NanoVNA/plot.c
DiSlord 922b66abdb Move offset variable to si5351.c (better use it as independent library)
Define and move constants in nanovna.h, and use it
Fix command 'marker' - display marker freq (not current freq)
2020-03-14 15:18:14 +03:00

1703 lines
41 KiB
C

#include <math.h>
#include <string.h>
#include "ch.h"
#include "hal.h"
#include "chprintf.h"
#include "nanovna.h"
static void cell_draw_marker_info(int x0, int y0);
static void draw_battery_status(void);
static int16_t grid_offset;
static int16_t grid_width;
int16_t area_width = AREA_WIDTH_NORMAL;
int16_t area_height = AREA_HEIGHT_NORMAL;
// Cell render use spi buffer
typedef uint16_t pixel;
pixel *cell_buffer = (pixel *)spi_buffer;
// Cell size
// Depends from spi_buffer size, CELLWIDTH*CELLHEIGHT*sizeof(pixel) <= sizeof(spi_buffer)
#define CELLWIDTH (64)
#define CELLHEIGHT (32)
// Check buffer size
#if CELLWIDTH*CELLHEIGHT > SPI_BUFFER_SIZE
#error "Too small spi_buffer size SPI_BUFFER_SIZE < CELLWIDTH*CELLHEIGH"
#endif
// indicate dirty cells (not redraw if cell data not changed)
#define MAX_MARKMAP_X ((320+CELLWIDTH-1)/CELLWIDTH)
#define MAX_MARKMAP_Y ((240+CELLHEIGHT-1)/CELLHEIGHT)
// Define markmap mask size
#if MAX_MARKMAP_X <= 8
typedef uint8_t map_t;
#elif MAX_MARKMAP_X <= 16
typedef uint16_t map_t;
#elif MAX_MARKMAP_X <= 32
typedef uint32_t map_t;
#endif
map_t markmap[2][MAX_MARKMAP_Y];
uint8_t current_mappage = 0;
// Trace data cache, for faster redraw cells
// CELL_X[16:31] x position
// CELL_Y[ 0:15] y position
typedef uint32_t index_t;
static index_t trace_index[TRACES_MAX][POINTS_COUNT];
#define INDEX(x, y) ((((index_t)x)<<16)|(((index_t)y)))
#define CELL_X(i) (int)(((i)>>16))
#define CELL_Y(i) (int)(((i)&0xFFFF))
//#define floatToInt(v) ((int)(v))
static int
floatToInt(float v){
if (v < 0) return v-0.5;
if (v > 0) return v+0.5;
return 0;
}
void update_grid(void)
{
uint32_t gdigit = 100000000;
uint32_t fstart = get_sweep_frequency(ST_START);
uint32_t fspan = get_sweep_frequency(ST_SPAN);
uint32_t grid;
while (gdigit > 100) {
grid = 5 * gdigit;
if (fspan / grid >= 4)
break;
grid = 2 * gdigit;
if (fspan / grid >= 4)
break;
grid = gdigit;
if (fspan / grid >= 4)
break;
gdigit /= 10;
}
grid_offset = (WIDTH) * ((fstart % grid) / 100) / (fspan / 100);
grid_width = (WIDTH) * (grid / 100) / (fspan / 1000);
force_set_markmap();
redraw_request |= REDRAW_FREQUENCY;
}
static inline int
circle_inout(int x, int y, int r)
{
int d = x*x + y*y - r*r;
if (d < -r)
return 1;
if (d > r)
return -1;
return 0;
}
static int
polar_grid(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0) return 0;
if (d == 0) return 1;
// vertical and horizontal axis
if (x == 0 || y == 0)
return 1;
d = circle_inout(x, y, P_RADIUS / 5);
if (d == 0) return 1;
if (d > 0) return 0;
d = circle_inout(x, y, P_RADIUS * 2 / 5);
if (d == 0) return 1;
if (d > 0) return 0;
// cross sloping lines
if (x == y || x == -y)
return 1;
d = circle_inout(x, y, P_RADIUS * 3 / 5);
if (d == 0) return 1;
if (d > 0) return 0;
d = circle_inout(x, y, P_RADIUS * 4 / 5);
if (d == 0) return 1;
return 0;
}
/*
* Constant Resistance circle: (u - r/(r+1))^2 + v^2 = 1/(r+1)^2
* Constant Reactance circle: (u - 1)^2 + (v-1/x)^2 = 1/x^2
*/
static int
smith_grid(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// horizontal axis
if (y == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS;
// Constant Reactance Circle: 2j : R/2 = P_RADIUS/2
if (circle_inout(x, y+P_RADIUS/2, P_RADIUS/2) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS/2, P_RADIUS/2) == 0)
return 1;
// Constant Resistance Circle: 3 : R/4 = P_RADIUS/4
d = circle_inout(x+P_RADIUS/4, y, P_RADIUS/4);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1j : R = P_RADIUS
if (circle_inout(x, y+P_RADIUS, P_RADIUS) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS, P_RADIUS) == 0)
return 1;
// Constant Resistance Circle: 1 : R/2
d = circle_inout(x+P_RADIUS/2, y, P_RADIUS/2);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1/2j : R*2
if (circle_inout(x, y+P_RADIUS*2, P_RADIUS*2) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS*2, P_RADIUS*2) == 0)
return 1;
// Constant Resistance Circle: 1/3 : R*3/4
if (circle_inout(x+P_RADIUS*3/4, y, P_RADIUS*3/4) == 0)
return 1;
return 0;
}
#if 0
static int
smith_grid2(int x, int y, float scale)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS * scale;
// Constant Reactance Circle: 2j : R/2 = 58
if (circle_inout(x, y+58*scale, 58*scale) == 0)
return 1;
if (circle_inout(x, y-58*scale, 58*scale) == 0)
return 1;
#if 0
// Constant Resistance Circle: 3 : R/4 = 29
d = circle_inout(x+29*scale, y, 29*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-29*scale, y, 29*scale);
if (d > 0) return 0;
if (d == 0) return 1;
#endif
// Constant Reactance Circle: 1j : R = 116
if (circle_inout(x, y+116*scale, 116*scale) == 0)
