NanoVNA/main.c
erikkaashoek acd944d5fa Modified FFT to avoid window function
Instead of doing a window function its better to extend the  FFT to
twice the length with the complex conjugate. Then after the FFT trow
away the imag part. As the FFT is limited to 128 point I only used the
first 64. Better would be to exten to128 and then af extending with the
complex conjugate do a 256 point FFT
2019-09-19 21:28:56 +02:00

2073 lines
49 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "usbcfg.h"
#include "si5351.h"
#include "nanovna.h"
#include "fft.h"
#include <chprintf.h>
#include <shell.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#define ENABLED_DUMP
static void apply_error_term(void);
static void apply_error_term_at(int i);
static void cal_interpolate(int s);
static void apply_edelay_at(int i);
void sweep(void);
static MUTEX_DECL(mutex);
#define DRIVE_STRENGTH_AUTO (-1)
#define FREQ_HARMONICS 300000000
int32_t frequency_offset = 5000;
int32_t frequency = 10000000;
int32_t freq = 1;
int32_t step = 1;
int count;
int8_t drive_strength = DRIVE_STRENGTH_AUTO;
int8_t frequency_updated = FALSE;
int8_t sweep_enabled = TRUE;
int8_t sweep_once = FALSE;
int8_t cal_auto_interpolate = TRUE;
int8_t redraw_requested = FALSE;
int8_t stop_the_world = FALSE;
int16_t vbat = 0;
BaseSequentialStream *saved_chp;
static THD_WORKING_AREA(waThread1, 640);
static THD_FUNCTION(Thread1, arg)
{
(void)arg;
chRegSetThreadName("sweep");
while (1) {
if (stop_the_world) {
__WFI();
continue;
}
if (sweep_enabled) {
chMtxLock(&mutex);
sweep();
if (sweep_once) {
sweep_enabled = FALSE;
sweep_once = FALSE;
}
chMtxUnlock(&mutex);
} else {
__WFI();
ui_process();
}
if (vbat != -1) {
adc_stop(ADC1);
vbat = adc_vbat_read(ADC1);
touch_start_watchdog();
draw_battery_status();
}
/* calculate trace coordinates */
plot_into_index(measured);
/* plot trace as raster */
draw_all_cells();
}
}
void
pause_sweep(void)
{
sweep_enabled = FALSE;
}
void
resume_sweep(void)
{
sweep_enabled = TRUE;
}
void
toggle_sweep(void)
{
sweep_enabled = !sweep_enabled;
}
float bessel0(float x) {
const float eps = 0.0001;
float ret = 0;
float term = 1;
float m = 0;
while (term > eps * ret) {
ret += term;
++m;
term *= (x*x) / (4*m*m);
}
return ret;
}
float kaiser_window(float k, float n, float beta) {
if (beta == 0.0) return 1.0;
float r = (2 * k) / (n - 1) - 1;
return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta);
}
static
void
transform_domain(void)
{
if ((domain_mode & DOMAIN_MODE) != DOMAIN_TIME) return; // nothing to do for freq domain
// use spi_buffer as temporary buffer
// and calculate ifft for time domain
float* tmp = (float*)spi_buffer;
uint8_t window_size, offset;
switch (domain_mode & TD_FUNC) {
case TD_FUNC_BANDPASS:
offset = 0;
window_size = 101;
break;
case TD_FUNC_LOWPASS_IMPULSE:
case TD_FUNC_LOWPASS_STEP:
offset = 101;
window_size = 202;
break;
}
float beta = 0.0;
switch (domain_mode & TD_WINDOW) {
case TD_WINDOW_MINIMUM:
beta = 0.0; // this is rectangular
break;
case TD_WINDOW_NORMAL:
beta = 6.0;
break;
case TD_WINDOW_MAXIMUM:
beta = 13;
break;
}
for (int ch = 0; ch < 2; ch++) {
memcpy(tmp, measured[ch], sizeof(measured[0]));
// if (beta != 0.0) {
// for (int i = 0; i < 101; i++) {
// float w = kaiser_window(i+offset, window_size, beta);
// tmp[i*2+0] *= w;
// tmp[i*2+1] *= w;
// }
// }
for (int i = 0; i < 128; i +=2) {
tmp[256 - i+0] = tmp[i+0];
tmp[256 - i+1] = -tmp[i+1];
}
fft128_inverse((float(*)[2])tmp);
memcpy(measured[ch], tmp, sizeof(measured[0]));
for (int i = 0; i < 101; i++) {
measured[ch][i][0] /= 128.0;
measured[ch][i][1] = 0;
}
if ( (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP ) {
for (int i = 1; i < 101; i++) {
measured[ch][i][0] += measured[ch][i-1][0];
// measured[ch][i][1] += measured[ch][i-1][1];
}
}
}
}
static void cmd_pause(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
(void)argc;
(void)argv;
pause_sweep();
}
static void cmd_resume(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
(void)argc;
(void)argv;
resume_sweep();
}
static void cmd_reset(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
if (argc == 1) {
if (strcmp(argv[0], "dfu") == 0) {
chprintf(chp, "Performing reset to DFU mode\r\n");
enter_dfu();
return;
}
}
chprintf(chp, "Performing reset\r\n");
rccEnableWWDG(FALSE);
WWDG->CFR = 0x60;
WWDG->CR = 0xff;
/* wait forever */
while (1)
;
}
int set_frequency(int freq)
{
int delay = 0;
if (frequency == freq)
return delay;
if (freq > 1400000000 && frequency <= 1400000000) {
tlv320aic3204_set_gain(95, 95);
delay += 10;
} else
if (freq > 1200000000 && frequency <= 1200000000) {
tlv320aic3204_set_gain(85, 85);
delay += 10;
} else
if (freq > 900000000 && frequency <= 900000000) {
tlv320aic3204_set_gain(75, 75);
delay += 10;
} else
