mirror of
https://github.com/ttrftech/NanoVNA.git
synced 2025-12-06 03:31:59 +01:00
CH_CFG_USE_WAITEXIT (used only is Shell run as thread) CH_CFG_USE_EVENTS (NanoVNA not use events) CH_CFG_USE_EVENTS_TIMEOUT (NanoVNA not use events) Implement stack use check in "threads" command, now free stack space show in table as "stk free" in hex Check stack usage by sweep, and main threads (seems all ok, but add 64 bytes to sweep) Replace some const values to defined
2274 lines
57 KiB
C
2274 lines
57 KiB
C
/*
|
||
* Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
|
||
* All rights reserved.
|
||
*
|
||
* This is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3, or (at your option)
|
||
* any later version.
|
||
*
|
||
* The software is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with GNU Radio; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 51 Franklin Street,
|
||
* Boston, MA 02110-1301, USA.
|
||
*/
|
||
|
||
#include "ch.h"
|
||
#include "hal.h"
|
||
#include "usbcfg.h"
|
||
#include "si5351.h"
|
||
#include "nanovna.h"
|
||
#include "fft.h"
|
||
|
||
#include <chprintf.h>
|
||
//#include <stdlib.h>
|
||
#include <string.h>
|
||
//#include <ctype.h>
|
||
#include <math.h>
|
||
|
||
/*
|
||
* Shell settings
|
||
*/
|
||
// If need run shell as thread (use more amount of memory fore stack), after enable this need reduce spi_buffer size, by default shell run in main thread
|
||
//#define VNA_SHELL_THREAD
|
||
|
||
static BaseSequentialStream *shell_stream = (BaseSequentialStream *)&SDU1;
|
||
|
||
// Shell new line
|
||
#define VNA_SHELL_NEWLINE_STR "\r\n"
|
||
// Shell command promt
|
||
#define VNA_SHELL_PROMPT_STR "ch> "
|
||
// Shell max arguments
|
||
#define VNA_SHELL_MAX_ARGUMENTS 4
|
||
// Shell max command line size
|
||
#define VNA_SHELL_MAX_LENGTH 48
|
||
// Shell command functions prototypes
|
||
typedef void (*vna_shellcmd_t)(int argc, char *argv[]);
|
||
#define VNA_SHELL_FUNCTION(command_name) static void command_name(int argc, char *argv[])
|
||
|
||
// Shell command line buffer
|
||
static char shell_line[VNA_SHELL_MAX_LENGTH];
|
||
|
||
//#define ENABLED_DUMP
|
||
//#define ENABLE_THREADS_COMMAND
|
||
|
||
static void apply_error_term_at(int i);
|
||
static void apply_edelay_at(int i);
|
||
static void cal_interpolate(int s);
|
||
void update_frequencies(void);
|
||
void set_frequencies(uint32_t start, uint32_t stop, uint16_t points);
|
||
|
||
bool sweep(bool break_on_operation);
|
||
|
||
static MUTEX_DECL(mutex);
|
||
|
||
#define DRIVE_STRENGTH_AUTO (-1)
|
||
#define FREQ_HARMONICS (config.harmonic_freq_threshold)
|
||
#define IS_HARMONIC_MODE(f) ((f) > FREQ_HARMONICS)
|
||
|
||
int32_t frequency_offset = 5000;
|
||
uint32_t frequency = 10000000;
|
||
int8_t drive_strength = DRIVE_STRENGTH_AUTO;
|
||
int8_t sweep_enabled = TRUE;
|
||
int8_t sweep_once = FALSE;
|
||
int8_t cal_auto_interpolate = TRUE;
|
||
uint16_t redraw_request = 0; // contains REDRAW_XXX flags
|
||
int16_t vbat = 0;
|
||
|
||
//
|
||
// Profile stack usage (enable threads command by def ENABLE_THREADS_COMMAND) show:
|
||
// Stack maximum usage = 480 bytes, free stack = 32+64 bytes
|
||
//
|
||
static THD_WORKING_AREA(waThread1, 512+64);
|
||
static THD_FUNCTION(Thread1, arg)
|
||
{
|
||
(void)arg;
|
||
chRegSetThreadName("sweep");
|
||
|
||
while (1) {
|
||
bool completed = false;