return 1;
if (circle_inout(x, y-116*scale, 116*scale) == 0)
return 1;
// Constant Resistance Circle: 1 : R/2 = 58
d = circle_inout(x+58*scale, y, 58*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-58*scale, y, 58*scale);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1/2j : R*2 = 232
if (circle_inout(x, y+232*scale, 232*scale) == 0)
return 1;
if (circle_inout(x, y-232*scale, 232*scale) == 0)
return 1;
#if 0
// Constant Resistance Circle: 1/3 : R*3/4 = 87
d = circle_inout(x+87*scale, y, 87*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x+87*scale, y, 87*scale);
if (d > 0) return 0;
if (d == 0) return 1;
#endif
// Constant Resistance Circle: 0 : R
d = circle_inout(x+P_RADIUS*scale, y, P_RADIUS*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-P_RADIUS*scale, y, P_RADIUS*scale);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Resistance Circle: -1/3 : R*3/2 = 174
d = circle_inout(x+174*scale, y, 174*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-174*scale, y, 174*scale);
//if (d > 0) return 0;
if (d == 0) return 1;
return 0;
}
#endif
#if 0
const int cirs[][4] = {
{ 0, 58/2, 58/2, 0 }, // Constant Reactance Circle: 2j : R/2 = 58
{ 29/2, 0, 29/2, 1 }, // Constant Resistance Circle: 3 : R/4 = 29
{ 0, 115/2, 115/2, 0 }, // Constant Reactance Circle: 1j : R = 115
{ 58/2, 0, 58/2, 1 }, // Constant Resistance Circle: 1 : R/2 = 58
{ 0, 230/2, 230/2, 0 }, // Constant Reactance Circle: 1/2j : R*2 = 230
{ 86/2, 0, 86/2, 1 }, // Constant Resistance Circle: 1/3 : R*3/4 = 86
{ 0, 460/2, 460/2, 0 }, // Constant Reactance Circle: 1/4j : R*4 = 460
{ 115/2, 0, 115/2, 1 }, // Constant Resistance Circle: 0 : R
{ 173/2, 0, 173/2, 1 }, // Constant Resistance Circle: -1/3 : R*3/2 = 173
{ 0, 0, 0, 0 } // sentinel
};
static int
smith_grid3(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS /2;
int i;
for (i = 0; cirs[i][2]; i++) {
d = circle_inout(x+cirs[i][0], y+cirs[i][1], cirs[i][2]);
if (d == 0)
return 1;
if (d > 0 && cirs[i][3])
return 0;
d = circle_inout(x-cirs[i][0], y-cirs[i][1], cirs[i][2]);
if (d == 0)
return 1;
if (d > 0 && cirs[i][3])
return 0;
}
return 0;
}
#endif
#if 0
static int
rectangular_grid(int x, int y)
{
//#define FREQ(x) (((x) * (fspan / 1000) / (WIDTH-1)) * 1000 + fstart)
//int32_t n = FREQ(x-1) / fgrid;
//int32_t m = FREQ(x) / fgrid;
//if ((m - n) > 0)
//if (((x * 6) % (WIDTH-1)) < 6)
//if (((x - grid_offset) % grid_width) == 0)
if (x == 0 || x == WIDTH-1)
return 1;
if ((y % GRIDY) == 0)
return 1;
if ((((x + grid_offset) * 10) % grid_width) < 10)
return 1;
return 0;
}
#endif
static int
rectangular_grid_x(int x)
{
x-=CELLOFFSETX;
if (x < 0)
return 0;
if (x == 0 || x == WIDTH)
return 1;
if ((((x + grid_offset) * 10) % grid_width) < 10)
return 1;
return 0;
}
static int
rectangular_grid_y(int y)
{
if (y < 0)
return 0;
if ((y % GRIDY) == 0)
return 1;
return 0;
}
#if 0
int
set_strut_grid(int x)
{
uint16_t *buf = spi_buffer;
int y;
for (y = 0; y < HEIGHT; y++) {
int c = rectangular_grid(x, y);
c |= smith_grid(x, y);
*buf++ = c;
}
return y;
}
void
draw_on_strut(int v0, int d, int color)
{
int v;
int v1 = v0 + d;
if (v0 < 0) v0 = 0;
if (v1 < 0) v1 = 0;
if (v0 >= HEIGHT) v0 = HEIGHT-1;
if (v1 >= HEIGHT) v1 = HEIGHT-1;
if (v0 == v1) {
v = v0; d = 2;
} else if (v0 < v1) {
v = v0; d = v1 - v0 + 1;
} else {
v = v1; d = v0 - v1 + 1;
}
while (d-- > 0)
spi_buffer[v++] |= color;
}
#endif
/*
* calculate log10(abs(gamma))
*/
static float
logmag(const float *v)
{
return log10f(v[0]*v[0] + v[1]*v[1]) * 10;
}
/*
* calculate phase[-2:2] of coefficient
*/
static float
phase(const float *v)
{
return 2 * atan2f(v[1], v[0]) / VNA_PI * 90;
}
/*
* calculate groupdelay
*/
static float
groupdelay(const float *v, const float *w, float deltaf)
{
#if 1
// atan(w)-atan(v) = atan((w-v)/(1+wv))
float r = w[0]*v[1] - w[1]*v[0];
float i = w[0]*v[0] + w[1]*v[1];
return atan2f(r, i) / (2 * VNA_PI * deltaf);
#else
return (atan2f(w[0], w[1]) - atan2f(v[0], v[1])) / (2 * VNA_PI * deltaf);
#endif
}
/*
* calculate abs(gamma)
*/
static float
linear(const float *v)
{
return - sqrtf(v[0]*v[0] + v[1]*v[1]);
}
/*
* calculate vswr; (1+gamma)/(1-gamma)
*/
static float
swr(const float *v)
{
float x = sqrtf(v[0]*v[0] + v[1]*v[1]);
if (x >= 1)
return INFINITY;
return (1 + x)/(1 - x);
}
static float
resitance(const float *v) {
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
float zr = ((1+v[0])*(1-v[0]) - v[1]*v[1]) * d;
return zr;
}
static float
reactance(const float *v) {
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
float zi = 2*v[1] * d;
return zi;
}
static void
cartesian_scale(float re, float im, int *xp, int *yp, float scale)
{
//float scale = 4e-3;
int x = floatToInt(re * P_RADIUS * scale);
int y = floatToInt(im * P_RADIUS * scale);
if (x < -P_RADIUS) x = -P_RADIUS;
else if (x > P_RADIUS) x = P_RADIUS;