if (freq > 600000000 && frequency <= 600000000) {
tlv320aic3204_set_gain(50, 50);
delay += 10;
} else
if (freq > FREQ_HARMONICS && frequency <= FREQ_HARMONICS) {
tlv320aic3204_set_gain(40, 40);
delay += 10;
} else
if (freq <= FREQ_HARMONICS && frequency > FREQ_HARMONICS) {
tlv320aic3204_set_gain(0, 0);
delay += 10;
}
int8_t ds = drive_strength;
if (ds == DRIVE_STRENGTH_AUTO) {
ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA;
}
delay += si5351_set_frequency_with_offset(freq, frequency_offset, ds);
frequency = freq;
return delay;
}
static void cmd_offset(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc != 1) {
chprintf(chp, "usage: offset {frequency offset(Hz)}\r\n");
return;
}
frequency_offset = atoi(argv[0]);
set_frequency(frequency);
}
static void cmd_freq(BaseSequentialStream *chp, int argc, char *argv[])
{
int freq;
if (argc != 1) {
chprintf(chp, "usage: freq {frequency(Hz)}\r\n");
return;
}
pause_sweep();
chMtxLock(&mutex);
freq = atoi(argv[0]);
set_frequency(freq);
chMtxUnlock(&mutex);
}
static void cmd_power(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc != 1) {
chprintf(chp, "usage: power {0-3|-1}\r\n");
return;
}
drive_strength = atoi(argv[0]);
set_frequency(frequency);
}
static void cmd_time(BaseSequentialStream *chp, int argc, char *argv[])
{
RTCDateTime timespec;
(void)argc;
(void)argv;
rtcGetTime(&RTCD1, &timespec);
chprintf(chp, "%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond);
}
static void cmd_dac(BaseSequentialStream *chp, int argc, char *argv[])
{
int value;
if (argc != 1) {
chprintf(chp, "usage: dac {value(0-4095)}\r\n");
chprintf(chp, "current value: %d\r\n", config.dac_value);
return;
}
value = atoi(argv[0]);
config.dac_value = value;
dacPutChannelX(&DACD2, 0, value);
}
static void cmd_saveconfig(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
config_save();
chprintf(chp, "Config saved.\r\n");
}
static void cmd_clearconfig(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc != 1) {
chprintf(chp, "usage: clearconfig {protection key}\r\n");
return;
}
if (strcmp(argv[0], "1234") != 0) {
chprintf(chp, "Key unmatched.\r\n");
return;
}
clear_all_config_prop_data();
chprintf(chp, "Config and all cal data cleared.\r\n");
}
static struct {
int16_t rms[2];
int16_t ave[2];
int callback_count;
#if 0
int32_t last_counter_value;
int32_t interval_cycles;
int32_t busy_cycles;
#endif
} stat;
int16_t rx_buffer[AUDIO_BUFFER_LEN * 2];
#ifdef ENABLED_DUMP
int16_t dump_buffer[AUDIO_BUFFER_LEN];
int16_t dump_selection = 0;
#endif
volatile int16_t wait_count = 0;
float measured[2][101][2];
static void
wait_dsp(int count)
{
wait_count = count;
//reset_dsp_accumerator();
while (wait_count)
__WFI();
}
#ifdef ENABLED_DUMP
static void
duplicate_buffer_to_dump(int16_t *p)
{
if (dump_selection == 1)
p = samp_buf;
else if (dump_selection == 2)
p = ref_buf;
memcpy(dump_buffer, p, sizeof dump_buffer);
}
#endif
void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n)
{
#if PORT_SUPPORTS_RT
int32_t cnt_s = port_rt_get_counter_value();
int32_t cnt_e;
#endif
int16_t *p = &rx_buffer[offset];
(void)i2sp;
(void)n;
if (wait_count > 0) {
if (wait_count == 1)
dsp_process(p, n);
#ifdef ENABLED_DUMP
duplicate_buffer_to_dump(p);
#endif
--wait_count;
}
#if PORT_SUPPORTS_RT
cnt_e = port_rt_get_counter_value();
stat.interval_cycles = cnt_s - stat.last_counter_value;
stat.busy_cycles = cnt_e - cnt_s;
stat.last_counter_value = cnt_s;
#endif
stat.callback_count++;
}
static const I2SConfig i2sconfig = {
NULL, // TX Buffer
rx_buffer, // RX Buffer
AUDIO_BUFFER_LEN * 2,
NULL, // tx callback
i2s_end_callback, // rx callback
0, // i2scfgr
2 // i2spr
};
static void cmd_data(BaseSequentialStream *chp, int argc, char *argv[])
{
int i;
int sel = 0;
if (argc == 1)
sel = atoi(argv[0]);
if (sel == 0 || sel == 1) {
chMtxLock(&mutex);
for (i = 0; i < sweep_points; i++) {
chprintf(chp, "%f %f\r\n", measured[sel][i][0], measured[sel][i][1]);
}
chMtxUnlock(&mutex);
} else if (sel >= 2 && sel < 7) {
chMtxLock(&mutex);
for (i = 0; i < sweep_points; i++) {
chprintf(chp, "%f %f\r\n", cal_data[sel-2][i][0], cal_data[sel-2][i][1]);
}
chMtxUnlock(&mutex);
} else {
chprintf(chp, "usage: data [array]\r\n");
}
}
#ifdef ENABLED_DUMP
static void cmd_dump(BaseSequentialStream *chp, int argc, char *argv[])
{
int i, j;
int len;
if (argc == 1)
dump_selection = atoi(argv[0]);
wait_dsp(3);
len = AUDIO_BUFFER_LEN;
if (dump_selection == 1 || dump_selection == 2)
len /= 2;
for (i = 0; i < len; ) {
for (j = 0; j < 16; j++, i++) {
chprintf(chp, "%04x ", 0xffff & (int)dump_buffer[i]);
}
chprintf(chp, "\r\n");
}
}
#endif
static void cmd_capture(BaseSequentialStream *chp, int argc, char *argv[])
{
// read pixel count at one time (PART*2 bytes required for read buffer)
