breakpad/src/processor/stackwalker_arm64.cc

276 lines
11 KiB
C++
Raw Normal View History

// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// stackwalker_arm64.cc: arm64-specific stackwalker.
//
// See stackwalker_arm64.h for documentation.
//
// Author: Mark Mentovai, Ted Mielczarek, Jim Blandy, Colin Blundell
#include <vector>
#include "common/scoped_ptr.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/memory_region.h"
#include "google_breakpad/processor/source_line_resolver_interface.h"
#include "google_breakpad/processor/stack_frame_cpu.h"
#include "processor/cfi_frame_info.h"
#include "processor/logging.h"
#include "processor/stackwalker_arm64.h"
namespace google_breakpad {
StackwalkerARM64::StackwalkerARM64(const SystemInfo* system_info,
const MDRawContextARM64* context,
MemoryRegion* memory,
const CodeModules* modules,
StackFrameSymbolizer* resolver_helper)
: Stackwalker(system_info, memory, modules, resolver_helper),
context_(context),
context_frame_validity_(StackFrameARM64::CONTEXT_VALID_ALL) { }
StackFrame* StackwalkerARM64::GetContextFrame() {
if (!context_) {
BPLOG(ERROR) << "Can't get context frame without context";
return NULL;
}
StackFrameARM64* frame = new StackFrameARM64();
// The instruction pointer is stored directly in a register (x32), so pull it
// straight out of the CPU context structure.
frame->context = *context_;
frame->context_validity = context_frame_validity_;
frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
frame->instruction = frame->context.iregs[MD_CONTEXT_ARM64_REG_PC];
return frame;
}
StackFrameARM64* StackwalkerARM64::GetCallerByCFIFrameInfo(
const vector<StackFrame*> &frames,
CFIFrameInfo* cfi_frame_info) {
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
static const char* register_names[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "sp",
"pc", NULL
};
// Populate a dictionary with the valid register values in last_frame.
CFIFrameInfo::RegisterValueMap<uint64_t> callee_registers;
for (int i = 0; register_names[i]; i++) {
if (last_frame->context_validity & StackFrameARM64::RegisterValidFlag(i))
callee_registers[register_names[i]] = last_frame->context.iregs[i];
}
// Use the STACK CFI data to recover the caller's register values.
CFIFrameInfo::RegisterValueMap<uint64_t> caller_registers;
if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_,
&caller_registers)) {
return NULL;
}
// Construct a new stack frame given the values the CFI recovered.
scoped_ptr<StackFrameARM64> frame(new StackFrameARM64());
for (int i = 0; register_names[i]; i++) {
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
caller_registers.find(register_names[i]);
if (entry != caller_registers.end()) {
// We recovered the value of this register; fill the context with the
// value from caller_registers.
frame->context_validity |= StackFrameARM64::RegisterValidFlag(i);
frame->context.iregs[i] = entry->second;
} else if (19 <= i && i <= 29 && (last_frame->context_validity &
StackFrameARM64::RegisterValidFlag(i))) {
// If the STACK CFI data doesn't mention some callee-saves register, and
// it is valid in the callee, assume the callee has not yet changed it.
// Registers r19 through r29 are callee-saves, according to the Procedure
// Call Standard for the ARM AARCH64 Architecture, which the Linux ABI
// follows.
frame->context_validity |= StackFrameARM64::RegisterValidFlag(i);
frame->context.iregs[i] = last_frame->context.iregs[i];
}
}
// If the CFI doesn't recover the PC explicitly, then use .ra.
if (!(frame->context_validity & StackFrameARM64::CONTEXT_VALID_PC)) {
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
caller_registers.find(".ra");
if (entry != caller_registers.end()) {
frame->context_validity |= StackFrameARM64::CONTEXT_VALID_PC;
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] = entry->second;
}
}
// If the CFI doesn't recover the SP explicitly, then use .cfa.