if (y < -P_RADIUS) y = -P_RADIUS;
else if (y > P_RADIUS) y = P_RADIUS;
*xp = P_CENTER_X + x;
*yp = P_CENTER_Y - y;
}
float
groupdelay_from_array(int i, float array[POINTS_COUNT][2])
{
int bottom = (i == 0) ? 0 : i - 1;
int top = (i == POINTS_COUNT-1) ? POINTS_COUNT-1 : i + 1;
float deltaf = frequencies[top] - frequencies[bottom];
return groupdelay(array[bottom], array[top], deltaf);
}
static float
gamma2resistance(const float v[2])
{
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
return ((1+v[0])*(1-v[0]) - v[1]*v[1]) * d;
}
static float
gamma2reactance(const float v[2])
{
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
return 2*v[1] * d;
}
static index_t
trace_into_index(int t, int i, float array[POINTS_COUNT][2])
{
int y, x;
float *coeff = array[i];
float refpos = NGRIDY - get_trace_refpos(t);
float v = refpos;
float scale = 1 / get_trace_scale(t);
switch (trace[t].type) {
case TRC_LOGMAG:
v-= logmag(coeff) * scale;
break;
case TRC_PHASE:
v-= phase(coeff) * scale;
break;
case TRC_DELAY:
v-= groupdelay_from_array(i, array) * scale;
break;
case TRC_LINEAR:
v+= linear(coeff) * scale;
break;
case TRC_SWR:
v+= (1 - swr(coeff)) * scale;
break;
case TRC_REAL:
v-= coeff[0] * scale;
break;
case TRC_IMAG:
v-= coeff[1] * scale;
break;
case TRC_R:
v-= resitance(coeff) * scale;
break;
case TRC_X:
v-= reactance(coeff) * scale;
break;
case TRC_SMITH:
//case TRC_ADMIT:
case TRC_POLAR:
cartesian_scale(coeff[0], coeff[1], &x, &y, scale);
goto set_index;
}
if (v < 0) v = 0;
if (v > NGRIDY) v = NGRIDY;
x = (i * (WIDTH) + (sweep_points-1)/2) / (sweep_points-1) + CELLOFFSETX;
y = floatToInt(v * GRIDY);
set_index:
return INDEX(x, y);
}
static void
format_smith_value(char *buf, int len, const float coeff[2], uint32_t frequency)
{
// z = (gamma+1)/(gamma-1) * z0
float z0 = 50;
float d = z0 / ((1-coeff[0])*(1-coeff[0])+coeff[1]*coeff[1]);
float zr = ((1+coeff[0])*(1-coeff[0]) - coeff[1]*coeff[1]) * d;
float zi = 2*coeff[1] * d;
char prefix;
float value;
switch (marker_smith_format) {
case MS_LIN:
plot_printf(buf, len, "%.2f %.1f" S_DEGREE, linear(coeff), phase(coeff));
break;
case MS_LOG: {
float v = logmag(coeff);
if (v == -INFINITY)
plot_printf(buf, len, "-"S_INFINITY" dB");
else
plot_printf(buf, len, "%.1fdB %.1f" S_DEGREE, v, phase(coeff));
}
break;
case MS_REIM:
plot_printf(buf, len, "%F%+Fj", coeff[0], coeff[1]);
break;
case MS_RX:
plot_printf(buf, len, "%F"S_OHM"%+Fj", zr, zi);
break;
case MS_RLC:
if (zi < 0){// Capacity
prefix = 'F';
value = -1 / (2 * VNA_PI * frequency * zi);
}
else {
prefix = 'H';
value = zi / (2 * VNA_PI * frequency);
}
plot_printf(buf, len, "%F"S_OHM" %F%c", zr, value, prefix);
break;
}
}
static void
trace_get_value_string(int t, char *buf, int len, float array[POINTS_COUNT][2], int i)
{
float *coeff = array[i];
float v;
char *format;
switch (trace[t].type) {
case TRC_LOGMAG:
format = "%.2fdB";
v = logmag(coeff);
break;
case TRC_PHASE:
format = "%.1f"S_DEGREE;
v = phase(coeff);
break;
case TRC_DELAY:
format = "%.2Fs";
v = groupdelay_from_array(i, array);
break;
case TRC_LINEAR:
format = "%.4f";
v = linear(coeff);
break;
case TRC_SWR:
format = "%.4f";
v = swr(coeff);
break;
case TRC_REAL:
format = "%.4f";
v = coeff[0];
break;
case TRC_IMAG:
format = "%.4fj";
v = coeff[1];
break;
case TRC_R:
format = "%.2F"S_OHM;
v = gamma2resistance(coeff);
break;
case TRC_X:
format = "%.2F"S_OHM;
v = gamma2reactance(coeff);
break;
case TRC_SMITH:
format_smith_value(buf, len, coeff, frequencies[i]);
return;
//case TRC_ADMIT:
case TRC_POLAR:
plot_printf(buf, len, "%.2f%+.2fj", coeff[0], coeff[1]);
default:
return;
}
plot_printf(buf, len, format, v);
}
static void
trace_get_value_string_delta(int t, char *buf, int len, float array[POINTS_COUNT][2], int index, int index_ref)
{
float *coeff = array[index];
float *coeff_ref = array[index_ref];
float v;
char *format;
switch (trace[t].type) {
case TRC_LOGMAG:
format = S_DELTA"%.2fdB";
v = logmag(coeff) - logmag(coeff_ref);
break;
case TRC_PHASE:
format = S_DELTA"%.2f"S_DEGREE;
v = phase(coeff) - phase(coeff_ref);
break;
case TRC_DELAY:
format = "%.2Fs";
v = groupdelay_from_array(index, array) - groupdelay_from_array(index_ref, array);
break;
case TRC_LINEAR:
format = S_DELTA"%.3f";
v = linear(coeff) - linear(coeff_ref);
break;
case TRC_SWR:
format = S_DELTA"%.3f";
v = swr(coeff);
if (v!=INFINITY)
v-=swr(coeff_ref);
break;
case TRC_SMITH:
format_smith_value(buf, len, coeff, frequencies[index]);
return;
case TRC_REAL:
format = S_DELTA"%.3f";
v = coeff[0] - coeff_ref[0];
break;
case TRC_IMAG:
format = S_DELTA"%.3fj";
v = coeff[1] - coeff_ref[1];
break;
case TRC_R:
format = "%.2F"S_OHM;
v = gamma2resistance(coeff);
break;
case TRC_X:
format = "%.2F"S_OHM;
v = gamma2reactance(coeff);
break;
//case TRC_ADMIT:
case TRC_POLAR:
plot_printf(buf, len, "%.2f%+.2fj", coeff[0], coeff[1]);