#define PART 320
(void)argc;
(void)argv;
// pause sweep
stop_the_world = TRUE;
chThdSleepMilliseconds(1000);
// use uint16_t spi_buffer[1024] (defined in ili9341) for read buffer
uint16_t *buf = &spi_buffer[0];
int len = 320 * 240;
int i;
ili9341_read_memory(0, 0, 320, 240, PART, buf);
for (i = 0; i < PART; i++) {
streamPut(chp, buf[i] >> 8);
streamPut(chp, buf[i] & 0xff);
}
len -= PART;
while (len > 0) {
ili9341_read_memory_continue(PART, buf);
for (i = 0; i < PART; i++) {
streamPut(chp, buf[i] >> 8);
streamPut(chp, buf[i] & 0xff);
}
len -= PART;
}
//*/
stop_the_world = FALSE;
}
#if 0
static void cmd_gamma(BaseSequentialStream *chp, int argc, char *argv[])
{
float gamma[2];
(void)argc;
(void)argv;
pause_sweep();
chMtxLock(&mutex);
wait_dsp(4);
calculate_gamma(gamma);
chMtxUnlock(&mutex);
chprintf(chp, "%d %d\r\n", gamma[0], gamma[1]);
}
#endif
static void (*sample_func)(float *gamma) = calculate_gamma;
static void cmd_sample(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc == 1) {
if (strcmp(argv[0], "ref") == 0) {
sample_func = fetch_amplitude_ref;
return;
} else if (strcmp(argv[0], "ampl") == 0) {
sample_func = fetch_amplitude;
return;
} else if (strcmp(argv[0], "gamma") == 0) {
sample_func = calculate_gamma;
return;
}
}
chprintf(chp, "usage: sample {gamma|ampl|ref}\r\n");
}
#if 0
int32_t frequency0 = 1000000;
int32_t frequency1 = 300000000;
int16_t sweep_points = 101;
uint32_t frequencies[101];
uint16_t cal_status;
float cal_data[5][101][2];
#endif
config_t config = {
/* magic */ CONFIG_MAGIC,
/* dac_value */ 1922,
/* grid_color */ 0x1084,
/* menu_normal_color */ 0xffff,
/* menu_active_color */ 0x7777,
/* trace_colors[4] */ { RGB565(0,255,255), RGB565(255,0,40), RGB565(0,0,255), RGB565(50,255,0) },
///* touch_cal[4] */ { 620, 600, 160, 190 },
/* touch_cal[4] */ { 693, 605, 124, 171 },
/* default_loadcal */ 0,
/* checksum */ 0
};
properties_t current_props = {
/* magic */ CONFIG_MAGIC,
/* frequency0 */ 50000, // start = 50kHz
/* frequency1 */ 900000000, // end = 900MHz
/* sweep_points */ 101,
/* cal_status */ 0,
/* frequencies */ {},
/* cal_data */ {},
/* electrical_delay */ 0,
/* trace[4] */
{/*enable, type, channel, polar, scale, refpos*/
{ 1, TRC_LOGMAG, 0, 0, 1.0, 7.0 },
{ 1, TRC_LOGMAG, 1, 0, 1.0, 7.0 },
{ 1, TRC_SMITH, 0, 1, 1.0, 0.0 },
{ 1, TRC_PHASE, 1, 0, 1.0, 4.0 }
},
/* markers[4] */ {
{ 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 }
},
/* active_marker */ 0,
/* domain_mode */ 0,
/* velocity_factor */ 70,
/* checksum */ 0
};
properties_t *active_props = &current_props;
void
ensure_edit_config(void)
{
if (active_props == &current_props)
return;
//memcpy(&current_props, active_props, sizeof(config_t));
active_props = &current_props;
// move to uncal state
cal_status = 0;
}
static void cmd_scan(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
if (argc == 3 ) {
freq = atoi(argv[0]);
step = atoi(argv[1]);
count = atoi(argv[2]);
} else {
chprintf(chp, "usage: scan start(Hz) step(Hz) points\r\n");
return;
}
pause_sweep();
chMtxLock(&mutex);
saved_chp = chp;
sweep_once = TRUE;
sweep_enabled = TRUE;
chMtxUnlock(&mutex);
#if 0
float gamma[2];
int i;
int32_t freq, step;
int delay;
(void)argc;
(void)argv;
pause_sweep();
chMtxLock(&mutex);
freq = frequency0;
step = (frequency1 - frequency0) / (sweep_points-1);
set_frequency(freq);
delay = 4;
for (i = 0; i < sweep_points; i++) {
freq = freq + step;
wait_dsp(delay);
delay = set_frequency(freq);
palClearPad(GPIOC, GPIOC_LED);
calculate_gamma(gamma);
palSetPad(GPIOC, GPIOC_LED);
chprintf(chp, "%d %d\r\n", gamma[0], gamma[1]);
}
chMtxUnlock(&mutex);
#endif
}
// main loop for measurement
void sweep(void)
{
int i;
int delay;
float gamma0[2],gamma1[2];
float *rg;
if (sweep_once)
chprintf(saved_chp, "start\r\n");
rewind:
frequency_updated = FALSE;
//delay = 3;
if (!sweep_once) {
count = sweep_points;
}
for (i = 0; i < count; i++) {
if (!sweep_once) {
freq = frequencies[i];
rg = measured[0][i];
} else {
rg = gamma0;
}
delay = set_frequency(freq);
tlv320aic3204_select_in3(); // CH0:REFLECT
wait_dsp(delay);
// blink LED while scanning
palClearPad(GPIOC, GPIOC_LED);
/* calculate reflection coeficient */
(*sample_func)(rg);
tlv320aic3204_select_in1(); // CH1:TRANSMISSION
wait_dsp(delay);
if (!sweep_once) {
rg = measured[1][i];
} else {
rg = gamma1;
}
/* calculate transmission coeficient */
(*sample_func)(rg);
if (sweep_once)
chprintf(saved_chp, "%d %f %f %f %f\r\n", freq, gamma0[0], gamma0[1], gamma1[0], gamma1[1]);
// blink LED while scanning
palSetPad(GPIOC, GPIOC_LED);
if (!sweep_once) {
if (cal_status & CALSTAT_APPLY)
apply_error_term_at(i);
if (electrical_delay != 0)
apply_edelay_at(i);
}
redraw_requested = FALSE;
ui_process();
if (redraw_requested)
break; // return to redraw screen asap.
