rpcsx/kernel/orbis/src/KernelAllocator.cpp

222 lines
6.7 KiB
C++
Raw Normal View History

#include "KernelAllocator.hpp"
#include "KernelObject.hpp"
#include "rx/Serializer.hpp"
#include "rx/SharedMutex.hpp"
#include "rx/print.hpp"
#include <sys/mman.h>
static const std::uint64_t g_allocProtWord = 0xDEADBEAFBADCAFE1;
static constexpr std::uintptr_t kHeapBaseAddress = 0x00000600'0000'0000;
static constexpr auto kHeapSize = 0x1'0000'0000;
static constexpr int kDebugHeap = 0;
namespace orbis {
struct KernelMemoryResource {
mutable rx::shared_mutex m_heap_mtx;
rx::shared_mutex m_heap_map_mtx;
void *m_heap_next = nullptr;
kmultimap<std::size_t, void *> m_free_heap;
kmultimap<std::size_t, void *> m_used_node;
~KernelMemoryResource() {
::munmap(std::bit_cast<void *>(kHeapBaseAddress), kHeapSize);
}
void *kalloc(std::size_t size,
std::size_t align = __STDCPP_DEFAULT_NEW_ALIGNMENT__);
void kfree(void *ptr, std::size_t size);
void serialize(rx::Serializer &) const {
// FIXME: implement
}
void deserialize(rx::Deserializer &) {
// FIXME: implement
}
void lock() const { m_heap_mtx.lock(); }
void unlock() const { m_heap_mtx.unlock(); }
};
static KernelMemoryResource *sMemoryResource;
static std::byte *sGlobalStorage;
using GlobalStorage =
kernel::StaticKernelObjectStorage<OrbisNamespace,
kernel::detail::GlobalScope>;
void initializeAllocator() {
auto ptr = (std::byte *)::mmap(std::bit_cast<void *>(kHeapBaseAddress),
kHeapSize, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (ptr == MAP_FAILED) {
perror("mmap failed");
FILE *maps = std::fopen("/proc/self/maps", "r");
char *line = nullptr;
std::size_t size = 0;
while (getline(&line, &size, maps) > 0) {
std::puts(line);
}
std::free(line);
std::fclose(maps);
std::abort();
}
sMemoryResource = new (ptr) KernelMemoryResource();
sMemoryResource->m_heap_next = ptr + sizeof(KernelMemoryResource);
rx::print(stderr, "global: size {}, alignment {}\n", GlobalStorage::GetSize(),
GlobalStorage::GetAlignment());
// allocate whole global storage
sGlobalStorage = (std::byte *)sMemoryResource->kalloc(
GlobalStorage::GetSize(), GlobalStorage::GetAlignment());
}
void deinitializeAllocator() {
sMemoryResource->kfree(sGlobalStorage, GlobalStorage::GetSize());
delete sMemoryResource;
sMemoryResource = nullptr;
sGlobalStorage = nullptr;
}
void *KernelMemoryResource::kalloc(std::size_t size, std::size_t align) {
size = (size + (__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1)) &
~(__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1);
if (!size)
std::abort();
if (m_heap_map_mtx.try_lock()) {
std::lock_guard lock(m_heap_map_mtx, std::adopt_lock);
// Try to reuse previously freed block
for (auto [it, end] = m_free_heap.equal_range(size); it != end; ++it) {
auto result = it->second;
if (!(std::bit_cast<std::uintptr_t>(result) & (align - 1))) {
auto node = m_free_heap.extract(it);
node.key() = 0;
node.mapped() = nullptr;
m_used_node.insert(m_used_node.begin(), std::move(node));
// std::fprintf(stderr, "kalloc: reuse %p-%p, size = %lx\n", result,
// (char *)result + size, size);