return;
default:
return;
}
plot_printf(buf, len, format, v);
}
static int
trace_get_info(int t, char *buf, int len)
{
const char *name = get_trace_typename(t);
float scale = get_trace_scale(t);
switch (trace[t].type) {
case TRC_LOGMAG:
return plot_printf(buf, len, "%s %ddB/", name, (int)scale);
case TRC_PHASE:
return plot_printf(buf, len, "%s %d" S_DEGREE "/", name, (int)scale);
case TRC_SMITH:
//case TRC_ADMIT:
case TRC_POLAR:
if (scale != 1.0)
return plot_printf(buf, len, "%s %.1fFS", name, scale);
else
return plot_printf(buf, len, "%s ", name);
default:
return plot_printf(buf, len, "%s %F/", name, scale);
}
return 0;
}
static float time_of_index(int idx) {
return 1.0 / (float)(frequencies[1] - frequencies[0]) / (float)FFT_SIZE * idx;
}
static float distance_of_index(int idx) {
float distance = ((float)idx * (float)SPEED_OF_LIGHT) / ( (float)(frequencies[1] - frequencies[0]) * (float)FFT_SIZE * 2.0);
return distance * velocity_factor;
}
static inline void
mark_map(int x, int y)
{
if (y >= 0 && y < MAX_MARKMAP_Y && x >= 0 && x < MAX_MARKMAP_X)
markmap[current_mappage][y] |= 1<<x;
}
static inline void
swap_markmap(void)
{
current_mappage^= 1;
}
static void
clear_markmap(void)
{
memset(markmap[current_mappage], 0, sizeof markmap[current_mappage]);
}
void
force_set_markmap(void)
{
memset(markmap[current_mappage], 0xff, sizeof markmap[current_mappage]);
}
void
invalidateRect(int x0, int y0, int x1, int y1){
x0/=CELLWIDTH;
x1/=CELLWIDTH;
y0/=CELLHEIGHT;
y1/=CELLHEIGHT;
int x, y;
for (y=y0; y<=y1; y++)
for (x=x0; x<=x1; x++)
mark_map(x, y);
}
#define SWAP(x,y) {int t=x;x=y;y=t;}
static void
mark_cells_from_index(void)
{
int t, i, j;
/* mark cells between each neighber points */
map_t *map = &markmap[current_mappage][0];
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
index_t *index = &trace_index[t][0];
int m0 = CELL_X(index[0]) / CELLWIDTH;
int n0 = CELL_Y(index[0]) / CELLHEIGHT;
map[n0]|= 1<<m0;
for (i = 1; i < sweep_points; i++) {
int m1 = CELL_X(index[i]) / CELLWIDTH;
int n1 = CELL_Y(index[i]) / CELLHEIGHT;
if (m0 == m1 && n0 == n1)
continue;
int x0 = m0; int x1 = m1; if (x0>x1) SWAP(x0, x1); m0=m1;
int y0 = n0; int y1 = n1; if (y0>y1) SWAP(y0, y1); n0=n1;
for (; y0<=y1; y0++)
for(j=x0; j<=x1; j++)
map[y0]|= 1<<j;
}
}
}
static inline void
markmap_upperarea(void)
{
// Hardcoded, Text info from upper area
invalidateRect(0, 0, AREA_WIDTH_NORMAL, 31);
}
//
// in most cases _compute_outcode clip calculation not give render line speedup
//
static inline void
cell_drawline(int x0, int y0, int x1, int y1, int c)
{
if (x0<0 && x1<0) return;
if (y0<0 && y1<0) return;
if (x0>=CELLWIDTH && x1>=CELLWIDTH )return;
if (y0>=CELLHEIGHT && y1>=CELLHEIGHT)return;
// modifed Bresenham's line algorithm, see https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
if (x1 < x0) {SWAP(x0,x1);SWAP(y0,y1);}
int dx = x1 - x0;
int dy = y1 - y0, sy = 1; if (dy < 0) {dy = -dy; sy = -1;}
int err = (dx > dy ? dx : -dy) / 2;
while (1){
if (y0>=0 && y0<CELLHEIGHT && x0>=0 && x0<CELLWIDTH)
cell_buffer[y0*CELLWIDTH+x0]|= c;
if (x0 == x1 && y0 == y1)
return;
int e2 = err;
if (e2 > -dx) { err -= dy; x0++; }
if (e2 < dy) { err += dx; y0+=sy;}
}
}
// Give a little speedup then draw rectangular plot (50 systick on all calls, all render req 700 systick)
// Write more difficult algoritm for seach indexes not give speedup
static int
search_index_range_x(int x1, int x2, index_t index[POINTS_COUNT], int *i0, int *i1)
{
int i, j;
int head = 0;
int tail = sweep_points;
int idx_x;
// Search index point in cell
while (1) {
i = (head + tail) / 2;
idx_x = CELL_X(index[i]);
if (idx_x >= x2){ // index after cell
if (tail == i)
return false;
tail = i;
}
else if (idx_x < x1){ // index before cell
if (head == i)
return false;
head = i;
}
else // index in cell (x =< idx_x < cell_end)
break;
}
j = i;
// Search index left from point
do{
j--;
}while (j > 0 && x1 <= CELL_X(index[j]));
*i0 = j;
// Search index right from point
do{
i++;
}while (i < sweep_points-1 && CELL_X(index[i]) < x2);
*i1 = i;
return TRUE;
}
#define REFERENCE_WIDTH 6
#define REFERENCE_HEIGHT 5
#define REFERENCE_X_OFFSET 5
#define REFERENCE_Y_OFFSET 2
// Reference bitmap
static const uint8_t reference_bitmap[]={
0b11000000,
0b11110000,
0b11111100,
0b11110000,
0b11000000,
};
static void
draw_refpos(int x, int y, int c)
{
int y0=y, j;
for (j=0; j<REFERENCE_HEIGHT; j++, y0++){
if (y0 < 0 || y0 >= CELLHEIGHT)
continue;
int x0=x;
uint8_t bits = reference_bitmap[j];
while (bits){
if (x0 >= 0 && x0 < CELLWIDTH)
cell_buffer[y0*CELLWIDTH+x0] = (bits&0x80) ? c : DEFAULT_BG_COLOR;
x0++;
bits<<=1;
}
}
}
#define MARKER_WIDTH 7
#define MARKER_HEIGHT 10
#define X_MARKER_OFFSET 3
#define Y_MARKER_OFFSET 10
static const uint8_t marker_bitmap[]={
// Marker 1
0b11111110,
0b11101110,
0b11001110,
0b11101110,
0b11101110,
