2013-10-29 21:03:39 +01:00
|
|
|
// Copyright (c) 2013 Google Inc.
|
|
|
|
|
// All rights reserved.
|
|
|
|
|
//
|
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
|
// met:
|
|
|
|
|
//
|
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
|
// distribution.
|
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
|
// contributors may be used to endorse or promote products derived from
|
|
|
|
|
// this software without specific prior written permission.
|
|
|
|
|
//
|
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
|
|
// exploitability_linux.cc: Linux specific exploitability engine.
|
|
|
|
|
//
|
|
|
|
|
// Provides a guess at the exploitability of the crash for the Linux
|
|
|
|
|
// platform given a minidump and process_state.
|
|
|
|
|
//
|
|
|
|
|
// Author: Matthew Riley
|
|
|
|
|
|
|
|
|
|
#include "processor/exploitability_linux.h"
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
#include <elf.h>
|
|
|
|
|
|
2015-06-30 22:34:39 +02:00
|
|
|
#include "google_breakpad/common/minidump_exception_linux.h"
|
2013-10-29 21:03:39 +01:00
|
|
|
#include "google_breakpad/processor/call_stack.h"
|
2015-07-01 01:22:09 +02:00
|
|
|
#include "google_breakpad/processor/process_state.h"
|
2013-10-29 21:03:39 +01:00
|
|
|
#include "google_breakpad/processor/stack_frame.h"
|
2015-06-26 01:05:16 +02:00
|
|
|
#include "processor/logging.h"
|
2013-10-29 21:03:39 +01:00
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
// This function in libc is called if the program was compiled with
|
|
|
|
|
// -fstack-protector and a function's stack canary changes.
|
|
|
|
|
const char kStackCheckFailureFunction[] = "__stack_chk_fail";
|
|
|
|
|
|
|
|
|
|
// This function in libc is called if the program was compiled with
|
|
|
|
|
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
|
|
|
|
|
// can determine that the call would overflow the target buffer.
|
|
|
|
|
const char kBoundsCheckFailureFunction[] = "__chk_fail";
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
namespace google_breakpad {
|
|
|
|
|
|
|
|
|
|
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
|
|
|
|
|
ProcessState *process_state)
|
|
|
|
|
: Exploitability(dump, process_state) { }
|
|
|
|
|
|
|
|
|
|
ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
|
|
|
|
|
// Check the crashing thread for functions suggesting a buffer overflow or
|
|
|
|
|
// stack smash.
|
|
|
|
|
if (process_state_->requesting_thread() != -1) {
|
|
|
|
|
CallStack* crashing_thread =
|
|
|
|
|
process_state_->threads()->at(process_state_->requesting_thread());
|
|
|
|
|
const vector<StackFrame*>& crashing_thread_frames =
|
|
|
|
|
*crashing_thread->frames();
|
|
|
|
|
for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
|
|
|
|
|
if (crashing_thread_frames[i]->function_name ==
|
|
|
|
|
kStackCheckFailureFunction) {
|
|
|
|
|
return EXPLOITABILITY_HIGH;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (crashing_thread_frames[i]->function_name ==
|
|
|
|
|
kBoundsCheckFailureFunction) {
|
|
|
|
|
return EXPLOITABILITY_HIGH;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-06-26 01:05:16 +02:00
|
|
|
// Getting exception data. (It should exist for all minidumps.)
|
|
|
|
|
MinidumpException *exception = dump_->GetException();
|
|
|
|
|
if (exception == NULL) {
|
|
|
|
|
BPLOG(INFO) << "No exception record.";
|
|
|
|
|
return EXPLOITABILITY_ERR_PROCESSING;
|
|
|
|
|
}
|
2015-07-07 23:30:06 +02:00
|
|
|
const MDRawExceptionStream *raw_exception_stream = exception->exception();
|
|
|
|
|
if (raw_exception_stream == NULL) {
|
|
|
|
|
BPLOG(INFO) << "No raw exception stream.";
|
|
|
|
|
return EXPLOITABILITY_ERR_PROCESSING;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Checking for benign exceptions that caused the crash.
|
|
|
|
|
if (this->BenignCrashTrigger(raw_exception_stream)) {
|
|
|
|
|
return EXPLOITABILITY_NONE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if the instruction pointer is in a valid instruction region
|
|
|
|
|
// by finding if it maps to an executable part of memory.
|
|
|
|
|
uint64_t instruction_ptr = 0;
|
|
|
|
|
|
2015-06-26 01:05:16 +02:00
|
|
|
const MinidumpContext *context = exception->GetContext();
|
|
|
|
|
if (context == NULL) {
|
|
|
|
|
BPLOG(INFO) << "No exception context.";
|
|
|
|
|
return EXPLOITABILITY_ERR_PROCESSING;
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) {
|
|
|
|
|
BPLOG(INFO) << "Unsupported architecture.";
|
|
|
|
|
return EXPLOITABILITY_ERR_PROCESSING;
|
|
|
|
|
}
|
2015-07-01 01:22:09 +02:00
|
|
|
// Getting the instruction pointer.