if (frequency_updated)
goto rewind;
freq += step;
}
if (sweep_once)
chprintf(saved_chp, "done\r\n");
else
transform_domain();
}
static void
update_marker_index(void)
{
int m;
int i;
for (m = 0; m < 4; m++) {
if (!markers[m].enabled)
continue;
uint32_t f = markers[m].frequency;
if (f < frequencies[0]) {
markers[m].index = 0;
markers[m].frequency = frequencies[0];
} else if (f >= frequencies[sweep_points-1]) {
markers[m].index = sweep_points-1;
markers[m].frequency = frequencies[sweep_points-1];
} else {
for (i = 0; i < sweep_points-1; i++) {
if (frequencies[i] <= f && f < frequencies[i+1]) {
uint32_t mid = (frequencies[i] + frequencies[i+1])/2;
if (f < mid) {
markers[m].index = i;
} else {
markers[m].index = i + 1;
}
break;
}
}
}
}
}
void
update_frequencies(void)
{
int i;
int32_t span;
int32_t start;
if (frequency1 > 0) {
start = frequency0;
span = (frequency1 - frequency0)/100;
} else {
int center = frequency0;
span = -frequency1;
start = center - span/2;
span /= 100;
}
for (i = 0; i < sweep_points; i++)
frequencies[i] = start + span * i / (sweep_points - 1) * 100;
update_marker_index();
frequency_updated = TRUE;
// set grid layout
update_grid();
}
void
freq_mode_startstop(void)
{
if (frequency1 <= 0) {
int center = frequency0;
int span = -frequency1;
ensure_edit_config();
frequency0 = center - span/2;
frequency1 = center + span/2;
}
}
void
freq_mode_centerspan(void)
{
if (frequency1 > 0) {
int start = frequency0;
int stop = frequency1;
ensure_edit_config();
frequency0 = (start + stop)/2; // center
frequency1 = -(stop - start); // span
}
}
#define START_MIN 50000
//#define STOP_MAX 900000000
#define STOP_MAX 1500000000
void
set_sweep_frequency(int type, float frequency)
{
int32_t freq = frequency;
bool cal_applied = cal_status & CALSTAT_APPLY;
switch (type) {
case ST_START:
freq_mode_startstop();
if (frequency < START_MIN)
freq = START_MIN;
if (frequency > STOP_MAX)
freq = STOP_MAX;
if (frequency0 != freq) {
ensure_edit_config();
frequency0 = freq;
// if start > stop then make start = stop
if (frequency1 < freq)
frequency1 = freq;
update_frequencies();
}
break;
case ST_STOP:
freq_mode_startstop();
if (frequency > STOP_MAX)
freq = STOP_MAX;
if (frequency < START_MIN)
freq = START_MIN;
if (frequency1 != freq) {
ensure_edit_config();
frequency1 = freq;
// if start > stop then make start = stop
if (frequency0 > freq)
frequency0 = freq;
update_frequencies();
}
break;
case ST_CENTER:
ensure_edit_config();
freq_mode_centerspan();
if (frequency0 != freq) {
ensure_edit_config();
frequency0 = freq;
int center = frequency0;
int span = -frequency1;
if (center-span/2 < START_MIN) {
span = (center - START_MIN) * 2;
frequency1 = -span;
}
if (center+span/2 > STOP_MAX) {
span = (STOP_MAX - center) * 2;
frequency1 = -span;
}
update_frequencies();
}
break;
case ST_SPAN:
freq_mode_centerspan();
if (frequency1 != -freq) {
ensure_edit_config();
frequency1 = -freq;
int center = frequency0;
int span = -frequency1;
if (center-span/2 < START_MIN) {
center = START_MIN + span/2;
frequency0 = center;
}
if (center+span/2 > STOP_MAX) {
center = STOP_MAX - span/2;
frequency0 = center;
}
update_frequencies();
}
break;
case ST_CW:
freq_mode_centerspan();
if (frequency0 != freq || frequency1 != 0) {
ensure_edit_config();
frequency0 = frequency;
frequency1 = 0;
update_frequencies();
}
break;
}
if (cal_auto_interpolate && cal_applied)
cal_interpolate(lastsaveid);
}
uint32_t
get_sweep_frequency(int type)
{
if (frequency1 >= 0) {
switch (type) {
case ST_START: return frequency0;
case ST_STOP: return frequency1;
case ST_CENTER: return (frequency0 + frequency1)/2;
case ST_SPAN: return frequency1 - frequency0;
case ST_CW: return (frequency0 + frequency1)/2;
}
} else {
switch (type) {
case ST_START: return frequency0 + frequency1/2;
case ST_STOP: return frequency0 - frequency1/2;
case ST_CENTER: return frequency0;
case ST_SPAN: return -frequency1;
case ST_CW: return frequency0;
}
}
return 0;
}
static void cmd_sweep(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc == 0) {
chprintf(chp, "%d %d %d\r\n", frequency0, frequency1, sweep_points);
return;
} else if (argc > 3) {
chprintf(chp, "usage: sweep {start(Hz)} [stop] [points]\r\n");
return;
}
if (argc >= 2) {
if (strcmp(argv[0], "start") == 0) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_START, value);
return;
} else if (strcmp(argv[0], "stop") == 0) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_STOP, value);
return;
} else if (strcmp(argv[0], "center") == 0) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_CENTER, value);
return;
} else if (strcmp(argv[0], "span") == 0) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_SPAN, value);
return;
} else if (strcmp(argv[0], "cw") == 0) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_CW, value);
return;
}
}
if (argc >= 1) {
int32_t value = atoi(argv[0]);
set_sweep_frequency(ST_START, value);
}
if (argc >= 2) {
int32_t value = atoi(argv[1]);
set_sweep_frequency(ST_STOP, value);
}
}
static void
eterm_set(int term, float re, float im)
{
int i;
for (i = 0; i < sweep_points; i++) {
cal_data[term][i][0] = re;
cal_data[term][i][1] = im;
}
}
static void
eterm_copy(int dst, int src)
{
memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]);
}
const struct open_model {
float c0;
float c1;
float c2;
float c3;
} open_model = { 50, 0, -300, 27 };
#if 0
static void
adjust_ed(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
// prepare 1/s11ao to avoid dividing complex
float c = 1000e-15;
float z0 = 50;