|
||
if (sweep_enabled || sweep_once) {
|
||
chMtxLock(&mutex);
|
||
// Sweep require 8367 system tick
|
||
completed = sweep(true);
|
||
sweep_once = FALSE;
|
||
chMtxUnlock(&mutex);
|
||
} else {
|
||
__WFI();
|
||
}
|
||
|
||
chMtxLock(&mutex);
|
||
// Ui and render require 800 system tick
|
||
ui_process();
|
||
|
||
if (sweep_enabled) {
|
||
if (vbat != -1) {
|
||
adc_stop(ADC1);
|
||
vbat = adc_vbat_read(ADC1);
|
||
touch_start_watchdog();
|
||
draw_battery_status();
|
||
}
|
||
|
||
// calculate trace coordinates and plot only if scan completed
|
||
if (completed) {
|
||
plot_into_index(measured);
|
||
redraw_request |= REDRAW_CELLS;
|
||
|
||
if (marker_tracking) {
|
||
int i = marker_search();
|
||
if (i != -1 && active_marker != -1) {
|
||
markers[active_marker].index = i;
|
||
redraw_request |= REDRAW_MARKER;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// plot trace and other indications as raster
|
||
draw_all(completed); // flush markmap only if scan completed to prevent remaining traces
|
||
chMtxUnlock(&mutex);
|
||
}
|
||
}
|
||
|
||
void
|
||
pause_sweep(void)
|
||
{
|
||
sweep_enabled = FALSE;
|
||
}
|
||
|
||
void
|
||
resume_sweep(void)
|
||
{
|
||
sweep_enabled = TRUE;
|
||
}
|
||
|
||
void
|
||
toggle_sweep(void)
|
||
{
|
||
sweep_enabled = !sweep_enabled;
|
||
}
|
||
|
||
static float
|
||
bessel0(float x) {
|
||
const float eps = 0.0001;
|
||
|
||
float ret = 0;
|
||
float term = 1;
|
||
float m = 0;
|
||
|
||
while (term > eps * ret) {
|
||
ret += term;
|
||
++m;
|
||
term *= (x*x) / (4*m*m);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static float
|
||
kaiser_window(float k, float n, float beta) {
|
||
if (beta == 0.0) return 1.0;
|
||
float r = (2 * k) / (n - 1) - 1;
|
||
return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta);
|
||
}
|
||
|
||
static void
|
||
transform_domain(void)
|
||
{
|
||
// use spi_buffer as temporary buffer
|
||
// and calculate ifft for time domain
|
||
float* tmp = (float*)spi_buffer;
|
||
|
||
uint8_t window_size = POINTS_COUNT, offset = 0;
|
||
uint8_t is_lowpass = FALSE;
|
||
switch (domain_mode & TD_FUNC) {
|
||
case TD_FUNC_BANDPASS:
|
||
offset = 0;
|
||
window_size = POINTS_COUNT;
|
||
break;
|
||
case TD_FUNC_LOWPASS_IMPULSE:
|
||
case TD_FUNC_LOWPASS_STEP:
|
||
is_lowpass = TRUE;
|
||
offset = POINTS_COUNT;
|
||
window_size = POINTS_COUNT*2;
|
||
break;
|
||
}
|
||
|
||
float beta = 0.0;
|
||
switch (domain_mode & TD_WINDOW) {
|
||
case TD_WINDOW_MINIMUM:
|
||
beta = 0.0; // this is rectangular
|
||
break;
|
||
case TD_WINDOW_NORMAL:
|
||
beta = 6.0;
|
||
break;
|
||
case TD_WINDOW_MAXIMUM:
|
||
beta = 13;
|
||
break;
|
||
}
|
||
|
||
|
||
for (int ch = 0; ch < 2; ch++) {
|
||
memcpy(tmp, measured[ch], sizeof(measured[0]));
|
||
for (int i = 0; i < POINTS_COUNT; i++) {
|
||
float w = kaiser_window(i+offset, window_size, beta);
|
||
tmp[i*2+0] *= w;
|
||
tmp[i*2+1] *= w;
|
||
}
|
||
for (int i = POINTS_COUNT; i < FFT_SIZE; i++) {
|
||
tmp[i*2+0] = 0.0;
|
||
tmp[i*2+1] = 0.0;
|
||
}
|
||
if (is_lowpass) {
|
||
for (int i = 1; i < POINTS_COUNT; i++) {
|
||
tmp[(FFT_SIZE-i)*2+0] = tmp[i*2+0];
|
||
tmp[(FFT_SIZE-i)*2+1] = -tmp[i*2+1];
|
||
}
|
||
}
|
||
|
||
fft256_inverse((float(*)[2])tmp);
|
||
memcpy(measured[ch], tmp, sizeof(measured[0]));
|
||
for (int i = 0; i < POINTS_COUNT; i++) {
|