|
|
|
|
|
if (!context->GetInstructionPointer(&instruction_ptr)) {
|
2015-07-16 22:42:29 +02:00
|
|
|
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
|
2015-07-01 01:22:09 +02:00
|
|
|
return EXPLOITABILITY_ERR_PROCESSING;
|
2015-06-26 01:05:16 +02:00
|
|
|
}
|
|
|
|
|
|
2015-06-30 22:34:39 +02:00
|
|
|
// Checking for the instruction pointer in a valid instruction region.
|
2015-06-26 01:05:16 +02:00
|
|
|
if (!this->InstructionPointerInCode(instruction_ptr)) {
|
|
|
|
|
return EXPLOITABILITY_HIGH;
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
// There was no strong evidence suggesting exploitability, but the minidump
|
|
|
|
|
// does not appear totally benign either.
|
2015-06-30 22:34:39 +02:00
|
|
|
return EXPLOITABILITY_INTERESTING;
|
2013-10-29 21:03:39 +01:00
|
|
|
}
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
LinuxArchitectureType ExploitabilityLinux::ArchitectureType() {
|
|
|
|
|
// GetContextCPU() should have already been successfully called before
|
|
|
|
|
// calling this method. Thus there should be a raw exception stream for
|
|
|
|
|
// the minidump.
|
|
|
|
|
MinidumpException *exception = dump_->GetException();
|
|
|
|
|
const DumpContext *dump_context =
|
|
|
|
|
exception ?
|
|
|
|
|
exception->GetContext() : NULL;
|
|
|
|
|
if (dump_context == NULL) {
|
|
|
|
|
BPLOG(INFO) << "No raw dump context.";
|
|
|
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check the architecture type.
|
|
|
|
|
switch (dump_context->GetContextCPU()) {
|
|
|
|
|
case MD_CONTEXT_ARM:
|
|
|
|
|
case MD_CONTEXT_X86:
|
|
|
|
|
return LINUX_32_BIT;
|
|
|
|
|
case MD_CONTEXT_ARM64:
|
|
|
|
|
case MD_CONTEXT_AMD64:
|
|
|
|
|
return LINUX_64_BIT;
|
|
|
|
|
default:
|
|
|
|
|
// This should not happen. The four architectures above should be
|
|
|
|
|
// the only Linux architectures.
|
|
|
|
|
BPLOG(INFO) << "Unsupported architecture.";
|
|
|
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-06-26 01:05:16 +02:00
|
|
|
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
|
2015-07-16 22:42:29 +02:00
|
|
|
// Get memory mapping. Most minidumps will not contain a memory
|
|
|
|
|
// mapping, so processing will commonly resort to checking modules.
|
2015-06-26 01:05:16 +02:00
|
|
|
MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList();
|
|
|
|
|
const MinidumpMemoryInfo *mem_info =
|
|
|
|
|
mem_info_list ?
|
|
|
|
|
mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL;
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
// Check if the memory mapping at the instruction pointer is executable.
|
|
|
|
|
// If there is no memory mapping, processing will use modules as reference.
|
2015-06-26 01:05:16 +02:00
|
|
|
if (mem_info != NULL) {
|
|
|
|
|
return mem_info->IsExecutable();
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-16 22:42:29 +02:00
|
|
|
// If the memory mapping retrieval fails, check the modules
|
2015-06-26 01:05:16 +02:00
|
|
|
// to see if the instruction pointer is inside a module.
|
|
|
|
|
MinidumpModuleList *minidump_module_list = dump_->GetModuleList();
|
2015-07-16 22:42:29 +02:00
|
|
|
const MinidumpModule *minidump_module =
|
|
|
|
|
minidump_module_list ?
|
|
|
|
|
minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL;
|
|
|
|
|
|
|
|
|
|
// If the instruction pointer isn't in a module, return false.
|
|
|
|
|
if (minidump_module == NULL) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Get ELF header data from the instruction pointer's module.
|
|
|
|
|
const uint64_t base_address = minidump_module->base_address();
|
|
|
|
|
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
|
|
|
|
|
MinidumpMemoryRegion *memory_region =
|
|
|
|
|
memory_list ?
|
|
|
|
|
memory_list->GetMemoryRegionForAddress(base_address) : NULL;
|
|
|
|
|
|
|
|
|
|
// The minidump does not have the correct memory region.
|
|
|
|
|
// This returns true because even though there is no memory data available,
|
|
|
|
|
// the evidence so far suggests that the instruction pointer is not at a
|
|
|
|
|
// bad location.
|
|
|
|
|
if (memory_region == NULL) {
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Examine ELF headers. Depending on the architecture, the size of the
|
|
|
|
|
// ELF headers can differ.
