mirror of
https://github.com/ClemensFischer/XAML-Map-Control.git
synced 2026-01-31 12:54:15 +01:00
185 lines
6.6 KiB
C#
185 lines
6.6 KiB
C#
using System;
|
|
#if WPF
|
|
using System.Windows;
|
|
using System.Windows.Media;
|
|
#elif AVALONIA
|
|
using Avalonia;
|
|
#endif
|
|
|
|
namespace MapControl
|
|
{
|
|
/// <summary>
|
|
/// Elliptical Transverse Mercator Projection.
|
|
/// See "Map Projections - A Working Manual" (https://pubs.usgs.gov/publication/pp1395), p.60-64.
|
|
/// </summary>
|
|
public class TransverseMercatorProjectionSnyder : MapProjection
|
|
{
|
|
private double M0;
|
|
|
|
public TransverseMercatorProjectionSnyder()
|
|
{
|
|
Type = MapProjectionType.TransverseCylindrical;
|
|
}
|
|
|
|
public double ScaleFactor { get; set; } = 0.9996;
|
|
public double CentralMeridian { get; set; }
|
|
public double FalseEasting { get; set; }
|
|
public double FalseNorthing { get; set; }
|
|
|
|
public double EquatorialRadius
|
|
{
|
|
get;
|
|
set
|
|
{
|
|
field = value;
|
|
M0 = MeridianDistance(LatitudeOfOrigin * Math.PI / 180d);
|
|
}
|
|
} = Wgs84EquatorialRadius;
|
|
|
|
public double Flattening
|
|
{
|
|
get;
|
|
set
|
|
{
|
|
field = value;
|
|
M0 = MeridianDistance(LatitudeOfOrigin * Math.PI / 180d);
|
|
}
|
|
} = Wgs84Flattening;
|
|
|
|
public double LatitudeOfOrigin
|
|
{
|
|
get;
|
|
set
|
|
{
|
|
field = value;
|
|
M0 = MeridianDistance(value * Math.PI / 180d);
|
|
}
|
|
}
|
|
|
|
private double MeridianDistance(double phi)
|
|
{
|
|
var e2 = (2d - Flattening) * Flattening;
|
|
var e4 = e2 * e2;
|
|
var e6 = e2 * e4;
|
|
|
|
return EquatorialRadius *
|
|
((1d - e2 / 4d - 3d / 64d * e4 - 5d / 256d * e6) * phi -
|
|
(3d / 8d * e2 + 3d / 32d * e4 + 45d / 1024d * e6) * Math.Sin(2d * phi) +
|
|
(15d / 256d * e4 + 45d / 1024d * e6) * Math.Sin(4d * phi) -
|
|
35d / 3072d * e6 * Math.Sin(6d * phi)); // (3-21)
|
|
}
|
|
|
|
public override Matrix RelativeScale(double latitude, double longitude)
|
|
{
|
|
var k = 1d; // omit k0 for relative scale
|
|
|
|
if (latitude > -90d && latitude < 90d)
|
|
{
|
|
var phi = latitude * Math.PI / 180d;
|
|
var cosPhi = Math.Cos(phi);
|
|
var tanPhi = Math.Tan(phi);
|
|
|
|
var e2 = (2d - Flattening) * Flattening;
|
|
var e_2 = e2 / (1d - e2); // (8-12)
|
|
var T = tanPhi * tanPhi; // (8-13)
|
|
var C = e_2 * cosPhi * cosPhi; // (8-14)
|
|
var A = (longitude - CentralMeridian) * Math.PI / 180d * cosPhi; // (8-15)
|
|
var A2 = A * A;
|
|
var A4 = A2 * A2;
|
|
var A6 = A2 * A4;
|
|
|
|
k *= 1d + (1d + C) * A2 / 2d +
|
|
(5d - 4d * T + 42d * C + 13d * C * C - 28d * e_2) * A4 / 24d +
|
|
(61d - 148d * T + 16 * T * T) * A6 / 720d; // (8-11)
|
|
}
|
|
|
|
return new Matrix(k, 0d, 0d, k, 0d, 0d);
|
|
}
|
|
|
|
public override Point? LocationToMap(double latitude, double longitude)
|
|
{
|
|
var phi = latitude * Math.PI / 180d;
|
|
var M = MeridianDistance(phi);
|
|