||
measured[ch][i][0] /= (float)FFT_SIZE;
|
||
if (is_lowpass) {
|
||
measured[ch][i][1] = 0.0;
|
||
} else {
|
||
measured[ch][i][1] /= (float)FFT_SIZE;
|
||
}
|
||
}
|
||
if ( (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP ) {
|
||
for (int i = 1; i < POINTS_COUNT; i++) {
|
||
measured[ch][i][0] += measured[ch][i-1][0];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Shell commands output
|
||
static int shell_printf(const char *fmt, ...) {
|
||
va_list ap;
|
||
int formatted_bytes;
|
||
va_start(ap, fmt);
|
||
formatted_bytes = chvprintf(shell_stream, fmt, ap);
|
||
va_end(ap);
|
||
return formatted_bytes;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_pause)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
pause_sweep();
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_resume)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
// restore frequencies array and cal
|
||
update_frequencies();
|
||
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
|
||
cal_interpolate(lastsaveid);
|
||
|
||
resume_sweep();
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_reset)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
if (argc == 1) {
|
||
if (strcmp(argv[0], "dfu") == 0) {
|
||
shell_printf("Performing reset to DFU mode\r\n");
|
||
enter_dfu();
|
||
return;
|
||
}
|
||
}
|
||
shell_printf("Performing reset\r\n");
|
||
|
||
rccEnableWWDG(FALSE);
|
||
WWDG->CFR = 0x60;
|
||
WWDG->CR = 0xff;
|
||
|
||
/* wait forever */
|
||
while (1)
|
||
;
|
||
}
|
||
|
||
const int8_t gain_table[] = {
|
||
0, // 0 ~ 300MHz
|
||
40, // 300 ~ 600MHz
|
||
50, // 600 ~ 900MHz
|
||
75, // 900 ~ 1200MHz
|
||
85, // 1200 ~ 1500MHz
|
||
95, // 1500MHz ~
|
||
95, // 1800MHz ~
|
||
95, // 2100MHz ~
|
||
95 // 2400MHz ~
|
||
};
|
||
|
||
#define DELAY_GAIN_CHANGE 10
|
||
|
||
static int
|
||
adjust_gain(int newfreq)
|
||
{
|
||
int delay = 0;
|
||
int new_order = newfreq / FREQ_HARMONICS;
|
||
int old_order = frequency / FREQ_HARMONICS;
|
||
if (new_order != old_order) {
|
||
tlv320aic3204_set_gain(gain_table[new_order], gain_table[new_order]);
|
||
delay += DELAY_GAIN_CHANGE;
|
||
}
|
||
return delay;
|
||
}
|
||
|
||
int set_frequency(uint32_t freq)
|
||
{
|
||
int delay = adjust_gain(freq);
|
||
int8_t ds = drive_strength;
|
||
if (ds == DRIVE_STRENGTH_AUTO) {
|
||
ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA;
|
||
}
|
||
delay += si5351_set_frequency_with_offset(freq, frequency_offset, ds);
|
||
|
||
frequency = freq;
|
||
return delay;
|
||
}
|
||
|
||
// Use macro, std isdigit more big
|
||
#define _isdigit(c) (c >= '0' && c <= '9')
|
||
// Rewrite universal standart str to value functions to more compact
|
||
//
|
||
// Convert string to int32
|
||
static int32_t my_atoi(const char *p){
|
||
int32_t value = 0;
|
||
uint32_t c;
|
||
bool neg = false;
|
||
|
||
if (*p == '-') {neg = true; p++;}
|
||
if (*p == '+') p++;
|
||
while ((c = *p++ - '0') < 10)
|
||
value = value * 10 + c;
|
||
return neg ? -value : value;
|
||
}
|
||
|
||
// Convert string to uint32
|
||
uint32_t my_atoui(const char *p){
|
||
uint32_t value = 0;
|
||
uint32_t c;
|
||
if (*p == '+') p++;
|
||
while ((c = *p++ - '0') < 10)
|
||
value = value * 10 + c;
|
||
return value;
|
||
}
|
||
|
||
double
|
||
my_atof(const char *p)
|
||
{
|
||
int neg = FALSE;
|
||
if (*p == '-')
|
||
neg = TRUE;