0b11101110,
0b11000110,
0b01111100,
0b00111000,
0b00010000,
// Marker 2
0b11111110,
0b11000110,
0b10111010,
0b11111010,
0b11000110,
0b10111110,
0b10000010,
0b01111100,
0b00111000,
0b00010000,
// Marker 3
0b11111110,
0b11000110,
0b10111010,
0b11100110,
0b11111010,
0b10111010,
0b11000110,
0b01111100,
0b00111000,
0b00010000,
// Marker 4
0b11111110,
0b11110110,
0b11100110,
0b11010110,
0b10110110,
0b10110110,
0b10000010,
0b01110100,
0b00111000,
0b00010000,
};
static void
draw_marker(int x, int y, int c, int ch)
{
int y0=y, j;
for (j=0;j<MARKER_HEIGHT;j++,y0++){
int x0=x;
uint8_t bits = marker_bitmap[ch*MARKER_HEIGHT+j];
bool force_color = false;
while (bits){
if (bits&0x80)
force_color = true;
if (x0 >= 0 && x0 < CELLWIDTH && y0 >= 0 && y0 < CELLHEIGHT){
if (bits&0x80)
cell_buffer[y0*CELLWIDTH+x0] = c;
else if (force_color)
cell_buffer[y0*CELLWIDTH+x0] = DEFAULT_BG_COLOR;
}
x0++;
bits<<=1;
}
}
}
static void
markmap_marker(int marker)
{
int t;
if (!markers[marker].enabled)
return;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
index_t index = trace_index[t][markers[marker].index];
int x = CELL_X(index) - X_MARKER_OFFSET;
int y = CELL_Y(index) - Y_MARKER_OFFSET;
invalidateRect(x, y, x+MARKER_WIDTH-1, y+MARKER_HEIGHT-1);
}
}
static void
markmap_all_markers(void)
{
int i;
for (i = 0; i < MARKERS_MAX; i++) {
if (!markers[i].enabled)
continue;
markmap_marker(i);
}
markmap_upperarea();
}
void
marker_position(int m, int t, int *x, int *y)
{
index_t index = trace_index[t][markers[m].index];
*x = CELL_X(index);
*y = CELL_Y(index);
}
static int greater(int x, int y) { return x > y; }
static int lesser(int x, int y) { return x < y; }
static int (*compare)(int x, int y) = lesser;
int
marker_search(void)
{
int i;
int found = 0;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][0]);
for (i = 0; i < POINTS_COUNT; i++) {
index_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index))) {
value = CELL_Y(index);
found = i;
}
}
return found;
}
void
set_marker_search(int mode)
{
compare = (mode == 0) ? greater : lesser;
}
int
marker_search_left(int from)
{
int i;
int found = -1;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][from]);
for (i = from - 1; i >= 0; i--) {
index_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index)))
break;
value = CELL_Y(index);
}
for (; i >= 0; i--) {
index_t index = trace_index[uistat.current_trace][i];
if ((*compare)(CELL_Y(index), value)) {
break;
}
found = i;
value = CELL_Y(index);
}
return found;
}
int
marker_search_right(int from)
{
int i;
int found = -1;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][from]);
for (i = from + 1; i < POINTS_COUNT; i++) {
index_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index)))
break;
value = CELL_Y(index);
}
for (; i < POINTS_COUNT; i++) {
index_t index = trace_index[uistat.current_trace][i];
if ((*compare)(CELL_Y(index), value)) {
break;
}
found = i;
value = CELL_Y(index);
}
return found;
}
int
search_nearest_index(int x, int y, int t)
{
index_t *index = trace_index[t];
int min_i = -1;
int min_d = 1000;
int i;
for (i = 0; i < sweep_points; i++) {
int16_t dx = x - CELL_X(index[i]);
int16_t dy = y - CELL_Y(index[i]);
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
if (dx > 20 || dy > 20)
continue;
int d = dx*dx + dy*dy;
if (d < min_d) {
min_d = d;
min_i = i;
}
}
return min_i;
}
void
plot_into_index(float measured[2][POINTS_COUNT][2])
{
int t, i;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
int ch = trace[t].channel;
index_t *index = trace_index[t];
for (i = 0; i < sweep_points; i++)
index[i] = trace_into_index(t, i, measured[ch]);
}
#if 0
for (t = 0; t < TRACES_MAX; t++)
if (trace[t].enabled && trace[t].polar)
quicksort(trace_index[t], 0, sweep_points);
#endif
mark_cells_from_index();
markmap_all_markers();
}
static void
draw_cell(int m, int n)
{
int x0 = m * CELLWIDTH;
int y0 = n * CELLHEIGHT;
int w = CELLWIDTH;
int h = CELLHEIGHT;
int x, y;
int i0, i1, i;
int t;
uint16_t c;
// Clip cell by area
if (x0 + w > area_width)
w = area_width - x0;
if (y0 + h > area_height)
h = area_height - y0;
if (w <= 0 || h <= 0)
return;
// PULSE;
// Clear buffer ("0 : height" lines)
#if 0
// use memset 350 system ticks for all screen calls
// as understand it use 8 bit set, slow down on 32 bit systems
memset(spi_buffer, DEFAULT_BG_COLOR, (h*CELLWIDTH)*sizeof(uint16_t));
#else
// use direct set 35 system ticks for all screen calls
#if CELLWIDTH%8 != 0
#error "CELLWIDTH % 8 should be == 0 for speed, or need rewrite cell cleanup"
#endif
// Set DEFAULT_BG_COLOR for 8 pixels in one cycle
int count = h*CELLWIDTH / (16/sizeof(pixel));
uint32_t *p = (uint32_t *)cell_buffer;
while (count--) {
p[0] = DEFAULT_BG_COLOR|(DEFAULT_BG_COLOR<<16);
p[1] = DEFAULT_BG_COLOR|(DEFAULT_BG_COLOR<<16);
p[2] = DEFAULT_BG_COLOR|(DEFAULT_BG_COLOR<<16);