//float z = 6.2832 * frequencies[i] * c * z0;
float z = 0.02;
cal_data[ETERM_ED][i][0] += z;
}
}
#endif
static void
eterm_calc_es(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
// prepare 1/s11ao for effeiciency
float c = 50e-15;
//float c = 1.707e-12;
float z0 = 50;
float z = 6.2832 * frequencies[i] * c * z0;
float sq = 1 + z*z;
float s11aor = (1 - z*z) / sq;
float s11aoi = 2*z / sq;
// S11mo= S11mo - Ed
// S11ms= S11ms - Ed
float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0];
float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1];
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
// Es = (S11mo'/s11ao + S11ms)/(S11mo' - S11ms)
float numr = s11sr + s11or * s11aor - s11oi * s11aoi;
float numi = s11si + s11oi * s11aor + s11or * s11aoi;
float denomr = s11or - s11sr;
float denomi = s11oi - s11si;
sq = denomr*denomr+denomi*denomi;
cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq;
cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq;
}
cal_status &= ~CALSTAT_OPEN;
cal_status |= CALSTAT_ES;
}
static void
eterm_calc_er(int sign)
{
int i;
for (i = 0; i < sweep_points; i++) {
// Er = sign*(1-sign*Es)S11ms'
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
float esr = cal_data[ETERM_ES][i][0];
float esi = cal_data[ETERM_ES][i][1];
if (sign > 0) {
esr = -esr;
esi = -esi;
}
esr = 1 + esr;
float err = esr * s11sr - esi * s11si;
float eri = esr * s11si + esi * s11sr;
if (sign < 0) {
err = -err;
eri = -eri;
}
cal_data[ETERM_ER][i][0] = err;
cal_data[ETERM_ER][i][1] = eri;
}
cal_status &= ~CALSTAT_SHORT;
cal_status |= CALSTAT_ER;
}
// CAUTION: Et is inversed for efficiency
static void
eterm_calc_et(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// Et = 1/(S21mt - Ex)(1 - Es)
float esr = 1 - cal_data[ETERM_ES][i][0];
float esi = -cal_data[ETERM_ES][i][1];
float s21mr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0];
float s21mi = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1];
float etr = esr * s21mr - esi * s21mi;
float eti = esr * s21mi + esi * s21mr;
float sq = etr*etr + eti*eti;
float invr = etr / sq;
float invi = -eti / sq;
cal_data[ETERM_ET][i][0] = invr;
cal_data[ETERM_ET][i][1] = invi;
}
cal_status &= ~CALSTAT_THRU;
cal_status |= CALSTAT_ET;
}
void apply_error_term(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// S11m' = S11m - Ed
// S11a = S11m' / (Er + Es S11m')
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
float sq = err*err + eri*eri;
float s11ar = (s11mr * err + s11mi * eri) / sq;
float s11ai = (s11mi * err - s11mr * eri) / sq;
measured[0][i][0] = s11ar;
measured[0][i][1] = s11ai;
// CAUTION: Et is inversed for efficiency
// S21m' = S21m - Ex
// S21a = S21m' (1-EsS11a)Et
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
float s21ar = s21mr * etr - s21mi * eti;
float s21ai = s21mi * etr + s21mr * eti;
measured[1][i][0] = s21ar;
measured[1][i][1] = s21ai;
}
}
void apply_error_term_at(int i)
{
// S11m' = S11m - Ed
// S11a = S11m' / (Er + Es S11m')
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
float sq = err*err + eri*eri;
float s11ar = (s11mr * err + s11mi * eri) / sq;
float s11ai = (s11mi * err - s11mr * eri) / sq;
measured[0][i][0] = s11ar;
measured[0][i][1] = s11ai;
// CAUTION: Et is inversed for efficiency
// S21m' = S21m - Ex
// S21a = S21m' (1-EsS11a)Et
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
float s21ar = s21mr * etr - s21mi * eti;
float s21ai = s21mi * etr + s21mr * eti;
measured[1][i][0] = s21ar;
measured[1][i][1] = s21ai;
}
void apply_edelay_at(int i)
{
float w = 2 * M_PI * electrical_delay * frequencies[i] * 1E-12;
float s = sin(w);
float c = cos(w);
float real = measured[0][i][0];
float imag = measured[0][i][1];
measured[0][i][0] = real * c - imag * s;
measured[0][i][1] = imag * c + real * s;
real = measured[1][i][0];
imag = measured[1][i][1];
measured[1][i][0] = real * c - imag * s;
measured[1][i][1] = imag * c + real * s;
}
void
cal_collect(int type)
{
ensure_edit_config();
chMtxLock(&mutex);
switch (type) {
case CAL_LOAD:
cal_status |= CALSTAT_LOAD;
memcpy(cal_data[CAL_LOAD], measured[0], sizeof measured[0]);
break;
case CAL_OPEN:
cal_status |= CALSTAT_OPEN;
cal_status &= ~(CALSTAT_ES|CALSTAT_APPLY);
memcpy(cal_data[CAL_OPEN], measured[0], sizeof measured[0]);
break;
case CAL_SHORT:
cal_status |= CALSTAT_SHORT;
cal_status &= ~(CALSTAT_ER|CALSTAT_APPLY);
memcpy(cal_data[CAL_SHORT], measured[0], sizeof measured[0]);
break;
case CAL_THRU:
cal_status |= CALSTAT_THRU;
memcpy(cal_data[CAL_THRU], measured[1], sizeof measured[0]);
break;
case CAL_ISOLN:
cal_status |= CALSTAT_ISOLN;
memcpy(cal_data[CAL_ISOLN], measured[1], sizeof measured[0]);
break;
}
chMtxUnlock(&mutex);
}
void
cal_done(void)
{
ensure_edit_config();
if (!(cal_status & CALSTAT_LOAD))
eterm_set(ETERM_ED, 0.0, 0.0);
//adjust_ed();
if ((cal_status & CALSTAT_SHORT) && (cal_status & CALSTAT_OPEN)) {
eterm_calc_es();
eterm_calc_er(-1);
} else if (cal_status & CALSTAT_OPEN) {
eterm_copy(CAL_SHORT, CAL_OPEN);
eterm_set(ETERM_ES, 0.0, 0.0);
eterm_calc_er(1);
} else if (cal_status & CALSTAT_SHORT) {
eterm_set(ETERM_ES, 0.0, 0.0);
cal_status &= ~CALSTAT_SHORT;
eterm_calc_er(-1);
} else {
eterm_set(ETERM_ER, 1.0, 0.0);
eterm_set(ETERM_ES, 0.0, 0.0);
}
if (!(cal_status & CALSTAT_ISOLN))
eterm_set(ETERM_EX, 0.0, 0.0);
if (cal_status & CALSTAT_THRU) {
eterm_calc_et();
} else {
eterm_set(ETERM_ET, 1.0, 0.0);
}
cal_status |= CALSTAT_APPLY;
}
void
cal_interpolate(int s)
{
const properties_t *src = caldata_ref(s);
int i, j;
int eterm;