|
||
if (*p == '-' || *p == '+')
|
||
p++;
|
||
double x = my_atoi(p);
|
||
while (_isdigit((int)*p))
|
||
p++;
|
||
if (*p == '.') {
|
||
double d = 1.0f;
|
||
p++;
|
||
while (_isdigit((int)*p)) {
|
||
d /= 10;
|
||
x += d * (*p - '0');
|
||
p++;
|
||
}
|
||
}
|
||
if (*p == 'e' || *p == 'E') {
|
||
p++;
|
||
int exp = my_atoi(p);
|
||
while (exp > 0) {
|
||
x *= 10;
|
||
exp--;
|
||
}
|
||
while (exp < 0) {
|
||
x /= 10;
|
||
exp++;
|
||
}
|
||
}
|
||
if (neg)
|
||
x = -x;
|
||
return x;
|
||
}
|
||
|
||
//
|
||
// Function used for search substring v in list
|
||
// Example need search parameter "center" in "start|stop|center|span|cw" getStringIndex return 2
|
||
// If not found return -1
|
||
// Used for easy parse command arguments
|
||
static int getStringIndex(char *v, const char *list){
|
||
int i = 0;
|
||
while(1){
|
||
char *p = v;
|
||
while (1){
|
||
char c = *list; if (c == '|') c = 0;
|
||
if (c == *p++){
|
||
// Found, return index
|
||
if (c == 0) return i;
|
||
list++; // Compare next symbol
|
||
continue;
|
||
}
|
||
break; // Not equal, break
|
||
}
|
||
// Set new substring ptr
|
||
while (1){
|
||
// End of string, not found
|
||
if (*list == 0 ) return -1;
|
||
if (*list++ == '|') break;
|
||
}
|
||
i++;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_offset)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: offset {frequency offset(Hz)}\r\n");
|
||
return;
|
||
}
|
||
frequency_offset = my_atoui(argv[0]);
|
||
set_frequency(frequency);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_freq)
|
||
{
|
||
if (argc != 1) {
|
||
goto usage;
|
||
}
|
||
uint32_t freq = my_atoui(argv[0]);
|
||
|
||
pause_sweep();
|
||
set_frequency(freq);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: freq {frequency(Hz)}\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_power)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: power {0-3|-1}\r\n");
|
||
return;
|
||
}
|
||
drive_strength = my_atoi(argv[0]);
|
||
set_frequency(frequency);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_time)
|
||
{
|
||
RTCDateTime timespec;
|
||
(void)argc;
|
||
(void)argv;
|
||
rtcGetTime(&RTCD1, ×pec);
|
||
shell_printf("%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond);
|
||
}
|
||
|
||
|
||
VNA_SHELL_FUNCTION(cmd_dac)
|
||
{
|
||
int value;
|
||
if (argc != 1) {
|
||
shell_printf("usage: dac {value(0-4095)}\r\n"\
|
||
"current value: %d\r\n", config.dac_value);
|
||
return;
|
||
}
|
||
value = my_atoi(argv[0]);
|
||
config.dac_value = value;
|
||
dacPutChannelX(&DACD2, 0, value);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_threshold)
|
||
{
|
||
uint32_t value;
|
||
if (argc != 1) {
|
||
shell_printf("usage: threshold {frequency in harmonic mode}\r\n"\
|
||
"current: %d\r\n", config.harmonic_freq_threshold);
|
||
return;
|
||
}
|
||
value = my_atoui(argv[0]);
|
||
config.harmonic_freq_threshold = value;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_saveconfig)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
config_save();
|
||
shell_printf("Config saved.\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_clearconfig)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: clearconfig {protection key}\r\n");
|
||
return;
|
||
}
|
||
|
||
if (strcmp(argv[0], "1234") != 0) {
|
||
shell_printf("Key unmatched.\r\n");
|
||
return;
