mirror of
https://github.com/ClemensFischer/XAML-Map-Control.git
synced 2026-01-15 21:20:29 +01:00
139 lines
5 KiB
C#
139 lines
5 KiB
C#
using System;
|
||
#if WPF
|
||
using System.Windows;
|
||
#elif AVALONIA
|
||
using Avalonia;
|
||
#endif
|
||
|
||
namespace MapControl
|
||
{
|
||
/// <summary>
|
||
/// Transverse Mercator Projection.
|
||
/// See https://en.wikipedia.org/wiki/Transverse_Mercator_projection
|
||
/// and https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.
|
||
/// </summary>
|
||
public class TransverseMercatorProjection : MapProjection
|
||
{
|
||
private readonly double[] alpha = new double[3]; // α_j
|
||
private readonly double[] beta = new double[3]; // β_j
|
||
private readonly double[] delta = new double[3]; // δ_j
|
||
private double f1; // A / a
|
||
private double f2; // 2 * sqrt(n) / (1+n)
|
||
|
||
public double Flattening
|
||
{
|
||
get;
|
||
set
|
||
{
|
||
field = value;
|
||
// n, n^2, n^3
|
||
var n = field / (2d - field);
|
||
var n2 = n * n;
|
||
var n3 = n * n2;
|
||
// A / a
|
||
f1 = (1d + n2 / 4d + n2 * n2 / 64d) / (1d + n);
|
||
// 2 * sqrt(n) / (1+n)
|
||
f2 = 2d * Math.Sqrt(n) / (1d + n);
|
||
// α_j
|
||
alpha[0] = n / 2d - n2 * 2d / 3d + n3 * 5d / 16d;
|
||
alpha[1] = n2 * 13d / 48d - n3 * 3d / 5d;
|
||
alpha[2] = n3 * 61d / 240d;
|
||
// β_j
|
||
beta[0] = n / 2d - n2 * 2d / 3d + n3 * 37d / 96d;
|
||
beta[1] = n2 / 48d + n3 / 15d;
|
||
beta[2] = n3 * 17d / 480d;
|
||
// δ_j
|
||
delta[0] = n * 2d - n2 * 2d / 3d - n3 * 2d;
|
||
delta[1] = n2 * 7d / 3d - n3 * 8d / 5d;
|
||
delta[2] = n3 * 56d / 15d;
|
||
}
|
||
}
|
||
|
||
public double EquatorialRadius { get; set; } = Wgs84EquatorialRadius;
|
||
public double ScaleFactor { get; set; } = 0.9996;
|
||
public double CentralMeridian { get; set; }
|
||
public double FalseEasting { get; set; }
|
||
public double FalseNorthing { get; set; }
|
||
|
||
public TransverseMercatorProjection()
|
||
{
|
||
Type = MapProjectionType.TransverseCylindrical;
|
||
Flattening = Wgs84Flattening;
|
||
}
|
||
|
||
public override Point RelativeScale(double latitude, double longitude)
|
||
{
|
||
return new Point(ScaleFactor, ScaleFactor);
|
||
}
|
||
|
||
public override Point? LocationToMap(double latitude, double longitude)
|
||
{
|
||
#if NETFRAMEWORK
|
||
static double Atanh(double x) => Math.Log((1d + x) / (1d - x)) / 2d;
|
||
#else
|
||
static double Atanh(double x) => Math.Atanh(x);
|
||
#endif
|
||
// k_0 * A
|
||
var k0A = ScaleFactor * EquatorialRadius * f1;
|
||
// φ
|
||
var phi = latitude * Math.PI / 180d;
|
||
var sinPhi = Math.Sin(phi);
|
||
// t
|
||
var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi));
|
||
// λ - λ0
|
||
var lambda = (longitude - CentralMeridian) * Math.PI / 180d;
|
||
// ξ'
|
||
var xi_ = Math.Atan(t / Math.Cos(lambda));
|
||
// η'
|
||
var eta_ = Atanh(Math.Sin(lambda) / Math.Sqrt(1d + t * t));
|
||
// ξ
|
||
var xi = xi_
|
||
+ alpha[0] * Math.Sin(2d * xi_) * Math.Cosh(2d * eta_)
|
||
+ alpha[1] * Math.Sin(4d * xi_) * Math.Cosh(4d * eta_)
|
||
+ alpha[2] * Math.Sin(6d * xi_) * Math.Cosh(6d * eta_);
|
||
// η
|
||
var eta = eta_
|
||
+ alpha[0] * Math.Cos(2d * xi_) * Math.Sinh(2d * eta_)
|
||
+ alpha[1] * Math.Cos(4d * xi_) * Math.Sinh(4d * eta_)
|
||
+ alpha[2] * Math.Cos(6d * xi_) * Math.Sinh(6d * eta_);
|
||
|
||
return new Point(
|
||
k0A * eta + FalseEasting,
|
||
k0A * xi + FalseNorthing);
|
||
}
|
||
|
||
public override Location MapToLocation(double x, double y)
|
||
{
|
||
// k_0 * A
|
||
var k0A = ScaleFactor * EquatorialRadius * f1;
|
||
// ξ
|
||
var xi = (y - FalseNorthing) / k0A;
|
||
// η
|
||
var eta = (x - FalseEasting) / k0A;
|
||
// ξ'
|
||
var xi_ = xi
|
||
- beta[0] * Math.Sin(2d * xi) * Math.Cosh(2d * eta)
|
||
- beta[1] * Math.Sin(4d * xi) * Math.Cosh(4d * eta)
|
||
- beta[2] * Math.Sin(6d * xi) * Math.Cosh(6d * eta);
|
||
// η'
|
||
var eta_ = eta
|
||
- beta[0] * Math.Cos(2d * xi) * Math.Sinh(2d * eta)
|
||
- beta[1] * Math.Cos(4d * xi) * Math.Sinh(4d * eta)
|
||
- beta[2] * Math.Cos(6d * xi) * Math.Sinh(6d * eta);
|
||
// χ
|
||
var chi = Math.Asin(Math.Sin(xi_) / Math.Cosh(eta_));
|
||
// φ
|
||
var phi = chi
|
||
+ delta[0] * Math.Sin(2d * chi)
|
||
+ delta[1] * Math.Sin(4d * chi)
|
||
+ delta[2] * Math.Sin(6d * chi);
|
||
// λ - λ0
|
||
var lambda = Math.Atan(Math.Sinh(eta_) / Math.Cos(xi_));
|
||
|
||
return new Location(
|
||
phi * 180d / Math.PI,
|
||
lambda * 180d / Math.PI + CentralMeridian);
|
||
}
|
||
}
|
||
}
|