if (!(frame->context_validity & StackFrameARM64::CONTEXT_VALID_SP)) {
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
caller_registers.find(".cfa");
if (entry != caller_registers.end()) {
frame->context_validity |= StackFrameARM64::CONTEXT_VALID_SP;
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = entry->second;
}
}
// If we didn't recover the PC and the SP, then the frame isn't very useful.
static const uint64_t essentials = (StackFrameARM64::CONTEXT_VALID_SP
| StackFrameARM64::CONTEXT_VALID_PC);
if ((frame->context_validity & essentials) != essentials)
return NULL;
frame->trust = StackFrame::FRAME_TRUST_CFI;
return frame.release();
}
StackFrameARM64* StackwalkerARM64::GetCallerByStackScan(
const vector<StackFrame*> &frames) {
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
uint64_t last_sp = last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP];
uint64_t caller_sp, caller_pc;
if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc,
frames.size() == 1 /* is_context_frame */)) {
// No plausible return address was found.
return NULL;
}
// ScanForReturnAddress found a reasonable return address. Advance
// %sp to the location above the one where the return address was
// found.
caller_sp += 8;
// Create a new stack frame (ownership will be transferred to the caller)
// and fill it in.
StackFrameARM64* frame = new StackFrameARM64();
frame->trust = StackFrame::FRAME_TRUST_SCAN;
frame->context = last_frame->context;
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] = caller_pc;
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = caller_sp;
frame->context_validity = StackFrameARM64::CONTEXT_VALID_PC |
StackFrameARM64::CONTEXT_VALID_SP;
return frame;
}
StackFrameARM64* StackwalkerARM64::GetCallerByFramePointer(
const vector<StackFrame*> &frames) {
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
uint64_t last_fp = last_frame->context.iregs[MD_CONTEXT_ARM64_REG_FP];
uint64_t caller_fp = 0;
if (last_fp && !memory_->GetMemoryAtAddress(last_fp, &caller_fp)) {
BPLOG(ERROR) << "Unable to read caller_fp from last_fp: 0x"
<< std::hex << last_fp;
return NULL;
}
uint64_t caller_lr = 0;
if (last_fp && !memory_->GetMemoryAtAddress(last_fp + 8, &caller_lr)) {
BPLOG(ERROR) << "Unable to read caller_lr from last_fp + 8: 0x"
<< std::hex << (last_fp + 8);
return NULL;
}
uint64_t caller_sp = last_fp ? last_fp + 16 :
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP];
// Create a new stack frame (ownership will be transferred to the caller)
// and fill it in.
StackFrameARM64* frame = new StackFrameARM64();
frame->trust = StackFrame::FRAME_TRUST_FP;
frame->context = last_frame->context;
frame->context.iregs[MD_CONTEXT_ARM64_REG_FP] = caller_fp;
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = caller_sp;
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] =
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_LR];
frame->context.iregs[MD_CONTEXT_ARM64_REG_LR] = caller_lr;
frame->context_validity = StackFrameARM64::CONTEXT_VALID_PC |
StackFrameARM64::CONTEXT_VALID_LR |
StackFrameARM64::CONTEXT_VALID_FP |
StackFrameARM64::CONTEXT_VALID_SP;
return frame;
}
StackFrame* StackwalkerARM64::GetCallerFrame(const CallStack* stack,
bool stack_scan_allowed) {
if (!memory_ || !stack) {
BPLOG(ERROR) << "Can't get caller frame without memory or stack";
return NULL;
}
const vector<StackFrame*> &frames = *stack->frames();
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
scoped_ptr<StackFrameARM64> frame;
// See if there is DWARF call frame information covering this address.
scoped_ptr<CFIFrameInfo> cfi_frame_info(
frame_symbolizer_->FindCFIFrameInfo(last_frame));
if (cfi_frame_info.get())
frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info.get()));
// If CFI failed, or there wasn't CFI available, fall back to frame pointer.