|
||
}
|
||
|
||
clear_all_config_prop_data();
|
||
shell_printf("Config and all cal data cleared.\r\n"\
|
||
"Do reset manually to take effect. Then do touch cal and save.\r\n");
|
||
}
|
||
|
||
static struct {
|
||
int16_t rms[2];
|
||
int16_t ave[2];
|
||
int callback_count;
|
||
|
||
#if 0
|
||
int32_t last_counter_value;
|
||
int32_t interval_cycles;
|
||
int32_t busy_cycles;
|
||
#endif
|
||
} stat;
|
||
|
||
int16_t rx_buffer[AUDIO_BUFFER_LEN * 2];
|
||
|
||
#ifdef ENABLED_DUMP
|
||
int16_t dump_buffer[AUDIO_BUFFER_LEN];
|
||
int16_t dump_selection = 0;
|
||
#endif
|
||
|
||
volatile int16_t wait_count = 0;
|
||
|
||
float measured[2][POINTS_COUNT][2];
|
||
|
||
static void
|
||
wait_dsp(int count)
|
||
{
|
||
wait_count = count;
|
||
//reset_dsp_accumerator();
|
||
while (wait_count)
|
||
__WFI();
|
||
}
|
||
|
||
#ifdef ENABLED_DUMP
|
||
static void
|
||
duplicate_buffer_to_dump(int16_t *p)
|
||
{
|
||
if (dump_selection == 1)
|
||
p = samp_buf;
|
||
else if (dump_selection == 2)
|
||
p = ref_buf;
|
||
memcpy(dump_buffer, p, sizeof dump_buffer);
|
||
}
|
||
#endif
|
||
|
||
void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n)
|
||
{
|
||
#if PORT_SUPPORTS_RT
|
||
int32_t cnt_s = port_rt_get_counter_value();
|
||
int32_t cnt_e;
|
||
#endif
|
||
int16_t *p = &rx_buffer[offset];
|
||
(void)i2sp;
|
||
(void)n;
|
||
|
||
if (wait_count > 0) {
|
||
if (wait_count == 1)
|
||
dsp_process(p, n);
|
||
#ifdef ENABLED_DUMP
|
||
duplicate_buffer_to_dump(p);
|
||
#endif
|
||
--wait_count;
|
||
}
|
||
|
||
#if PORT_SUPPORTS_RT
|
||
cnt_e = port_rt_get_counter_value();
|
||
stat.interval_cycles = cnt_s - stat.last_counter_value;
|
||
stat.busy_cycles = cnt_e - cnt_s;
|
||
stat.last_counter_value = cnt_s;
|
||
#endif
|
||
stat.callback_count++;
|
||
}
|
||
|
||
static const I2SConfig i2sconfig = {
|
||
NULL, // TX Buffer
|
||
rx_buffer, // RX Buffer
|
||
AUDIO_BUFFER_LEN * 2,
|
||
NULL, // tx callback
|
||
i2s_end_callback, // rx callback
|
||
0, // i2scfgr
|
||
2 // i2spr
|
||
};
|
||
|
||
VNA_SHELL_FUNCTION(cmd_data)
|
||
{
|
||
int i;
|
||
int sel = 0;
|
||
float (*array)[2];
|
||
if (argc == 1)
|
||
sel = my_atoi(argv[0]);
|
||
|
||
if (sel == 0 || sel == 1)
|
||
array = measured[sel];
|
||
else if (sel >= 2 && sel < 7)
|
||
array = cal_data[sel-2];
|
||
else
|
||
goto usage;
|
||
for (i = 0; i < sweep_points; i++)
|
||
shell_printf("%f %f\r\n", array[i][0], array[i][1]);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: data [array]\r\n");
|
||
}
|
||
|
||
#ifdef ENABLED_DUMP
|
||
VNA_SHELL_FUNCTION(cmd_dump)
|
||
{
|
||
int i, j;
|
||
int len;
|
||
|
||
if (argc == 1)
|
||
dump_selection = my_atoi(argv[0]);
|
||
|
||
wait_dsp(3);
|
||
|
||
len = AUDIO_BUFFER_LEN;
|
||
if (dump_selection == 1 || dump_selection == 2)
|
||
len /= 2;
|
||
for (i = 0; i < len; ) {
|
||
for (j = 0; j < 16; j++, i++) {
|
||
shell_printf("%04x ", 0xffff & (int)dump_buffer[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
VNA_SHELL_FUNCTION(cmd_capture)
|
||
{
|
||
// read pixel count at one time (PART*2 bytes required for read buffer)
|
||
(void)argc;
|
||
(void)argv;
|
||
int i, y;
|
||
#if SPI_BUFFER_SIZE < (3*320 + 1)
|
||
#error "Low size of spi_buffer for cmd_capture"
|
||
#endif
|
||
// read 2 row pixel time (read buffer limit by 2/3 + 1 from spi_buffer size)
|
||
for (y=0; y < 240; y+=2){