|
|
|
|
|
LinuxArchitectureType architecture = this->ArchitectureType();
|
|
|
|
|
if (architecture == LINUX_32_BIT) {
|
|
|
|
|
// Check if the ELF header is within the memory region and if the
|
|
|
|
|
// instruction pointer lies within the ELF header.
|
|
|
|
|
if (memory_region->GetSize() < sizeof(Elf32_Ehdr) ||
|
|
|
|
|
instruction_ptr < base_address + sizeof(Elf32_Ehdr)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Load 32-bit ELF header.
|
|
|
|
|
Elf32_Ehdr header;
|
|
|
|
|
this->LoadElfHeader(memory_region, base_address, &header);
|
|
|
|
|
// Check if the program header table is within the memory region, and
|
|
|
|
|
// validate that the program header entry size is correct.
|
|
|
|
|
if (header.e_phentsize != sizeof(Elf32_Phdr) ||
|
|
|
|
|
memory_region->GetSize() <
|
|
|
|
|
header.e_phoff +
|
|
|
|
|
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Load 32-bit Program Header Table.
|
|
|
|
|
scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header.e_phnum]);
|
|
|
|
|
this->LoadElfHeaderTable(memory_region,
|
|
|
|
|
base_address + header.e_phoff,
|
|
|
|
|
header.e_phnum,
|
|
|
|
|
program_headers.get());
|
|
|
|
|
// Find correct program header that corresponds to the instruction pointer.
|
|
|
|
|
for (int i = 0; i < header.e_phnum; i++) {
|
|
|
|
|
const Elf32_Phdr& program_header = program_headers[i];
|
|
|
|
|
// Check if instruction pointer lies within this program header's region.
|
|
|
|
|
if (instruction_ptr >= program_header.p_vaddr &&
|
|
|
|
|
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
|
|
|
|
|
// Return whether this program header region is executable.
|
|
|
|
|
return program_header.p_flags & PF_X;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else if (architecture == LINUX_64_BIT) {
|
|
|
|
|
// Check if the ELF header is within the memory region and if the
|
|
|
|
|
// instruction pointer lies within the ELF header.
|
|
|
|
|
if (memory_region->GetSize() < sizeof(Elf64_Ehdr) ||
|
|
|
|
|
instruction_ptr < base_address + sizeof(Elf64_Ehdr)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Load 64-bit ELF header.
|
|
|
|
|
Elf64_Ehdr header;
|
|
|
|
|
this->LoadElfHeader(memory_region, base_address, &header);
|
|
|
|
|
// Check if the program header table is within the memory region, and
|
|
|
|
|
// validate that the program header entry size is correct.
|
|
|
|
|
if (header.e_phentsize != sizeof(Elf64_Phdr) ||
|
|
|
|
|
memory_region->GetSize() <
|
|
|
|
|
header.e_phoff +
|
|
|
|
|
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Load 64-bit Program Header Table.
|
|
|
|
|
scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header.e_phnum]);
|
|
|
|
|
this->LoadElfHeaderTable(memory_region,
|
|
|
|
|
base_address + header.e_phoff,
|
|
|
|
|
header.e_phnum,
|
|
|
|
|
program_headers.get());
|
|
|
|
|
// Find correct program header that corresponds to the instruction pointer.
|
|
|
|
|
for (int i = 0; i < header.e_phnum; i++) {
|
|
|
|
|
const Elf64_Phdr& program_header = program_headers[i];
|
|
|
|
|
// Check if instruction pointer lies within this program header's region.
|
|
|
|
|
if (instruction_ptr >= program_header.p_vaddr &&
|
|
|
|
|
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
|
|
|
|
|
// Return whether this program header region is executable.
|
|
|
|
|
return program_header.p_flags & PF_X;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// The instruction pointer was not in an area identified by the ELF headers.
|
|
|
|
|
return false;
|
2015-06-26 01:05:16 +02:00
|
|
|
}
|
|
|
|
|
|
2015-06-30 22:34:39 +02:00
|
|
|
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream
|
|
|
|
|
*raw_exception_stream) {
|
2015-07-16 22:42:29 +02:00
|
|
|
// Check the cause of crash.
|
2015-06-30 22:34:39 +02:00
|
|
|
// If the exception of the crash is a benign exception,
|
|
|
|
|
// it is probably not exploitable.
|
|
|
|
|
switch (raw_exception_stream->exception_record.exception_code) {
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGHUP:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGINT:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGQUIT:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGTRAP:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGABRT:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGFPE:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGKILL:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGUSR1:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGUSR2:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGPIPE:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGALRM:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGTERM:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGCHLD:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGCONT:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGSTOP:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGTSTP:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGTTIN:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGTTOU:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGURG:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGXCPU:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGPROF:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGWINCH:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGIO:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGPWR:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_SIGSYS:
|
|
|
|
|
case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
|
|
|
|
|
return true;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
return false;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-29 21:03:39 +01:00
|
|
|
} // namespace google_breakpad
|