if (src == NULL)
return;
ensure_edit_config();
// lower than start freq of src range
for (i = 0; i < sweep_points; i++) {
if (frequencies[i] >= src->_frequencies[0])
break;
// fill cal_data at head of src range
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][0][0];
cal_data[eterm][i][1] = src->_cal_data[eterm][0][1];
}
}
j = 0;
for (; i < sweep_points; i++) {
uint32_t f = frequencies[i];
for (; j < sweep_points-1; j++) {
if (src->_frequencies[j] <= f && f < src->_frequencies[j+1]) {
// found f between freqs at j and j+1
float k1 = (float)(f - src->_frequencies[j])
/ (src->_frequencies[j+1] - src->_frequencies[j]);
float k0 = 1.0 - k1;
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][j][0] * k0 + src->_cal_data[eterm][j+1][0] * k1;
cal_data[eterm][i][1] = src->_cal_data[eterm][j][1] * k0 + src->_cal_data[eterm][j+1][1] * k1;
}
break;
}
}
if (j == sweep_points-1)
break;
}
// upper than end freq of src range
for (; i < sweep_points; i++) {
// fill cal_data at tail of src
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][sweep_points-1][0];
cal_data[eterm][i][1] = src->_cal_data[eterm][sweep_points-1][1];
}
}
cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED;
}
static void cmd_cal(BaseSequentialStream *chp, int argc, char *argv[])
{
const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" };
if (argc == 0) {
int i;
for (i = 0; i < 9; i++) {
if (cal_status & (1<<i))
chprintf(chp, "%s ", items[i]);
}
chprintf(chp, "\r\n");
return;
}
char *cmd = argv[0];
if (strcmp(cmd, "load") == 0) {
cal_collect(CAL_LOAD);
} else if (strcmp(cmd, "open") == 0) {
cal_collect(CAL_OPEN);
} else if (strcmp(cmd, "short") == 0) {
cal_collect(CAL_SHORT);
} else if (strcmp(cmd, "thru") == 0) {
cal_collect(CAL_THRU);
} else if (strcmp(cmd, "isoln") == 0) {
cal_collect(CAL_ISOLN);
} else if (strcmp(cmd, "done") == 0) {
cal_done();
draw_cal_status();
return;
} else if (strcmp(cmd, "on") == 0) {
cal_status |= CALSTAT_APPLY;
draw_cal_status();
return;
} else if (strcmp(cmd, "off") == 0) {
cal_status &= ~CALSTAT_APPLY;
draw_cal_status();
return;
} else if (strcmp(cmd, "reset") == 0) {
cal_status = 0;
draw_cal_status();
return;
} else if (strcmp(cmd, "data") == 0) {
chprintf(chp, "%f %f\r\n", cal_data[CAL_LOAD][0][0], cal_data[CAL_LOAD][0][1]);
chprintf(chp, "%f %f\r\n", cal_data[CAL_OPEN][0][0], cal_data[CAL_OPEN][0][1]);
chprintf(chp, "%f %f\r\n", cal_data[CAL_SHORT][0][0], cal_data[CAL_SHORT][0][1]);
chprintf(chp, "%f %f\r\n", cal_data[CAL_THRU][0][0], cal_data[CAL_THRU][0][1]);
chprintf(chp, "%f %f\r\n", cal_data[CAL_ISOLN][0][0], cal_data[CAL_ISOLN][0][1]);
return;
} else if (strcmp(cmd, "in") == 0) {
int s = 0;
if (argc > 1)
s = atoi(argv[1]);
cal_interpolate(s);
draw_cal_status();
return;
} else {
chprintf(chp, "usage: cal [load|open|short|thru|isoln|done|reset|on|off|in]\r\n");
return;
}
}
static void cmd_save(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
if (argc != 1)
goto usage;
int id = atoi(argv[0]);
if (id < 0 || id >= SAVEAREA_MAX)
goto usage;
caldata_save(id);
draw_cal_status();
return;
usage:
chprintf(chp, "save {id}\r\n");
}
static void cmd_recall(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
if (argc != 1)
goto usage;
int id = atoi(argv[0]);
if (id < 0 || id >= SAVEAREA_MAX)
goto usage;
pause_sweep();
chMtxLock(&mutex);
if (caldata_recall(id) == 0) {
// success
update_frequencies();
draw_cal_status();
}
chMtxUnlock(&mutex);
resume_sweep();
return;
usage:
chprintf(chp, "recall {id}\r\n");
}
const struct {
const char *name;
uint16_t refpos;
float scale_unit;
} trace_info[] = {
{ "LOGMAG", 7, 10 },
{ "PHASE", 4, 90 },
{ "DELAY", 4, 1 },
{ "SMITH", 0, 1 },
{ "POLAR", 0, 1 },
{ "LINEAR", 0, 0.125 },
{ "SWR", 0, 1 },
{ "REAL", 4, 0.25 },
{ "IMAG", 4, 0.25 },
{ "R", 0, 100 },
{ "X", 4, 100 }
};
const char * const trc_channel_name[] = {
"CH0", "CH1"
};
const char *
get_trace_typename(int t)
{
return trace_info[trace[t].type].name;
}
void set_trace_type(int t, int type)
{
int polar = type == TRC_SMITH || type == TRC_POLAR;
int enabled = type != TRC_OFF;
int force = FALSE;
if (trace[t].polar != polar) {
trace[t].polar = polar;
force = TRUE;
}
if (trace[t].enabled != enabled) {
trace[t].enabled = enabled;
force = TRUE;
}
if (trace[t].type != type) {
trace[t].type = type;
trace[t].refpos = trace_info[type].refpos;
if (polar)
force = TRUE;
}
if (force) {
plot_into_index(measured);
force_set_markmap();
}
}
void set_trace_channel(int t, int channel)
{
if (trace[t].channel != channel) {
trace[t].channel = channel;
force_set_markmap();
}
}
void set_trace_scale(int t, float scale)
{
scale /= trace_info[trace[t].type].scale_unit;
if (trace[t].scale != scale) {
trace[t].scale = scale;
force_set_markmap();
}
}
float get_trace_scale(int t)
{
return trace[t].scale * trace_info[trace[t].type].scale_unit;
}
void set_trace_refpos(int t, float refpos)
{
if (trace[t].refpos != refpos) {
trace[t].refpos = refpos;
force_set_markmap();
}
}
float get_trace_refpos(int t)
{
return trace[t].refpos;
}
float
my_atof(const char *p)
{
int neg = FALSE;
if (*p == '-')
neg = TRUE;
if (*p == '-' || *p == '+')
p++;
float x = atoi(p);
while (isdigit((int)*p))
p++;
if (*p == '.') {
float d = 1.0f;
p++;
while (isdigit((int)*p)) {
d /= 10;
x += d * (*p - '0');
p++;
}
}
if (*p == 'e' || *p == 'E') {
p++;
int exp = atoi(p);
while (exp > 0) {
x *= 10;
exp--;
}
while (exp < 0) {
x /= 10;
exp++;
}
}
if (neg)
x = -x;
return x;
}
static void cmd_trace(BaseSequentialStream *chp, int argc, char *argv[])
{
int t;
if (argc == 0) {