|
||
// use uint16_t spi_buffer[2048] (defined in ili9341) for read buffer
|
||
uint8_t *buf = (uint8_t *)spi_buffer;
|
||
ili9341_read_memory(0, y, 320, 2, 2*320, spi_buffer);
|
||
for (i = 0; i < 4*320; i++) {
|
||
streamPut(shell_stream, *buf++);
|
||
}
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
VNA_SHELL_FUNCTION(cmd_gamma)
|
||
{
|
||
float gamma[2];
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
pause_sweep();
|
||
chMtxLock(&mutex);
|
||
wait_dsp(4);
|
||
calculate_gamma(gamma);
|
||
chMtxUnlock(&mutex);
|
||
|
||
shell_printf("%d %d\r\n", gamma[0], gamma[1]);
|
||
}
|
||
#endif
|
||
|
||
static void (*sample_func)(float *gamma) = calculate_gamma;
|
||
|
||
VNA_SHELL_FUNCTION(cmd_sample)
|
||
{
|
||
if (argc!=1) goto usage;
|
||
// 0 1 2
|
||
static const char cmd_sample_list[] = "gamma|ampl|ref";
|
||
switch (getStringIndex(argv[1], cmd_sample_list)){
|
||
case 0:sample_func = calculate_gamma; return;
|
||
case 1:sample_func = fetch_amplitude; return;
|
||
case 2:sample_func = fetch_amplitude_ref; return;
|
||
default:break;
|
||
}
|
||
usage:
|
||
shell_printf("usage: sample {%s}\r\n", cmd_sample_list);
|
||
}
|
||
|
||
config_t config = {
|
||
.magic = CONFIG_MAGIC,
|
||
.dac_value = 1922,
|
||
.grid_color = DEFAULT_GRID_COLOR,
|
||
.menu_normal_color = DEFAULT_MENU_COLOR,
|
||
.menu_active_color = DEFAULT_MENU_ACTIVE_COLOR,
|
||
.trace_color = { DEFAULT_TRACE_1_COLOR, DEFAULT_TRACE_2_COLOR, DEFAULT_TRACE_3_COLOR, DEFAULT_TRACE_4_COLOR },
|
||
// .touch_cal = { 693, 605, 124, 171 }, // 2.4 inch LCD panel
|
||
.touch_cal = { 338, 522, 153, 192 }, // 2.8 inch LCD panel
|
||
.default_loadcal = 0,
|
||
.harmonic_freq_threshold = 300000000
|
||
};
|
||
|
||
properties_t current_props = {
|
||
.magic = CONFIG_MAGIC,
|
||
._frequency0 = 50000, // start = 50kHz
|
||
._frequency1 = 900000000, // end = 900MHz
|
||
._sweep_points = POINTS_COUNT,
|
||
._trace = {/*enable, type, channel, reserved, scale, refpos*/
|
||
{ 1, TRC_LOGMAG, 0, 0, 10.0, NGRIDY-1 },
|
||
{ 1, TRC_LOGMAG, 1, 0, 10.0, NGRIDY-1 },
|
||
{ 1, TRC_SMITH, 0, 0, 1.0, 0 },
|
||
{ 1, TRC_PHASE, 1, 0, 90.0, NGRIDY/2 }
|
||
},
|
||
._markers = {
|
||
{ 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 }
|
||
},
|
||
._velocity_factor = 0.7,
|
||
._marker_smith_format = MS_RLC
|
||
};
|
||
properties_t *active_props = ¤t_props;
|
||
|
||
void
|
||
ensure_edit_config(void)
|
||
{
|
||
if (active_props == ¤t_props)
|
||
return;
|
||
|
||
//memcpy(¤t_props, active_props, sizeof(config_t));
|
||
active_props = ¤t_props;
|
||
// move to uncal state
|
||
cal_status = 0;
|
||
}
|
||
|
||
#define DELAY_CHANNEL_CHANGE 3
|
||
|
||
// main loop for measurement
|
||
bool sweep(bool break_on_operation)
|
||
{
|
||
int i;
|
||
// blink LED while scanning
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
for (i = 0; i < sweep_points; i++) {
|
||
int delay = set_frequency(frequencies[i]);
|
||
tlv320aic3204_select(0); // CH0:REFLECT
|
||
wait_dsp(delay);
|
||
|
||
/* calculate reflection coefficient */
|
||
(*sample_func)(measured[0][i]);
|
||
|
||
tlv320aic3204_select(1); // CH1:TRANSMISSION
|
||
wait_dsp(DELAY_CHANNEL_CHANGE);
|
||
|
||
/* calculate transmission coefficient */
|
||
(*sample_func)(measured[1][i]);
|
||
|
||
if (cal_status & CALSTAT_APPLY)
|
||
apply_error_term_at(i);
|
||
|
||