p[3] = DEFAULT_BG_COLOR|(DEFAULT_BG_COLOR<<16);
p+=4;
}
#endif
// Draw grid
#if 1
c = config.grid_color;
// Generate grid type list
uint32_t trace_type = 0;
for (t = 0; t < TRACES_MAX; t++)
if (trace[t].enabled)
trace_type|=(1<<trace[t].type);
// Draw rectangular plot (40 system ticks for all screen calls)
if (trace_type&RECTANGULAR_GRID_MASK){
for (x = 0; x < w; x++) {
if (rectangular_grid_x(x+x0)){
for (y = 0; y < h; y++)
cell_buffer[y * CELLWIDTH + x] = c;
}
}
for (y = 0; y < h; y++) {
if (rectangular_grid_y(y+y0)){
for (x = 0; x < w; x++)
if (x+x0 >= CELLOFFSETX && x+x0 <= WIDTH+CELLOFFSETX)
cell_buffer[y * CELLWIDTH + x] = c;
}
}
}
// Smith greed line (1000 system ticks for all screen calls)
if(trace_type&(1<<TRC_SMITH)){
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
if (smith_grid(x+x0, y+y0))
cell_buffer[y * CELLWIDTH + x] = c;
}
// Polar greed line (800 system ticks for all screen calls)
else if(trace_type&(1<<TRC_POLAR)){
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
if (polar_grid(x+x0, y+y0))
cell_buffer[y * CELLWIDTH + x] = c;
}
#if 0
else if(trace_type&(1<<TRC_ADMIT)){
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
if (smith_grid3(x+x0, y+y0)
// smith_grid2(x+x0, y+y0, 0.5))
cell_buffer[y * CELLWIDTH + x] = c;
}
#endif
#endif
// PULSE;
// Draw traces (50-600 system ticks for all screen calls, depend from lines count and size)
#if 1
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
c = config.trace_color[t];
// draw polar plot (check all points)
i0 = 0; i1=0;
uint32_t trace_type = (1<<trace[t].type);
if (trace_type & ((1<<TRC_SMITH)|(1<<TRC_POLAR)))
i1 = sweep_points-1;
else // draw rectangular plot (search index range in cell, save 50-70 system ticks for all screen calls)
search_index_range_x(x0, x0+w, trace_index[t], &i0, &i1);
index_t *index = trace_index[t];
for (i=i0; i < i1; i++) {
int x1 = CELL_X(index[i ]) - x0;
int y1 = CELL_Y(index[i ]) - y0;
int x2 = CELL_X(index[i+1]) - x0;
int y2 = CELL_Y(index[i+1]) - y0;
cell_drawline(x1, y1, x2, y2, c);
}
}
#else
for (x=0;x<area_width;x+=6)
cell_drawline(x-x0, 0-y0, area_width-x-x0, area_height-y0, config.trace_color[0]);
#endif
// PULSE;
//draw marker symbols on each trace (<10 system ticks for all screen calls)
#if 1
for (i = 0; i < MARKERS_MAX; i++) {
if (!markers[i].enabled)
continue;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
index_t index = trace_index[t][markers[i].index];
int x = CELL_X(index) - x0 - X_MARKER_OFFSET;
int y = CELL_Y(index) - y0 - Y_MARKER_OFFSET;
// Check marker icon on cell
if (x+MARKER_WIDTH>=0 && x-MARKER_WIDTH<CELLWIDTH && y+MARKER_HEIGHT>=0 && y-MARKER_HEIGHT<CELLHEIGHT)
draw_marker(x, y, config.trace_color[t], i);
}
}
#endif
// Draw trace and marker info on the top (50 system ticks for all screen calls)
#if 1
if (n == 0)
cell_draw_marker_info(x0, y0);
#endif
// PULSE;
// Draw reference position (<10 system ticks for all screen calls)
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
uint32_t trace_type = (1<<trace[t].type);
if (trace_type&((1<<TRC_SMITH)|(1<<TRC_POLAR)))
continue;
int x = 0 - x0 + CELLOFFSETX - REFERENCE_X_OFFSET;
if (x+REFERENCE_WIDTH>=0 && x-REFERENCE_WIDTH<CELLWIDTH){
int y = HEIGHT - floatToInt((get_trace_refpos(t) * GRIDY)) - y0 - REFERENCE_Y_OFFSET;
if (y+REFERENCE_HEIGHT>=0 && y-REFERENCE_HEIGHT<CELLHEIGHT)
draw_refpos(x, y, config.trace_color[t]);
}
}
// Need right clip cell render (25 system ticks for all screen calls)
#if 1
if (w < CELLWIDTH){
pixel *src = cell_buffer+CELLWIDTH;
pixel *dst = cell_buffer+w;
for (y=h; --y; src+=CELLWIDTH-w)
for(x=w;x--;)
*dst++=*src++;
}
#endif
// Draw cell (500 system ticks for all screen calls)
ili9341_bulk(OFFSETX + x0, OFFSETY + y0, w, h);
}
static void
draw_all_cells(bool flush_markmap){
int m, n;
// START_PROFILE
for (m = 0; m < (area_width+CELLWIDTH-1) / CELLWIDTH; m++)
for (n = 0; n < (area_height+CELLHEIGHT-1) / CELLHEIGHT; n++) {
if ((markmap[0][n] | markmap[1][n]) & (1<<m)){
draw_cell(m, n);
// ili9341_fill(m*CELLWIDTH+10, n*CELLHEIGHT, 2, 2, RGB565(255,0,0));
}
// else
// ili9341_fill(m*CELLWIDTH+10, n*CELLHEIGHT, 2, 2, RGB565(0,255,0));
}
// STOP_PROFILE
if (flush_markmap) {
// keep current map for update
swap_markmap();
// clear map for next plotting
clear_markmap();
}
}
void
draw_all(bool flush)
{
if (redraw_request & REDRAW_AREA)
force_set_markmap();
if (redraw_request & REDRAW_MARKER)
markmap_upperarea();
if (redraw_request & (REDRAW_CELLS | REDRAW_MARKER | REDRAW_AREA))
draw_all_cells(flush);
if (redraw_request & REDRAW_FREQUENCY)
draw_frequencies();
if (redraw_request & REDRAW_CAL_STATUS)
draw_cal_status();
if (redraw_request & REDRAW_BATTERY)
draw_battery_status();
redraw_request = 0;
}
//
// Call this function then need fast draw marker and marker info
// Used in ui.c for leveler move marker, drag marker and etc.
