineLayout = cacheTag.getGraphicsPipelineLayout();
auto descriptorSets = cacheTag.createGraphicsDescriptorSets();
ImageViewKey framebuffer{};
framebuffer.type = gnm::TextureType::Dim2D;
framebuffer.pitch = imageExtent.width;
framebuffer.readAddress = address;
2024-09-25 15:00:55 +02:00
framebuffer.extent.width = imageExtent.width;
framebuffer.extent.height = imageExtent.height;
framebuffer.extent.depth = 1;
framebuffer.dfmt = dfmt;
framebuffer.nfmt = nfmt;
framebuffer.mipCount = 1;
framebuffer.arrayLayerCount = 1;
framebuffer.tileMode = tileMode;
switch (compSwap) {
case CbCompSwap::Std:
framebuffer.R = gnm::Swizzle::R;
framebuffer.G = gnm::Swizzle::G;
framebuffer.B = gnm::Swizzle::B;
framebuffer.A = gnm::Swizzle::A;
break;
case CbCompSwap::Alt:
framebuffer.R = gnm::Swizzle::B;
framebuffer.G = gnm::Swizzle::G;
framebuffer.B = gnm::Swizzle::R;
framebuffer.A = gnm::Swizzle::A;
break;
case CbCompSwap::StdRev:
framebuffer.R = gnm::Swizzle::A;
framebuffer.G = gnm::Swizzle::B;
framebuffer.B = gnm::Swizzle::G;
framebuffer.A = gnm::Swizzle::R;
break;
case CbCompSwap::AltRev:
framebuffer.R = gnm::Swizzle::A;
framebuffer.G = gnm::Swizzle::R;
framebuffer.B = gnm::Swizzle::G;
framebuffer.A = gnm::Swizzle::B;
break;
}
SamplerKey framebufferSampler = {
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
};
auto imageView = cacheTag.getImageView(framebuffer, Access::Read);
auto sampler = cacheTag.getSampler(framebufferSampler);
cacheTag.submitAndWait();
VkDescriptorImageInfo imageInfo{
.sampler = sampler.handle,
.imageView = imageView.handle,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
VkWriteDescriptorSet writeDescSet[]{
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = descriptorSets[0],
.dstBinding =
Cache::getDescriptorBinding(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 2),
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = &imageInfo,
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = descriptorSets[0],
.dstBinding = Cache::getDescriptorBinding(VK_DESCRIPTOR_TYPE_SAMPLER),
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER,
.pImageInfo = &imageInfo,
}};
vkUpdateDescriptorSets(vk::context->device, std::size(writeDescSet),
writeDescSet, 0, nullptr);
VkRenderingAttachmentInfo colorAttachments[1]{{
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
.imageView = target,
.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.clearValue = {},
}};
VkBool32 colorBlendEnable[1]{VK_FALSE};
VkColorBlendEquationEXT colorBlendEquation[1]{};
VkColorComponentFlags colorWriteMask[1]{
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT};
VkViewport viewPorts[1]{
{
.width = float(targetExtent.width),
.height = float(targetExtent.height),
},
};
VkRect2D viewPortScissors[1]{{
{},
targetExtent,
}};
VkRenderingInfo renderInfo{
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
.renderArea =
{
.offset = {},
.extent = targetExtent,
},
.layerCount = 1,
.colorAttachmentCount = 1,
.pColorAttachments = colorAttachments,
};
vkCmdBeginRendering(commandBuffer, &renderInfo);
vkCmdSetRasterizerDiscardEnable(commandBuffer, VK_FALSE);
vkCmdSetViewportWithCount(commandBuffer, 1, viewPorts);
vkCmdSetScissorWithCount(commandBuffer, 1, viewPortScissors);
vk::CmdSetColorBlendEnableEXT(commandBuffer, 0, 1, colorBlendEnable);
vk::CmdSetColorBlendEquationEXT(commandBuffer, 0, 1, colorBlendEquation);
vk::CmdSetDepthClampEnableEXT(commandBuffer, VK_FALSE);
vkCmdSetDepthTestEnable(commandBuffer, VK_FALSE);
vkCmdSetDepthWriteEnable(commandBuffer, VK_FALSE);
vkCmdSetDepthBounds(commandBuffer, 0.0f, 1.0f);
vkCmdSetDepthBoundsTestEnable(commandBuffer, VK_FALSE);
vkCmdSetDepthBiasEnable(commandBuffer, VK_FALSE);
vkCmdSetDepthBias(commandBuffer, 0, 1, 1);
vkCmdSetPrimitiveRestartEnable(commandBuffer, VK_FALSE);
vk::CmdSetAlphaToOneEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetLogicOpEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetLogicOpEXT(commandBuffer, VK_LOGIC_OP_AND);
vk::CmdSetPolygonModeEXT(commandBuffer, VK_POLYGON_MODE_FILL);
vk::CmdSetRasterizationSamplesEXT(commandBuffer, VK_SAMPLE_COUNT_1_BIT);
VkSampleMask sampleMask = ~0;
vk::CmdSetSampleMaskEXT(commandBuffer, VK_SAMPLE_COUNT_1_BIT, &sampleMask);
vk::CmdSetTessellationDomainOriginEXT(
commandBuffer, VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT);
vk::CmdSetAlphaToCoverageEnableEXT(commandBuffer, VK_FALSE);
vk::CmdSetVertexInputEXT(commandBuffer, 0, nullptr, 0, nullptr);
vk::CmdSetColorWriteMaskEXT(commandBuffer, 0, 1, colorWriteMask);
vkCmdSetStencilCompareMask(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
vkCmdSetStencilWriteMask(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
vkCmdSetStencilReference(commandBuffer, VK_STENCIL_FACE_FRONT_AND_BACK, 0);
vkCmdSetCullMode(commandBuffer, VK_CULL_MODE_NONE);
vkCmdSetFrontFace(commandBuffer, VK_FRONT_FACE_CLOCKWISE);
vkCmdSetPrimitiveTopology(commandBuffer, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
vkCmdSetStencilTestEnable(commandBuffer, VK_FALSE);
auto stages = Cache::kGraphicsStages;
VkShaderEXT shaders[stages.size()]{};
shaders[Cache::getStageIndex(VK_SHADER_STAGE_VERTEX_BIT)] =
getFlipVertexShader(*cacheTag.getCache());
shaders[Cache::getStageIndex(VK_SHADER_STAGE_FRAGMENT_BIT)] =
getFlipFragmentShader(*cacheTag.getCache());
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipelineLayout, 0, descriptorSets.size(),
descriptorSets.data(), 0, nullptr);
vk::CmdBindShadersEXT(commandBuffer, stages.size(), stages.data(), shaders);
vkCmdDraw(commandBuffer, 6, 1, 0, 0);
vkCmdEndRendering(commandBuffer);
// {
// VkImageMemoryBarrier barrier{
// .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
// .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT,
// .dstAccessMask = VK_ACCESS_NONE,
// .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
// .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
// .image = imageView.imageHandle,
// .subresourceRange =
// {
// .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
// .levelCount = 1,
// .layerCount = 1,
// },
// };
// vkCmdPipelineBarrier(commandBuffer,
// VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
// VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr,
// 0, nullptr, 1, &barrier);
// }
}