if (electrical_delay != 0)
|
||
apply_edelay_at(i);
|
||
|
||
// back to toplevel to handle ui operation
|
||
if (operation_requested && break_on_operation)
|
||
return false;
|
||
}
|
||
// blink LED while scanning
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
if ((domain_mode & DOMAIN_MODE) == DOMAIN_TIME)
|
||
transform_domain();
|
||
return true;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_scan)
|
||
{
|
||
uint32_t start, stop;
|
||
int16_t points = sweep_points;
|
||
|
||
if (argc != 2 && argc != 3) {
|
||
shell_printf("usage: scan {start(Hz)} {stop(Hz)} [points]\r\n");
|
||
return;
|
||
}
|
||
|
||
start = my_atoui(argv[0]);
|
||
stop = my_atoui(argv[1]);
|
||
if (start == 0 || stop == 0 || start > stop) {
|
||
shell_printf("frequency range is invalid\r\n");
|
||
return;
|
||
}
|
||
if (argc == 3) {
|
||
points = my_atoi(argv[2]);
|
||
if (points <= 0 || points > sweep_points) {
|
||
shell_printf("sweep points exceeds range\r\n");
|
||
return;
|
||
}
|
||
}
|
||
|
||
pause_sweep();
|
||
chMtxLock(&mutex);
|
||
set_frequencies(start, stop, points);
|
||
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
|
||
cal_interpolate(lastsaveid);
|
||
|
||
sweep_once = TRUE;
|
||
chMtxUnlock(&mutex);
|
||
|
||
// wait finishing sweep
|
||
while (sweep_once)
|
||
chThdSleepMilliseconds(10);
|
||
}
|
||
|
||
static void
|
||
update_marker_index(void)
|
||
{
|
||
int m;
|
||
int i;
|
||
for (m = 0; m < MARKERS_MAX; m++) {
|
||
if (!markers[m].enabled)
|
||
continue;
|
||
uint32_t f = markers[m].frequency;
|
||
uint32_t fstart = get_sweep_frequency(ST_START);
|
||
uint32_t fstop = get_sweep_frequency(ST_STOP);
|
||
if (f < fstart) {
|
||
markers[m].index = 0;
|
||
markers[m].frequency = fstart;
|
||
} else if (f >= fstop) {
|
||
markers[m].index = sweep_points-1;
|
||
markers[m].frequency = fstop;
|
||
} else {
|
||
for (i = 0; i < sweep_points-1; i++) {
|
||
if (frequencies[i] <= f && f < frequencies[i+1]) {
|
||
markers[m].index = f < (frequencies[i]/2 + frequencies[i+1]/2) ? i : i+1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
set_frequencies(uint32_t start, uint32_t stop, uint16_t points)
|
||
{
|
||
uint32_t i;
|
||
uint32_t step = (points - 1);
|
||
uint32_t span = stop - start;
|
||
uint32_t delta = span / step;
|
||
uint32_t error = span % step;
|
||
uint32_t f = start, df = step>>1;
|
||
for (i = 0; i <= step; i++, f+=delta) {
|
||
frequencies[i] = f;
|
||
df+=error;
|
||
if (df >=step) {
|
||
f++;
|
||
df-=step;
|
||
}
|
||
}
|
||
// disable at out of sweep range
|
||
for (; i < sweep_points; i++)
|
||
frequencies[i] = 0;
|
||
}
|
||
|
||
void
|
||
update_frequencies(void)
|
||
{
|
||
uint32_t start, stop;
|
||
if (frequency0 < frequency1) {
|
||
start = frequency0;
|
||
stop = frequency1;
|
||
} else {
|
||
start = frequency1;
|
||
stop = frequency0;
|
||
}
|
||
|
||
set_frequencies(start, stop, sweep_points);
|
||
operation_requested = OP_FREQCHANGE;
|
||
|
||
update_marker_index();
|
||
|
||
// set grid layout
|
||
update_grid();
|
||
}
|
||
|
||
static void
|
||
freq_mode_startstop(void)
|
||
{
|
||
if (frequency0 > frequency1) {
|
||
ensure_edit_config();
|
||
uint32_t f = frequency1;
|
||
frequency1 = frequency0;
|
||
frequency0 = f;
|
||
}
|
||
}
|
||
|
||
static void
|
||
freq_mode_centerspan(void)
|
||
{
|
||
if (frequency0 <= frequency1) {
|