for (t = 0; t < 4; t++) {
if (trace[t].enabled) {
const char *type = trace_info[trace[t].type].name;
const char *channel = trc_channel_name[trace[t].channel];
float scale = get_trace_scale(t);
float refpos = get_trace_refpos(t);
chprintf(chp, "%d %s %s %f %f\r\n", t, type, channel, scale, refpos);
}
}
return;
}
if (strcmp(argv[0], "all") == 0 &&
argc > 1 && strcmp(argv[1], "off") == 0) {
set_trace_type(0, TRC_OFF);
set_trace_type(1, TRC_OFF);
set_trace_type(2, TRC_OFF);
set_trace_type(3, TRC_OFF);
goto exit;
}
t = atoi(argv[0]);
if (t < 0 || t >= 4)
goto usage;
if (argc == 1) {
const char *type = get_trace_typename(t);
const char *channel = trc_channel_name[trace[t].channel];
chprintf(chp, "%d %s %s\r\n", t, type, channel);
return;
}
if (argc > 1) {
if (strcmp(argv[1], "logmag") == 0) {
set_trace_type(t, TRC_LOGMAG);
} else if (strcmp(argv[1], "phase") == 0) {
set_trace_type(t, TRC_PHASE);
} else if (strcmp(argv[1], "polar") == 0) {
set_trace_type(t, TRC_POLAR);
} else if (strcmp(argv[1], "smith") == 0) {
set_trace_type(t, TRC_SMITH);
} else if (strcmp(argv[1], "delay") == 0) {
set_trace_type(t, TRC_DELAY);
} else if (strcmp(argv[1], "linear") == 0) {
set_trace_type(t, TRC_LINEAR);
} else if (strcmp(argv[1], "swr") == 0) {
set_trace_type(t, TRC_SWR);
} else if (strcmp(argv[1], "real") == 0) {
set_trace_type(t, TRC_REAL);
} else if (strcmp(argv[1], "imag") == 0) {
set_trace_type(t, TRC_IMAG);
} else if (strcmp(argv[1], "r") == 0) {
set_trace_type(t, TRC_R);
} else if (strcmp(argv[1], "x") == 0) {
set_trace_type(t, TRC_X);
} else if (strcmp(argv[1], "linear") == 0) {
set_trace_type(t, TRC_LINEAR);
} else if (strcmp(argv[1], "off") == 0) {
set_trace_type(t, TRC_OFF);
} else if (strcmp(argv[1], "scale") == 0 && argc >= 3) {
//trace[t].scale = my_atof(argv[2]);
set_trace_scale(t, my_atof(argv[2]));
goto exit;
} else if (strcmp(argv[1], "refpos") == 0 && argc >= 3) {
//trace[t].refpos = my_atof(argv[2]);
set_trace_refpos(t, my_atof(argv[2]));
goto exit;
} else {
goto usage;
}
}
if (argc > 2) {
int src = atoi(argv[2]);
if (src != 0 && src != 1)
goto usage;
trace[t].channel = src;
}
exit:
return;
usage:
chprintf(chp, "trace {0|1|2|3|all} [logmag|phase|smith|linear|delay|swr|real|imag|r|x|off] [src]\r\n");
chprintf(chp, "trace {0|1|2|3} {scale|refpos} {value}\r\n");
}
void set_electrical_delay(float picoseconds)
{
if (electrical_delay != picoseconds) {
electrical_delay = picoseconds;
force_set_markmap();
}
}
float get_electrical_delay(void)
{
return electrical_delay;
}
static void cmd_edelay(BaseSequentialStream *chp, int argc, char *argv[])
{
if (argc == 0) {
chprintf(chp, "%f\r\n", electrical_delay);
return;
}
if (argc > 0) {
set_electrical_delay(my_atof(argv[0]));
}
}
static void cmd_marker(BaseSequentialStream *chp, int argc, char *argv[])
{
int t;
if (argc == 0) {
for (t = 0; t < 4; t++) {
if (markers[t].enabled) {
chprintf(chp, "%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency);
}
}
return;
}
if (strcmp(argv[0], "off") == 0) {
active_marker = -1;
for (t = 0; t < 4; t++)
markers[t].enabled = FALSE;
return;
}
t = atoi(argv[0])-1;
if (t < 0 || t >= 4)
goto usage;
if (argc == 1) {
chprintf(chp, "%d %d %d\r\n", t+1, markers[t].index, frequency);
active_marker = t;
markers[t].enabled = TRUE;
return;
}
if (argc > 1) {
if (strcmp(argv[1], "off") == 0) {
markers[t].enabled = FALSE;
if (active_marker == t)
active_marker = -1;
} else if (strcmp(argv[1], "on") == 0) {
markers[t].enabled = TRUE;
active_marker = t;
} else {
markers[t].enabled = TRUE;
int index = atoi(argv[1]);
markers[t].index = index;
markers[t].frequency = frequencies[index];
active_marker = t;
}
}
return;
usage:
chprintf(chp, "marker [n] [off|{index}]\r\n");
}
static void cmd_touchcal(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
//extern int16_t touch_cal[4];
int i;
chMtxLock(&mutex);
chprintf(chp, "first touch upper left, then lower right...");
touch_cal_exec();
chprintf(chp, "done\r\n");
chprintf(chp, "touch cal params: ");
for (i = 0; i < 4; i++) {
chprintf(chp, "%d ", config.touch_cal[i]);
}
chprintf(chp, "\r\n");
chMtxUnlock(&mutex);
}
static void cmd_touchtest(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
(void)argc;
(void)argv;
chMtxLock(&mutex);
do {
touch_draw_test();
} while(argc);
chMtxUnlock(&mutex);
}
static void cmd_frequencies(BaseSequentialStream *chp, int argc, char *argv[])
{
int i;
(void)chp;
(void)argc;
(void)argv;
for (i = 0; i < sweep_points; i++) {
chprintf(chp, "%d\r\n", frequencies[i]);
}
}
static void cmd_test(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)chp;
(void)argc;
(void)argv;
if (sweep_once)
chprintf(chp, "busy\r\n");
else
chprintf(chp, "done\r\n");
#if 0
int i;
for (i = 0; i < 100; i++) {
palClearPad(GPIOC, GPIOC_LED);
set_frequency(10000000);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
palClearPad(GPIOC, GPIOC_LED);
set_frequency(90000000);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
}
#endif
#if 0
int i;
int mode = 0;
if (argc >= 1)
mode = atoi(argv[0]);
for (i = 0; i < 20; i++) {
palClearPad(GPIOC, GPIOC_LED);
ili9341_test(mode);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
}
#endif
#if 0
//extern adcsample_t adc_samples[2];
//chprintf(chp, "adc: %d %d\r\n", adc_samples[0], adc_samples[1]);
int i;
int x, y;
for (i = 0; i < 50; i++) {
test_touch(&x, &y);
chprintf(chp, "adc: %d %d\r\n", x, y);
chThdSleepMilliseconds(200);
}
//extern int touch_x, touch_y;
//chprintf(chp, "adc: %d %d\r\n", touch_x, touch_y);
#endif
while (argc > 1) {