void
redraw_marker(int marker)
{
if (marker < 0)
return;
// mark map on new position of marker
markmap_marker(marker);
// mark cells on marker info
markmap_upperarea();
draw_all_cells(TRUE);
// Force redraw all area after (disable artifacts after fast marker update area)
redraw_request|=REDRAW_AREA;
}
void
request_to_draw_cells_behind_menu(void)
{
// Values Hardcoded from ui.c
invalidateRect(320-70, 0, 319, 239);
redraw_request |= REDRAW_CELLS;
}
void
request_to_draw_cells_behind_numeric_input(void)
{
// Values Hardcoded from ui.c
invalidateRect(0, 240-32, 319, 239);
redraw_request |= REDRAW_CELLS;
}
static int
cell_drawchar(uint8_t ch, int x, int y)
{
uint8_t bits;
int c, r, ch_size;
const uint8_t *char_buf = FONT_GET_DATA(ch);
ch_size=FONT_GET_WIDTH(ch);
// if (y <= -FONT_GET_HEIGHT || y >= CELLHEIGHT || x <= -ch_size || x >= CELLWIDTH)
// return ch_size;
if (x <= -ch_size)
return ch_size;
for(c = 0; c < FONT_GET_HEIGHT; c++) {
bits = *char_buf++;
if ((y + c) < 0 || (y + c) >= CELLHEIGHT)
continue;
for (r = 0; r < ch_size; r++) {
if ((x+r) >= 0 && (x+r) < CELLWIDTH && (0x80 & bits))
cell_buffer[(y+c)*CELLWIDTH + (x+r)] = foreground_color;
bits <<= 1;
}
}
return ch_size;
}
static void
cell_drawstring(char *str, int x, int y)
{
if (y <= -FONT_GET_HEIGHT || y >= CELLHEIGHT)
return;
while (*str) {
if (x >= CELLWIDTH)
return;
x += cell_drawchar(*str++, x, y);
}
}
static void
cell_draw_marker_info(int x0, int y0)
{
char buf[24];
int t;
if (active_marker < 0)
return;
int idx = markers[active_marker].index;
int j = 0;
if (previous_marker != -1 && uistat.current_trace != -1) {
int t = uistat.current_trace;
int mk;
for (mk = 0; mk < MARKERS_MAX; mk++) {
if (!markers[mk].enabled)
continue;
int xpos = 1 + (j%2)*(WIDTH/2) + CELLOFFSETX - x0;
int ypos = 1 + (j/2)*(FONT_GET_HEIGHT+1) - y0;
setForegroundColor(config.trace_color[t]);
if (mk == active_marker)
cell_drawstring(S_SARROW, xpos, ypos);
xpos += 5;
plot_printf(buf, sizeof buf, "M%d", mk+1);
cell_drawstring(buf, xpos, ypos);
xpos += 13;
//trace_get_info(t, buf, sizeof buf);
uint32_t freq = frequencies[markers[mk].index];
if (uistat.marker_delta && mk != active_marker) {
uint32_t freq1 = frequencies[markers[active_marker].index];
uint32_t delta = freq > freq1 ? freq - freq1 : freq1 - freq;
plot_printf(buf, sizeof buf, S_DELTA"%.9qHz", delta);
} else {
plot_printf(buf, sizeof buf, "%.10qHz", freq);
}
cell_drawstring(buf, xpos, ypos);
xpos += 67;
if (uistat.marker_delta && mk != active_marker)
trace_get_value_string_delta(t, buf, sizeof buf, measured[trace[t].channel], markers[mk].index, markers[active_marker].index);
else
trace_get_value_string(t, buf, sizeof buf, measured[trace[t].channel], markers[mk].index);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(buf, xpos, ypos);
j++;
}
// draw marker delta
if (!uistat.marker_delta && previous_marker >= 0 && active_marker != previous_marker && markers[previous_marker].enabled) {
int idx0 = markers[previous_marker].index;
int xpos = (WIDTH/2+30) + CELLOFFSETX - x0;
int ypos = 1 + (j/2)*(FONT_GET_HEIGHT+1) - y0;
plot_printf(buf, sizeof buf, S_DELTA"%d-%d:", active_marker+1, previous_marker+1);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(buf, xpos, ypos);
xpos += 27;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
uint32_t freq = frequencies[idx];
uint32_t freq1 = frequencies[idx0];
uint32_t delta = freq > freq1 ? freq - freq1 : freq1 - freq;
plot_printf(buf, sizeof buf, "%c%.13qHz", freq >= freq1 ? '+' : '-', delta);
} else {
plot_printf(buf, sizeof buf, "%Fs (%Fm)", time_of_index(idx) - time_of_index(idx0), distance_of_index(idx) - distance_of_index(idx0));
}
cell_drawstring(buf, xpos, ypos);
}
} else {
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
int xpos = 1 + (j%2)*(WIDTH/2) + CELLOFFSETX - x0;
int ypos = 1 + (j/2)*(FONT_GET_HEIGHT+1) - y0;
setForegroundColor(config.trace_color[t]);
if (t == uistat.current_trace)
cell_drawstring(S_SARROW, xpos, ypos);
xpos += 5;
plot_printf(buf, sizeof buf, "CH%d", trace[t].channel);
cell_drawstring(buf, xpos, ypos);
xpos += 19;
int n = trace_get_info(t, buf, sizeof buf);
cell_drawstring(buf, xpos, ypos);
xpos += n * 5 + 2;
//xpos += 60;
trace_get_value_string(t, buf, sizeof buf, measured[trace[t].channel], idx);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(buf, xpos, ypos);
