breakpad/src/processor/exploitability_linux.cc

324 lines
13 KiB
C++
Raw Normal View History

// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// exploitability_linux.cc: Linux specific exploitability engine.
//
// Provides a guess at the exploitability of the crash for the Linux
// platform given a minidump and process_state.
//
// Author: Matthew Riley
#include "processor/exploitability_linux.h"
#include <elf.h>
#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame.h"
#include "processor/logging.h"
namespace {
// This function in libc is called if the program was compiled with
// -fstack-protector and a function's stack canary changes.
const char kStackCheckFailureFunction[] = "__stack_chk_fail";
// This function in libc is called if the program was compiled with
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
// can determine that the call would overflow the target buffer.
const char kBoundsCheckFailureFunction[] = "__chk_fail";
} // namespace
namespace google_breakpad {
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
ProcessState *process_state)
: Exploitability(dump, process_state) { }
ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
// Check the crashing thread for functions suggesting a buffer overflow or
// stack smash.
if (process_state_->requesting_thread() != -1) {
CallStack* crashing_thread =
process_state_->threads()->at(process_state_->requesting_thread());
const vector<StackFrame*>& crashing_thread_frames =
*crashing_thread->frames();
for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
if (crashing_thread_frames[i]->function_name ==
kStackCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
if (crashing_thread_frames[i]->function_name ==
kBoundsCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
}
}
// Getting exception data. (It should exist for all minidumps.)
MinidumpException *exception = dump_->GetException();
if (exception == NULL) {
BPLOG(INFO) << "No exception record.";
return EXPLOITABILITY_ERR_PROCESSING;
}
const MDRawExceptionStream *raw_exception_stream = exception->exception();
if (raw_exception_stream == NULL) {
BPLOG(INFO) << "No raw exception stream.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for benign exceptions that caused the crash.
if (this->BenignCrashTrigger(raw_exception_stream)) {
return EXPLOITABILITY_NONE;
}
// Check if the instruction pointer is in a valid instruction region
// by finding if it maps to an executable part of memory.
uint64_t instruction_ptr = 0;
const MinidumpContext *context = exception->GetContext();
if (context == NULL) {
BPLOG(INFO) << "No exception context.";
return EXPLOITABILITY_ERR_PROCESSING;
}
if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) {
BPLOG(INFO) << "Unsupported architecture.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the instruction pointer.
if (!context->GetInstructionPointer(&instruction_ptr)) {
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for the instruction pointer in a valid instruction region.
if (!this->InstructionPointerInCode(instruction_ptr)) {
return EXPLOITABILITY_HIGH;
}
// There was no strong evidence suggesting exploitability, but the minidump
// does not appear totally benign either.
return EXPLOITABILITY_INTERESTING;
}
LinuxArchitectureType ExploitabilityLinux::ArchitectureType() {
// GetContextCPU() should have already been successfully called before
// calling this method. Thus there should be a raw exception stream for
// the minidump.
MinidumpException *exception = dump_->GetException();
const DumpContext *dump_context =
exception ?
exception->GetContext() : NULL;
if (dump_context == NULL) {
BPLOG(INFO) << "No raw dump context.";
return UNSUPPORTED_ARCHITECTURE;
}
// Check the architecture type.
switch (dump_context->GetContextCPU()) {
case MD_CONTEXT_ARM:
case MD_CONTEXT_X86:
return LINUX_32_BIT;
case MD_CONTEXT_ARM64:
case MD_CONTEXT_AMD64:
return LINUX_64_BIT;
default:
// This should not happen. The four architectures above should be
// the only Linux architectures.
BPLOG(INFO) << "Unsupported architecture.";
return UNSUPPORTED_ARCHITECTURE;
}
}
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
// Get memory mapping. Most minidumps will not contain a memory
// mapping, so processing will commonly resort to checking modules.
MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList();
const MinidumpMemoryInfo *mem_info =
mem_info_list ?
mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL;
// Check if the memory mapping at the instruction pointer is executable.
// If there is no memory mapping, processing will use modules as reference.
if (mem_info != NULL) {
return mem_info->IsExecutable();
}
// If the memory mapping retrieval fails, check the modules
// to see if the instruction pointer is inside a module.
MinidumpModuleList *minidump_module_list = dump_->GetModuleList();
const MinidumpModule *minidump_module =
minidump_module_list ?
minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL;
// If the instruction pointer isn't in a module, return false.
if (minidump_module == NULL) {
return false;
}
// Get ELF header data from the instruction pointer's module.
const uint64_t base_address = minidump_module->base_address();
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
MinidumpMemoryRegion *memory_region =
memory_list ?
memory_list->GetMemoryRegionForAddress(base_address) : NULL;
// The minidump does not have the correct memory region.
