rpcsx/rpcs3/Emu/Memory/vm_reservation.h

417 lines
9.2 KiB
C
Raw Normal View History

#pragma once
#include "vm.h"
#include "vm_locking.h"
#include "Utilities/cond.h"
#include "util/atomic.hpp"
#include <functional>
extern bool g_use_rtm;
namespace vm
{
enum : u64
2020-09-02 23:58:29 +02:00
{
rsrv_lock_mask = 127,
rsrv_unique_lock = 64,
rsrv_shared_mask = 63,
2020-09-02 23:58:29 +02:00
};
// Get reservation status for further atomic update: last update timestamp
inline atomic_t<u64>& reservation_acquire(u32 addr, u32 size)
{
// Access reservation info: stamp and the lock bit
return *reinterpret_cast<atomic_t<u64>*>(g_reservations + (addr & 0xff80) / 2);
}
// Update reservation status
2020-08-15 06:56:34 +02:00
inline std::pair<bool, u64> try_reservation_update(u32 addr, u32 size, bool lsb = false)
{
// Update reservation info with new timestamp
2020-08-15 06:56:34 +02:00
auto& res = reservation_acquire(addr, size);
const u64 rtime = res;
return {!(rtime & 127) && res.compare_and_swap_test(rtime, rtime + 128), rtime};
}
2020-08-15 06:56:34 +02:00
void reservation_update(u32 addr, u32 size, bool lsb = false);
// Get reservation sync variable
inline atomic_t<u64>& reservation_notifier(u32 addr, u32 size)
{
return *reinterpret_cast<atomic_t<u64>*>(g_reservations + (addr & 0xff80) / 2);
}
u64 reservation_lock_internal(u32, atomic_t<u64>&);
2020-09-02 23:58:29 +02:00
void reservation_shared_lock_internal(atomic_t<u64>&);
inline bool reservation_try_lock(atomic_t<u64>& res, u64 rtime)
2020-09-02 23:58:29 +02:00
{
if (res.compare_and_swap_test(rtime, rtime | rsrv_unique_lock)) [[likely]]
2020-09-02 23:58:29 +02:00
{
return true;
}
return false;
}
inline std::pair<atomic_t<u64>&, u64> reservation_lock(u32 addr)
{
auto res = &vm::reservation_acquire(addr, 1);
2020-09-02 23:58:29 +02:00
auto rtime = res->load();
if (rtime & 127 || !reservation_try_lock(*res, rtime)) [[unlikely]]
{
static atomic_t<u64> no_lock{};
rtime = reservation_lock_internal(addr, *res);
2020-09-02 23:58:29 +02:00
if (rtime == umax)
{
res = &no_lock;
}
}
2020-09-02 23:58:29 +02:00
return {*res, rtime};
}
void reservation_op_internal(u32 addr, std::function<bool()> func);
template <typename T, typename AT = u32, typename F>
SAFE_BUFFERS inline auto reservation_op(_ptr_base<T, AT> ptr, F op)
{
// Atomic operation will be performed on aligned 128 bytes of data, so the data size and alignment must comply
static_assert(sizeof(T) <= 128 && alignof(T) == sizeof(T), "vm::reservation_op: unsupported type");
static_assert(std::is_trivially_copyable_v<T>, "vm::reservation_op: not triv copyable (optimization)");
// Use "super" pointer to prevent access violation handling during atomic op
const auto sptr = vm::get_super_ptr<T>(static_cast<u32>(ptr.addr()));
// Use 128-byte aligned addr
const u32 addr = static_cast<u32>(ptr.addr()) & -128;
if (g_use_rtm)
{
auto& res = vm::reservation_acquire(addr, 128);
// Stage 1: single optimistic transaction attempt
unsigned status = _XBEGIN_STARTED;
u64 _old = 0;
#ifndef _MSC_VER
__asm__ goto ("xbegin %l[stage2];" ::: "memory" : stage2);
#else
status = _xbegin();
if (status == _XBEGIN_STARTED)
#endif
{
if (res & rsrv_unique_lock)
{
#ifndef _MSC_VER
__asm__ volatile ("xabort $0;" ::: "memory");
#else
_xabort(0);
#endif
}
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
res += 128;
std::invoke(op, *sptr);
#ifndef _MSC_VER
__asm__ volatile ("xend;" ::: "memory");
#else
_xend();
#endif
res.notify_all();
return;
}
else
{
if (auto result = std::invoke(op, *sptr))
{
res += 128;
#ifndef _MSC_VER
__asm__ volatile ("xend;" ::: "memory");
#else
_xend();
#endif
res.notify_all();
return result;
}
else
{
#ifndef _MSC_VER
__asm__ volatile ("xabort $1;" ::: "memory");
#else
_xabort(1);
#endif
// Unreachable code
return std::invoke_result_t<F, T&>();
}
}
}
stage2:
#ifndef _MSC_VER
__asm__ volatile ("movl %%eax, %0;" : "=r" (status) :: "memory");
#endif
if constexpr (!std::is_void_v<std::invoke_result_t<F, T&>>)
{
if (_XABORT_CODE(status))
{
// Unfortunately, actual function result is not recoverable in this case
return std::invoke_result_t<F, T&>();
}
}
// Touch memory if transaction failed without RETRY flag on the first attempt (TODO)
if (!(status & _XABORT_RETRY))
{
reinterpret_cast<atomic_t<u8>*>(sptr)->fetch_add(0);
}
// Stage 2: try to lock reservation first