if (kDebugHeap > 0) {
std::memcpy(std::bit_cast<std::byte *>(result) + size,
&g_allocProtWord, sizeof(g_allocProtWord));
}
return result;
}
}
}
std::lock_guard lock(m_heap_mtx);
align = std::max<std::size_t>(align, __STDCPP_DEFAULT_NEW_ALIGNMENT__);
auto heap = reinterpret_cast<std::uintptr_t>(m_heap_next);
heap = (heap + (align - 1)) & ~(align - 1);
if (kDebugHeap > 1) {
if (auto diff = (heap + size + sizeof(g_allocProtWord)) % 4096; diff != 0) {
heap += 4096 - diff;
heap &= ~(align - 1);
}
}
if (heap + size > kHeapBaseAddress + kHeapSize) {
std::fprintf(stderr, "out of kernel memory");
std::abort();
}
// Check overflow
if (heap + size < heap) {
std::fprintf(stderr, "too big allocation");
std::abort();
}
// std::fprintf(stderr, "kalloc: allocate %lx-%lx, size = %lx, align=%lx\n",
// heap, heap + size, size, align);
auto result = reinterpret_cast<void *>(heap);
if (kDebugHeap > 0) {
std::memcpy(std::bit_cast<std::byte *>(result) + size, &g_allocProtWord,
sizeof(g_allocProtWord));
}
if (kDebugHeap > 0) {
m_heap_next =
reinterpret_cast<void *>(heap + size + sizeof(g_allocProtWord));
} else {
m_heap_next = reinterpret_cast<void *>(heap + size);
}
if (kDebugHeap > 1) {
heap = reinterpret_cast<std::uintptr_t>(m_heap_next);
align = std::min<std::size_t>(align, 4096);
heap = (heap + (align - 1)) & ~(align - 1);
size = 4096;
// std::fprintf(stderr, "kalloc: protect %lx-%lx, size = %lx, align=%lx\n",
// heap, heap + size, size, align);
auto result = ::mmap(reinterpret_cast<void *>(heap), size, PROT_NONE,
MAP_FIXED | MAP_ANONYMOUS | MAP_SHARED, -1, 0);
if (result == MAP_FAILED) {
std::fprintf(stderr, "failed to protect memory");
std::abort();
}
m_heap_next = reinterpret_cast<void *>(heap + size);
}
return result;
}
void KernelMemoryResource::kfree(void *ptr, std::size_t size) {
size = (size + (__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1)) &
~(__STDCPP_DEFAULT_NEW_ALIGNMENT__ - 1);
if (!size)
std::abort();
if (std::bit_cast<std::uintptr_t>(ptr) < kHeapBaseAddress ||
std::bit_cast<std::uintptr_t>(ptr) + size >
kHeapBaseAddress + kHeapSize) {
std::fprintf(stderr, "kfree: invalid address");
std::abort();
}
if (kDebugHeap > 0) {
if (std::memcmp(std::bit_cast<std::byte *>(ptr) + size, &g_allocProtWord,
sizeof(g_allocProtWord)) != 0) {
std::fprintf(stderr, "kernel heap corruption\n");
std::abort();
}
std::memset(ptr, 0xcc, size + sizeof(g_allocProtWord));
}
// std::fprintf(stderr, "kfree: release %p-%p, size = %lx\n", ptr,
// (char *)ptr + size, size);
std::lock_guard lock(m_heap_map_mtx);
if (!m_used_node.empty()) {
auto node = m_used_node.extract(m_used_node.begin());
node.key() = size;
node.mapped() = ptr;
m_free_heap.insert(std::move(node));
} else {
m_free_heap.emplace(size, ptr);
}
}
void kfree(void *ptr, std::size_t size) {
return sMemoryResource->kfree(ptr, size);
}
void *kalloc(std::size_t size, std::size_t align) {
return sMemoryResource->kalloc(size, align);
}
} // namespace orbis
template <>
std::byte *
kernel::getScopeStorage<orbis::OrbisNamespace, kernel::detail::GlobalScope>() {
return orbis::sGlobalStorage;
}