// This returns true because even though there is no memory data available,
// the evidence so far suggests that the instruction pointer is not at a
// bad location.
if (memory_region == NULL) {
return true;
}
// Examine ELF headers. Depending on the architecture, the size of the
// ELF headers can differ.
LinuxArchitectureType architecture = this->ArchitectureType();
if (architecture == LINUX_32_BIT) {
// Check if the ELF header is within the memory region and if the
// instruction pointer lies within the ELF header.
if (memory_region->GetSize() < sizeof(Elf32_Ehdr) ||
instruction_ptr < base_address + sizeof(Elf32_Ehdr)) {
return false;
}
// Load 32-bit ELF header.
Elf32_Ehdr header;
this->LoadElfHeader(memory_region, base_address, &header);
// Check if the program header table is within the memory region, and
// validate that the program header entry size is correct.
if (header.e_phentsize != sizeof(Elf32_Phdr) ||
memory_region->GetSize() <
header.e_phoff +
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
return false;
}
// Load 32-bit Program Header Table.
scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header.e_phnum]);
this->LoadElfHeaderTable(memory_region,
base_address + header.e_phoff,
header.e_phnum,
program_headers.get());
// Find correct program header that corresponds to the instruction pointer.
for (int i = 0; i < header.e_phnum; i++) {
const Elf32_Phdr& program_header = program_headers[i];
// Check if instruction pointer lies within this program header's region.
if (instruction_ptr >= program_header.p_vaddr &&
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
// Return whether this program header region is executable.
return program_header.p_flags & PF_X;
}
}
} else if (architecture == LINUX_64_BIT) {
// Check if the ELF header is within the memory region and if the
// instruction pointer lies within the ELF header.
if (memory_region->GetSize() < sizeof(Elf64_Ehdr) ||
instruction_ptr < base_address + sizeof(Elf64_Ehdr)) {
return false;
}
// Load 64-bit ELF header.
Elf64_Ehdr header;
this->LoadElfHeader(memory_region, base_address, &header);
// Check if the program header table is within the memory region, and
// validate that the program header entry size is correct.
if (header.e_phentsize != sizeof(Elf64_Phdr) ||
memory_region->GetSize() <
header.e_phoff +
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
return false;
}
// Load 64-bit Program Header Table.
scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header.e_phnum]);
this->LoadElfHeaderTable(memory_region,
base_address + header.e_phoff,
header.e_phnum,
program_headers.get());
// Find correct program header that corresponds to the instruction pointer.
for (int i = 0; i < header.e_phnum; i++) {
const Elf64_Phdr& program_header = program_headers[i];
// Check if instruction pointer lies within this program header's region.
if (instruction_ptr >= program_header.p_vaddr &&
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
// Return whether this program header region is executable.
return program_header.p_flags & PF_X;
}
}
}
// The instruction pointer was not in an area identified by the ELF headers.
return false;
}
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream
*raw_exception_stream) {
// Check the cause of crash.
// If the exception of the crash is a benign exception,
// it is probably not exploitable.
switch (raw_exception_stream->exception_record.exception_code) {
case MD_EXCEPTION_CODE_LIN_SIGHUP:
case MD_EXCEPTION_CODE_LIN_SIGINT:
case MD_EXCEPTION_CODE_LIN_SIGQUIT:
case MD_EXCEPTION_CODE_LIN_SIGTRAP:
case MD_EXCEPTION_CODE_LIN_SIGABRT:
case MD_EXCEPTION_CODE_LIN_SIGFPE:
case MD_EXCEPTION_CODE_LIN_SIGKILL:
case MD_EXCEPTION_CODE_LIN_SIGUSR1:
case MD_EXCEPTION_CODE_LIN_SIGUSR2:
case MD_EXCEPTION_CODE_LIN_SIGPIPE:
case MD_EXCEPTION_CODE_LIN_SIGALRM:
case MD_EXCEPTION_CODE_LIN_SIGTERM:
case MD_EXCEPTION_CODE_LIN_SIGCHLD:
case MD_EXCEPTION_CODE_LIN_SIGCONT:
case MD_EXCEPTION_CODE_LIN_SIGSTOP:
case MD_EXCEPTION_CODE_LIN_SIGTSTP:
case MD_EXCEPTION_CODE_LIN_SIGTTIN:
case MD_EXCEPTION_CODE_LIN_SIGTTOU:
case MD_EXCEPTION_CODE_LIN_SIGURG:
case MD_EXCEPTION_CODE_LIN_SIGXCPU:
case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
case MD_EXCEPTION_CODE_LIN_SIGPROF:
case MD_EXCEPTION_CODE_LIN_SIGWINCH:
case MD_EXCEPTION_CODE_LIN_SIGIO:
case MD_EXCEPTION_CODE_LIN_SIGPWR:
case MD_EXCEPTION_CODE_LIN_SIGSYS:
case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
return true;
break;
default:
return false;
break;
}
}
} // namespace google_breakpad