_old = res.fetch_add(1);
// Start lightened transaction (TODO: tweaking)
while (!(_old & rsrv_unique_lock))
{
#ifndef _MSC_VER
__asm__ goto ("xbegin %l[retry];" ::: "memory" : retry);
#else
status = _xbegin();
if (status != _XBEGIN_STARTED) [[unlikely]]
{
goto retry;
}
#endif
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
std::invoke(op, *sptr);
#ifndef _MSC_VER
__asm__ volatile ("xend;" ::: "memory");
#else
_xend();
#endif
res += 127;
res.notify_all();
return;
}
else
{
if (auto result = std::invoke(op, *sptr))
{
#ifndef _MSC_VER
__asm__ volatile ("xend;" ::: "memory");
#else
_xend();
#endif
res += 127;
res.notify_all();
return result;
}
else
{
#ifndef _MSC_VER
__asm__ volatile ("xabort $1;" ::: "memory");
#else
_xabort(1);
#endif
return std::invoke_result_t<F, T&>();
}
}
retry:
#ifndef _MSC_VER
__asm__ volatile ("movl %%eax, %0;" : "=r" (status) :: "memory");
#endif
if (!(status & _XABORT_RETRY)) [[unlikely]]
{
if constexpr (!std::is_void_v<std::invoke_result_t<F, T&>>)
{
if (_XABORT_CODE(status))
{
res -= 1;
return std::invoke_result_t<F, T&>();
}
}
break;
}
}
// Stage 3: all failed, heavyweight fallback (see comments at the bottom)
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
return vm::reservation_op_internal(addr, [&]
{
std::invoke(op, *sptr);
return true;
});
}
else
{
auto result = std::invoke_result_t<F, T&>();
vm::reservation_op_internal(addr, [&]
{
T buf = *sptr;
if ((result = std::invoke(op, buf)))
{
*sptr = buf;
return true;
}
else
{
return false;
}
});
return result;
}
}
// Perform heavyweight lock
auto [res, rtime] = vm::reservation_lock(addr);
// Write directly if the op cannot fail
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
{
vm::writer_lock lock(addr);
std::invoke(op, *sptr);
res += 127;
}
res.notify_all();
return;
}
else
{
// Make an operational copy of data (TODO: volatile storage?)
auto result = std::invoke_result_t<F, T&>();
{
vm::writer_lock lock(addr);
T buf = *sptr;
if ((result = std::invoke(op, buf)))
{
// If operation succeeds, write the data back
*sptr = buf;
res.release(rtime + 128);
}
else
{
// Operation failed, no memory has been modified
res.release(rtime);
return std::invoke_result_t<F, T&>();
}
}
res.notify_all();
return result;
}
}
// For internal usage
void reservation_escape_internal();
// Read memory value in pseudo-atomic manner
template <typename CPU, typename T, typename AT = u32, typename F>
SAFE_BUFFERS inline auto reservation_peek(CPU&& cpu, _ptr_base<T, AT> ptr, F op)
{
// Atomic operation will be performed on aligned 128 bytes of data, so the data size and alignment must comply
static_assert(sizeof(T) <= 128 && alignof(T) == sizeof(T), "vm::reservation_peek: unsupported type");
// Use "super" pointer to prevent access violation handling during atomic op
const auto sptr = vm::get_super_ptr<const T>(static_cast<u32>(ptr.addr()));
// Use 128-byte aligned addr
const u32 addr = static_cast<u32>(ptr.addr()) & -128;
while (true)
{
if constexpr (std::is_class_v<std::remove_cvref_t<CPU>>)
{
if (cpu.test_stopped())
{
reservation_escape_internal();
}
}
const u64 rtime = vm::reservation_acquire(addr, 128);
if (rtime & 127)
{
continue;
}
// Observe data non-atomically and make sure no reservation updates were made
if constexpr (std::is_void_v<std::invoke_result_t<F, const T&>>)
{
std::invoke(op, *sptr);
if (rtime == vm::reservation_acquire(addr, 128))
{
return;
}
}
else
{
auto res = std::invoke(op, *sptr);
if (rtime == vm::reservation_acquire(addr, 128))
{
return res;
}
}
}
}
template <bool Ack = false, typename T, typename F>
SAFE_BUFFERS inline auto reservation_light_op(T& data, F op)
{
// Optimized real ptr -> vm ptr conversion, simply UB if out of range
const u32 addr = static_cast<u32>(reinterpret_cast<const u8*>(&data) - g_base_addr);
// Use "super" pointer to prevent access violation handling during atomic op
const auto sptr = vm::get_super_ptr<T>(addr);
// "Lock" reservation
auto& res = vm::reservation_acquire(addr, 128);
if (res.fetch_add(1) & vm::rsrv_unique_lock) [[unlikely]]
{
vm::reservation_shared_lock_internal(res);
}
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
std::invoke(op, *sptr);
res += 127;
if constexpr (Ack)
{
res.notify_all();
}
}
else
{
auto result = std::invoke(op, *sptr);
res += 127;
if constexpr (Ack)
{
res.notify_all();
}
return result;
}
}
} // namespace vm