if (!frame.get())
frame.reset(GetCallerByFramePointer(frames));
// If everything failed, fall back to stack scanning.
if (stack_scan_allowed && !frame.get())
frame.reset(GetCallerByStackScan(frames));
// If nothing worked, tell the caller.
if (!frame.get())
return NULL;
Handle very large stack traces The main motivation for this change is to handle very large stack traces, normally the result of infinite recursion. This part is actually fairly simple, relaxing a few self-imposed limits on how many frames we can unwind and the max size for stack memory. Relaxing these limits requires stricter and more consistent checks for stack unwinding. There are a number of unwinding invariants that apply to all the platforms: 1. stack pointer (and frame pointer) must be within the stack memory (frame pointer, if preset, must point to the right frame too) 2. unwinding must monotonically increase SP (except for the first frame unwind, this must be a strict increase) 3. Instruction pointer (return address) must point to a valid location 4. stack pointer (and frame pointer) must be appropriately aligned This change is focused on 2), which is enough to guarantee that the unwinding doesn't get stuck in an infinite loop. 1) is implicitly validated part of accessing the stack memory (explicit checks might be nice though). 4) is ABI specific and while it may be valuable in catching suspicious frames is not in the scope of this change. 3) is also an interesting check but thanks to just-in-time compilation it's more complex than just calling StackWalker::InstructionAddressSeemsValid() and we don't want to drop parts of the callstack due to an overly conservative check. Bug: chromium:735989 Change-Id: I9aaba77c7fd028942d77c87d51b5e6f94e136ddd Reviewed-on: https://chromium-review.googlesource.com/563771 Reviewed-by: Mark Mentovai <mark@chromium.org> Reviewed-by: Ivan Penkov <ivanpe@chromium.org>
2017-07-11 21:26:50 +02:00
// Should we terminate the stack walk? (end-of-stack or broken invariant)
if (TerminateWalk(frame->context.iregs[MD_CONTEXT_ARM64_REG_PC],
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP],
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP],
frames.size() == 1)) {
return NULL;
Handle very large stack traces The main motivation for this change is to handle very large stack traces, normally the result of infinite recursion. This part is actually fairly simple, relaxing a few self-imposed limits on how many frames we can unwind and the max size for stack memory. Relaxing these limits requires stricter and more consistent checks for stack unwinding. There are a number of unwinding invariants that apply to all the platforms: 1. stack pointer (and frame pointer) must be within the stack memory (frame pointer, if preset, must point to the right frame too) 2. unwinding must monotonically increase SP (except for the first frame unwind, this must be a strict increase) 3. Instruction pointer (return address) must point to a valid location 4. stack pointer (and frame pointer) must be appropriately aligned This change is focused on 2), which is enough to guarantee that the unwinding doesn't get stuck in an infinite loop. 1) is implicitly validated part of accessing the stack memory (explicit checks might be nice though). 4) is ABI specific and while it may be valuable in catching suspicious frames is not in the scope of this change. 3) is also an interesting check but thanks to just-in-time compilation it's more complex than just calling StackWalker::InstructionAddressSeemsValid() and we don't want to drop parts of the callstack due to an overly conservative check. Bug: chromium:735989 Change-Id: I9aaba77c7fd028942d77c87d51b5e6f94e136ddd Reviewed-on: https://chromium-review.googlesource.com/563771 Reviewed-by: Mark Mentovai <mark@chromium.org> Reviewed-by: Ivan Penkov <ivanpe@chromium.org>
2017-07-11 21:26:50 +02:00
}
// The new frame's context's PC is the return address, which is one
// instruction past the instruction that caused us to arrive at the callee.
// ARM64 instructions have a uniform 4-byte encoding, so subtracting 4 off
// the return address gets back to the beginning of the call instruction.
// Callers that require the exact return address value may access
// frame->context.iregs[MD_CONTEXT_ARM64_REG_PC].
frame->instruction = frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] - 4;
return frame.release();
}
} // namespace google_breakpad