int x, y;
touch_position(&x, &y);
chprintf(chp, "touch: %d %d\r\n", x, y);
chThdSleepMilliseconds(200);
}
}
static void cmd_gain(BaseSequentialStream *chp, int argc, char *argv[])
{
int rvalue;
int lvalue = 0;
if (argc != 1 && argc != 2) {
chprintf(chp, "usage: gain {lgain(0-95)} [rgain(0-95)]\r\n");
return;
}
rvalue = atoi(argv[0]);
if (argc == 2)
lvalue = atoi(argv[1]);
tlv320aic3204_set_gain(lvalue, rvalue);
}
static void cmd_port(BaseSequentialStream *chp, int argc, char *argv[])
{
int port;
if (argc != 1) {
chprintf(chp, "usage: port {0:TX 1:RX}\r\n");
return;
}
port = atoi(argv[0]);
if (port)
tlv320aic3204_select_in1();
else
tlv320aic3204_select_in3(); // default
}
static void cmd_stat(BaseSequentialStream *chp, int argc, char *argv[])
{
int16_t *p = &rx_buffer[0];
int32_t acc0, acc1;
int32_t ave0, ave1;
int32_t count = AUDIO_BUFFER_LEN;
int i;
(void)argc;
(void)argv;
acc0 = acc1 = 0;
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
acc0 += p[i];
acc1 += p[i+1];
}
ave0 = acc0 / count;
ave1 = acc1 / count;
acc0 = acc1 = 0;
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
acc0 += (p[i] - ave0)*(p[i] - ave0);
acc1 += (p[i+1] - ave1)*(p[i+1] - ave1);
}
stat.rms[0] = sqrtf(acc0 / count);
stat.rms[1] = sqrtf(acc1 / count);
stat.ave[0] = ave0;
stat.ave[1] = ave1;
chprintf(chp, "average: %d %d\r\n", stat.ave[0], stat.ave[1]);
chprintf(chp, "rms: %d %d\r\n", stat.rms[0], stat.rms[1]);
chprintf(chp, "callback count: %d\r\n", stat.callback_count);
//chprintf(chp, "interval cycle: %d\r\n", stat.interval_cycles);
//chprintf(chp, "busy cycle: %d\r\n", stat.busy_cycles);
//chprintf(chp, "load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles);
extern int awd_count;
chprintf(chp, "awd: %d\r\n", awd_count);
}
#ifndef VERSION
#define VERSION "unknown"
#endif
const char NANOVNA_VERSION[] = "edy555 0.1.1";
static void cmd_version(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
chprintf(chp, "%s %s\r\n", NANOVNA_VERSION, "extended with scan command");
}
static void cmd_vbat(BaseSequentialStream *chp, int argc, char *argv[])
{
(void)argc;
(void)argv;
chprintf(chp, "%d mV\r\n", vbat);
}
static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442);
static const ShellCommand commands[] =
{
{ "version", cmd_version },
{ "reset", cmd_reset },
{ "freq", cmd_freq },
{ "offset", cmd_offset },
{ "time", cmd_time },
{ "dac", cmd_dac },
{ "saveconfig", cmd_saveconfig },
{ "clearconfig", cmd_clearconfig },
{ "data", cmd_data },
#ifdef ENABLED_DUMP
{ "dump", cmd_dump },
#endif
{ "frequencies", cmd_frequencies },
{ "port", cmd_port },
{ "stat", cmd_stat },
{ "gain", cmd_gain },
{ "power", cmd_power },
{ "sample", cmd_sample },
//{ "gamma", cmd_gamma },
{ "scan", cmd_scan },
{ "sweep", cmd_sweep },
{ "test", cmd_test },
{ "touchcal", cmd_touchcal },
{ "touchtest", cmd_touchtest },
{ "pause", cmd_pause },
{ "resume", cmd_resume },
{ "cal", cmd_cal },
{ "save", cmd_save },
{ "recall", cmd_recall },
{ "trace", cmd_trace },
{ "marker", cmd_marker },
{ "edelay", cmd_edelay },
{ "capture", cmd_capture },
{ "vbat", cmd_vbat },
{ NULL, NULL }
};
static const ShellConfig shell_cfg1 =
{
(BaseSequentialStream *)&SDU1,
commands
};
static const I2CConfig i2ccfg = {
0x00300506, //voodoo magic 400kHz @ HSI 8MHz
0,
0
};
static DACConfig dac1cfg1 = {
//init: 2047U,
init: 1922U,
datamode: DAC_DHRM_12BIT_RIGHT
};
int main(void)
{
halInit();
chSysInit();
chMtxObjectInit(&mutex);
//palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
//palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
i2cStart(&I2CD1, &i2ccfg);
si5351_init();
// MCO on PA8
//palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0));
/*
* Initializes a serial-over-USB CDC driver.
*/
sduObjectInit(&SDU1);
sduStart(&SDU1, &serusbcfg);
/*
* Activates the USB driver and then the USB bus pull-up on D+.
* Note, a delay is inserted in order to not have to disconnect the cable
* after a reset.
*/
usbDisconnectBus(serusbcfg.usbp);
chThdSleepMilliseconds(100);
usbStart(serusbcfg.usbp, &usbcfg);
usbConnectBus(serusbcfg.usbp);
/*
* SPI LCD Initialize
*/
ili9341_init();
/*
* Initialize graph plotting
*/
plot_init();
/* restore config */
config_recall();
dac1cfg1.init = config.dac_value;
/*
* Starting DAC1 driver, setting up the output pin as analog as suggested
* by the Reference Manual.
*/
dacStart(&DACD2, &dac1cfg1);
/* initial frequencies */
update_frequencies();
/* restore frequencies and calibration properties from flash memory */
if (config.default_loadcal >= 0)
caldata_recall(config.default_loadcal);
redraw_frame();
/*
* I2S Initialize
*/
tlv320aic3204_init();
i2sInit();
i2sObjectInit(&I2SD2);
i2sStart(&I2SD2, &i2sconfig);
i2sStartExchange(&I2SD2);
ui_init();
/*
* Shell manager initialization.
*/
shellInit();
chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);
while (1) {
if (SDU1.config->usbp->state == USB_ACTIVE) {
thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2),
NORMALPRIO + 1,
shellThread, (void *)&shell_cfg1);
chThdWait(shelltp); /* Waiting termination. */
}
chThdSleepMilliseconds(1000);
}
}
/* The prototype shows it is a naked function - in effect this is just an
assembly function. */
void HardFault_Handler( void );
void hard_fault_handler_c(uint32_t *sp) __attribute__( ( naked ) );;
void HardFault_Handler(void)
{
uint32_t* sp;
//__asm volatile ("mrs %0, msp \n\t": "=r" (sp) );
__asm volatile ("mrs %0, psp \n\t": "=r" (sp) );
hard_fault_handler_c(sp);
}
void hard_fault_handler_c(uint32_t* sp)
{
while (true) {}
}