j++;
}
// draw marker frequency
int xpos = (WIDTH/2+40) + CELLOFFSETX - x0;
int ypos = 1 + (j/2)*(FONT_GET_HEIGHT+1) - y0;
setForegroundColor(DEFAULT_FG_COLOR);
if (uistat.lever_mode == LM_MARKER)
cell_drawstring(S_SARROW, xpos, ypos);
xpos += 5;
plot_printf(buf, sizeof buf, "M%d:", active_marker+1);
cell_drawstring(buf, xpos, ypos);
xpos += 19;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
plot_printf(buf, sizeof buf, "%qHz", frequencies[idx]);
} else {
plot_printf(buf, sizeof buf, "%Fs (%Fm)", time_of_index(idx), distance_of_index(idx));
}
cell_drawstring(buf, xpos, ypos);
}
setForegroundColor(DEFAULT_FG_COLOR);
if (electrical_delay != 0) {
// draw electrical delay
int xpos = 21 + CELLOFFSETX - x0;
int ypos = 1 + ((j+1)/2)*(FONT_GET_HEIGHT+1) - y0;
if (uistat.lever_mode == LM_EDELAY)
cell_drawstring(S_SARROW, xpos, ypos);
xpos += 5;
float light_speed_ps = SPEED_OF_LIGHT*1e-12; //(m/ps)
plot_printf(buf, sizeof buf, "Edelay %Fs %Fm", electrical_delay * 1e-12,
electrical_delay * light_speed_ps * velocity_factor);
cell_drawstring(buf, xpos, ypos);
}
}
void
draw_frequencies(void)
{
char buf1[32];
char buf2[32];buf2[0]=0;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
if (FREQ_IS_CW()){
plot_printf(buf1, sizeof(buf1), " CW %qHz", get_sweep_frequency(ST_CW));
} else if (FREQ_IS_STARTSTOP()) {
plot_printf(buf1, sizeof(buf1), " START %qHz", get_sweep_frequency(ST_START));
plot_printf(buf2, sizeof(buf2), " STOP %qHz", get_sweep_frequency(ST_STOP));
} else if (FREQ_IS_CENTERSPAN()) {
plot_printf(buf1, sizeof(buf1), " CENTER %qHz", get_sweep_frequency(ST_CENTER));
plot_printf(buf2, sizeof(buf2), " SPAN %qHz", get_sweep_frequency(ST_SPAN));
}
} else {
plot_printf(buf1, sizeof(buf1), " START 0s");
plot_printf(buf2, sizeof(buf2), "STOP %Fs (%Fm)", time_of_index(POINTS_COUNT-1), distance_of_index(POINTS_COUNT-1));
}
setForegroundColor(DEFAULT_FG_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
ili9341_fill(0, FREQUENCIES_YPOS, 320, FONT_GET_HEIGHT, DEFAULT_BG_COLOR);
if (uistat.lever_mode == LM_CENTER)
buf1[0] = S_SARROW[0];
if (uistat.lever_mode == LM_SPAN)
buf2[0] = S_SARROW[0];
ili9341_drawstring(buf1, FREQUENCIES_XPOS1, FREQUENCIES_YPOS);
ili9341_drawstring(buf2, FREQUENCIES_XPOS2, FREQUENCIES_YPOS);
}
void
draw_cal_status(void)
{
int x = 0;
int y = 100;
char c[3];
setForegroundColor(DEFAULT_FG_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
ili9341_fill(0, y, OFFSETX, 6*(FONT_GET_HEIGHT+1), DEFAULT_BG_COLOR);
if (cal_status & CALSTAT_APPLY) {
c[0] = cal_status & CALSTAT_INTERPOLATED ? 'c' : 'C';
c[1] = active_props == &current_props ? '*' : '0' + lastsaveid;
c[2] = 0;
ili9341_drawstring(c, x, y);
y +=FONT_GET_HEIGHT+1;
}
int i;
static const struct {char text, zero, mask;} calibration_text[]={
{'D', 0, CALSTAT_ED},
{'R', 0, CALSTAT_ER},
{'S', 0, CALSTAT_ES},
{'T', 0, CALSTAT_ET},
{'X', 0, CALSTAT_EX}
};
for (i = 0; i < 5; i++, y+=FONT_GET_HEIGHT+1)
if (cal_status & calibration_text[i].mask)
ili9341_drawstring(&calibration_text[i].text, x, y);
}
// Draw battery level
#define BATTERY_TOP_LEVEL 4100
#define BATTERY_BOTTOM_LEVEL 3100
#define BATTERY_WARNING_LEVEL 3300
static void draw_battery_status(void)
{
int16_t vbat = adc_vbat_read();
if (vbat <= 0)
return;
uint8_t string_buf[16];
// Set battery color
setForegroundColor(vbat < BATTERY_WARNING_LEVEL ? DEFAULT_LOW_BAT_COLOR : DEFAULT_NORMAL_BAT_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
// plot_printf(string_buf, sizeof string_buf, "V:%d", vbat);
// ili9341_drawstringV(string_buf, 1, 60);
// Prepare battery bitmap image
// Battery top
int x=0;
string_buf[x++] = 0b00111100;
string_buf[x++] = 0b00100100;
string_buf[x++] = 0b11111111;
// string_buf[x++] = 0b10000001;
// Fill battery status
for (int power=BATTERY_TOP_LEVEL; power > BATTERY_BOTTOM_LEVEL; power-=100)
string_buf[x++] = (power > vbat) ? 0b10000001 : // Empty line
0b11111111; // Full line
// Battery bottom
// string_buf[x++] = 0b10000001;
string_buf[x++] = 0b11111111;
// Draw battery
blit8BitWidthBitmap(1, 1, 8, x, string_buf);
}
void
request_to_redraw_grid(void)
{
force_set_markmap();
redraw_request |= REDRAW_CELLS;
}
void
redraw_frame(void)
{
setBackgroundColor(DEFAULT_BG_COLOR);
clearScreen();
draw_frequencies();
draw_cal_status();
}
void
plot_init(void)
{
force_set_markmap();
}