xenia/src/cpu/codegen/function_generator.cc

193 lines
5.2 KiB
C++
Raw Normal View History

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/codegen/function_generator.h>
using namespace llvm;
using namespace xe::cpu::codegen;
using namespace xe::cpu::ppc;
using namespace xe::cpu::sdb;
/**
* This generates function code.
* One context is created for each function to generate. Each basic block in
* the function is created and stashed in one pass, then filled in the next.
*
* This context object is a stateful representation of the current machine state
* and all accessors to registers should occur through it. By doing so it's
* possible to exploit the SSA nature of LLVM to reuse register values within
* a function without needing to flush to memory.
*
* Function calls (any branch outside of the function) will result in an
* expensive flush of registers.
*
* TODO(benvanik): track arguments by looking for register reads without writes
* TODO(benvanik): avoid flushing registers for leaf nodes
* TODO(benvnaik): pass return value in LLVM return, not by memory
*/
FunctionGenerator::FunctionGenerator(xe_memory_ref memory, FunctionSymbol* fn,
LLVMContext* context, Module* gen_module,
Function* gen_fn) {
memory_ = memory;
fn_ = fn;
context_ = context;
gen_module_ = gen_module;
gen_fn_ = gen_fn;
builder_ = new IRBuilder<>(*context_);
}
FunctionGenerator::~FunctionGenerator() {
delete builder_;
}
FunctionSymbol* FunctionGenerator::fn() {
return fn_;
}
llvm::LLVMContext* FunctionGenerator::context() {
return context_;
}
llvm::Module* FunctionGenerator::gen_module() {
return gen_module_;
}
llvm::Function* FunctionGenerator::gen_fn() {
return gen_fn_;
}
void FunctionGenerator::GenerateBasicBlocks() {
// Pass 1 creates all of the blocks - this way we can branch to them.
for (std::map<uint32_t, FunctionBlock*>::iterator it = fn_->blocks.begin();
it != fn_->blocks.end(); ++it) {
FunctionBlock* block = it->second;
char name[32];
xesnprintfa(name, XECOUNT(name), "loc_%.8X", block->start_address);
BasicBlock* bb = BasicBlock::Create(*context_, name, gen_fn_);
bbs_.insert(std::pair<uint32_t, BasicBlock*>(block->start_address, bb));
}
for (std::map<uint32_t, FunctionBlock*>::iterator it = fn_->blocks.begin();
it != fn_->blocks.end(); ++it) {
FunctionBlock* block = it->second;
GenerateBasicBlock(block, GetBasicBlock(block->start_address));
}
}
void FunctionGenerator::GenerateBasicBlock(FunctionBlock* block,
BasicBlock* bb) {
printf(" bb %.8X-%.8X:\n", block->start_address, block->end_address);
// Move the builder to this block and setup.
builder_->SetInsertPoint(bb);
//i->setMetadata("some.name", MDNode::get(context, MDString::get(context, pname)));
// Walk instructions in block.
uint8_t* p = xe_memory_addr(memory_, 0);
for (uint32_t ia = block->start_address; ia <= block->end_address; ia += 4) {
InstrData i;
i.address = ia;
i.code = XEGETUINT32BE(p + ia);
i.type = ppc::GetInstrType(i.code);
if (!i.type) {
XELOGCPU("Invalid instruction at %.8X: %.8X\n", ia, i.code);
continue;
}
printf(" %.8X: %.8X %s\n", ia, i.code, i.type->name);
// TODO(benvanik): debugging information? source/etc?
// builder_>SetCurrentDebugLocation(DebugLoc::get(
// ia >> 8, ia & 0xFF, ctx->cu));
//emit(this, i, builder);
}
//Value* tmp = builder_->getInt32(0);
builder_->CreateRetVoid();
// TODO(benvanik): finish up BB
}
BasicBlock* FunctionGenerator::GetBasicBlock(uint32_t address) {
std::map<uint32_t, BasicBlock*>::iterator it = bbs_.find(address);
if (it != bbs_.end()) {
return it->second;
}
return NULL;
}
Function* FunctionGenerator::GetFunction(uint32_t addr) {
return NULL;
}
Value* FunctionGenerator::cia_value() {
return builder_->getInt32(cia_);
}
void FunctionGenerator::FlushRegisters() {
}
Value* FunctionGenerator::xer_value() {
return NULL;
}
void FunctionGenerator::update_xer_value(Value* value) {
}
Value* FunctionGenerator::lr_value() {
return NULL;
}
void FunctionGenerator::update_lr_value(Value* value) {
}
Value* FunctionGenerator::ctr_value() {
return NULL;
}
void FunctionGenerator::update_ctr_value(Value* value) {
}
Value* FunctionGenerator::cr_value(uint32_t n) {
return NULL;
}
void FunctionGenerator::update_cr_value(uint32_t n, Value* value) {
//
}
Value* FunctionGenerator::gpr_value(uint32_t n) {
return NULL;
}
void FunctionGenerator::update_gpr_value(uint32_t n, Value* value) {
//
}
Value* FunctionGenerator::memory_addr(uint32_t addr) {
return NULL;
}
Value* FunctionGenerator::read_memory(Value* addr, uint32_t size, bool extend) {
return NULL;
}
void FunctionGenerator::write_memory(Value* addr, uint32_t size, Value* value) {
//
}