double x, y;
|
|
|
|
if (latitude > -90d && latitude < 90d)
|
|
{
|
|
var sinPhi = Math.Sin(phi);
|
|
var cosPhi = Math.Cos(phi);
|
|
var tanPhi = sinPhi / cosPhi;
|
|
|
|
var e2 = (2d - Flattening) * Flattening;
|
|
var e_2 = e2 / (1d - e2); // (8-12)
|
|
var N = EquatorialRadius / Math.Sqrt(1d - e2 * sinPhi * sinPhi); // (4-20)
|
|
var T = tanPhi * tanPhi; // (8-13)
|
|
var C = e_2 * cosPhi * cosPhi; // (8-14)
|
|
var A = (longitude - CentralMeridian) * Math.PI / 180d * cosPhi; // (8-15)
|
|
var A2 = A * A;
|
|
var A3 = A * A2;
|
|
var A4 = A * A3;
|
|
var A5 = A * A4;
|
|
var A6 = A * A5;
|
|
|
|
x = ScaleFactor * N *
|
|
(A + (1d - T + C) * A3 / 6d + (5d - 18d * T + T * T + 72d * C - 58d * e_2) * A5 / 120d); // (8-9)
|
|
y = ScaleFactor * (M - M0 + N * tanPhi * (A2 / 2d + (5d - T + 9d * C + 4d * C * C) * A4 / 24d +
|
|
(61d - 58d * T + T * T + 600d * C - 330d * e_2) * A6 / 720d)); // (8-10)
|
|
}
|
|
else
|
|
{
|
|
x = 0d;
|
|
y = ScaleFactor * (M - M0);
|
|
}
|
|
|
|
return new Point(x + FalseEasting, y + FalseNorthing);
|
|
}
|
|
|
|
public override Location MapToLocation(double x, double y)
|
|
{
|
|
var e2 = (2d - Flattening) * Flattening;
|
|
var e4 = e2 * e2;
|
|
var e6 = e2 * e4;
|
|
var s = Math.Sqrt(1d - e2);
|
|
var e1 = (1d - s) / (1d + s); // (3-24)
|
|
var e12 = e1 * e1;
|
|
var e13 = e1 * e12;
|
|
var e14 = e1 * e13;
|
|
|
|
var M = M0 + (y - FalseNorthing) / ScaleFactor; // (8-20)
|
|
var mu = M / (EquatorialRadius * (1d - e2 / 4d - 3d * e4 / 64d - 5d * e6 / 256d)); // (7-19)
|
|
var phi1 = mu +
|
|
(3d * e1 / 2d - 27d * e13 / 32d) * Math.Sin(2d * mu) +
|
|
(21d * e12 / 16d - 55d * e14 / 32d) * Math.Sin(4d * mu) +
|
|
151d * e13 / 96d * Math.Sin(6d * mu) +
|
|
1097d * e14 / 512d * Math.Sin(8d * mu); // (3-26)
|
|
|
|
var sinPhi1 = Math.Sin(phi1);
|
|
var cosPhi1 = Math.Cos(phi1);
|
|
var tanPhi1 = sinPhi1 / cosPhi1;
|
|
|
|
var e_2 = e2 / (1d - e2); // (8-12)
|
|
var C1 = e_2 * cosPhi1 * cosPhi1; // (8-21)
|
|
var T1 = sinPhi1 * sinPhi1 / (cosPhi1 * cosPhi1); // (8-22)
|
|
s = Math.Sqrt(1d - e2 * sinPhi1 * sinPhi1);
|
|
var N1 = EquatorialRadius / s; // (8-23)
|
|
var R1 = EquatorialRadius * (1d - e2) / (s * s * s); // (8-24)
|
|
var D = (x - FalseEasting) / (N1 * ScaleFactor); // (8-25)
|
|
var D2 = D * D;
|
|
var D3 = D * D2;
|
|
var D4 = D * D3;
|
|
var D5 = D * D4;
|
|
var D6 = D * D5;
|
|
|
|
var phi = phi1 - N1 * tanPhi1 / R1 * (D2 / 2d - (5d + 3d * T1 + 10d * C1 - 4d * C1 * C1 - 9d * e_2) * D4 / 24d +
|
|
(61d + 90d * T1 + 45d * T1 * T1 + 298 * C1 - 3d * C1 * C1 - 252d * e_2) * D6 / 720d); // (8-17)
|
|
|
|
var dLambda = (D - (1d + 2d * T1 + C1) * D3 / 6d +
|
|
(5d - 2d * C1 - 3d * C1 * C1 + 28d * T1 + 24d * T1 * T1 + 8d * e_2) * D5 / 120d) / cosPhi1; // (8-18)
|
|
|
|
return new Location(
|
|
phi * 180d / Math.PI,
|
|
dLambda * 180d / Math.PI + CentralMeridian);
|
|
}
|
|
}
|
|
}
|