||
ensure_edit_config();
|
||
uint32_t f = frequency1;
|
||
frequency1 = frequency0;
|
||
frequency0 = f;
|
||
}
|
||
}
|
||
|
||
#define START_MIN 50000
|
||
#define STOP_MAX 2700000000U
|
||
|
||
void
|
||
set_sweep_frequency(int type, uint32_t freq)
|
||
{
|
||
int cal_applied = cal_status & CALSTAT_APPLY;
|
||
|
||
// Check frequency for out of bounds (minimum SPAN can be any value)
|
||
if (type!=ST_SPAN && freq < START_MIN)
|
||
freq = START_MIN;
|
||
if (freq > STOP_MAX)
|
||
freq = STOP_MAX;
|
||
|
||
switch (type) {
|
||
case ST_START:
|
||
freq_mode_startstop();
|
||
if (frequency0 != freq) {
|
||
ensure_edit_config();
|
||
frequency0 = freq;
|
||
// if start > stop then make start = stop
|
||
if (frequency1 < freq)
|
||
frequency1 = freq;
|
||
}
|
||
break;
|
||
case ST_STOP:
|
||
freq_mode_startstop();
|
||
if (frequency1 != freq) {
|
||
ensure_edit_config();
|
||
frequency1 = freq;
|
||
// if start > stop then make start = stop
|
||
if (frequency0 > freq)
|
||
frequency0 = freq;
|
||
}
|
||
break;
|
||
case ST_CENTER:
|
||
freq_mode_centerspan();
|
||
uint32_t center = FREQ_CENTER();
|
||
if (center != freq) {
|
||
uint32_t span = FREQ_SPAN();
|
||
ensure_edit_config();
|
||
if (freq < START_MIN + span/2) {
|
||
span = (freq - START_MIN) * 2;
|
||
}
|
||
if (freq > STOP_MAX - span/2) {
|
||
span = (STOP_MAX - freq) * 2;
|
||
}
|
||
frequency0 = freq + span/2;
|
||
frequency1 = freq - span/2;
|
||
}
|
||
break;
|
||
case ST_SPAN:
|
||
freq_mode_centerspan();
|
||
if (frequency0 - frequency1 != freq) {
|
||
ensure_edit_config();
|
||
uint32_t center = frequency0/2 + frequency1/2;
|
||
if (center < START_MIN + freq/2) {
|
||
center = START_MIN + freq/2;
|
||
}
|
||
if (center > STOP_MAX - freq/2) {
|
||
center = STOP_MAX - freq/2;
|
||
}
|
||
frequency1 = center - freq/2;
|
||
frequency0 = center + freq/2;
|
||
}
|
||
break;
|
||
case ST_CW:
|
||
freq_mode_centerspan();
|
||
if (frequency0 != freq || frequency1 != freq) {
|
||
ensure_edit_config();
|
||
frequency0 = freq;
|
||
frequency1 = freq;
|
||
}
|
||
break;
|
||
}
|
||
update_frequencies();
|
||
if (cal_auto_interpolate && cal_applied)
|
||
cal_interpolate(lastsaveid);
|
||
}
|
||
|
||
uint32_t
|
||
get_sweep_frequency(int type)
|
||
{
|
||
if (frequency0 <= frequency1) {
|
||
switch (type) {
|
||
case ST_START: return frequency0;
|
||
case ST_STOP: return frequency1;
|
||
case ST_CENTER: return frequency0/2 + frequency1/2;
|
||
case ST_SPAN: return frequency1 - frequency0;
|
||
case ST_CW: return frequency0/2 + frequency1/2;
|
||
}
|
||
} else {
|
||
switch (type) {
|
||
case ST_START: return frequency1;
|
||
case ST_STOP: return frequency0;
|
||
case ST_CENTER: return frequency0/2 + frequency1/2;
|
||
case ST_SPAN: return frequency0 - frequency1;
|
||
case ST_CW: return frequency0/2 + frequency1/2;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_sweep)
|
||
{
|
||
if (argc == 0) {
|
||
shell_printf("%d %d %d\r\n", frequency0, frequency1, sweep_points);
|
||
return;
|
||
} else if (argc > 3) {
|
||
goto usage;
|
||
}
|
||
uint32_t value0 = 0;
|
||
uint32_t value1 = 0;
|
||
if (argc >=1) value0 = my_atoui(argv[0]);
|
||
if (argc >=2) value1 = my_atoui(argv[1]);
|
||
#if MAX_FREQ_TYPE!=5
|
||
#error "Sweep mode possibly changed, check cmd_sweep function"
|
||
#endif
|
||
// Parse sweep {start|stop|center|span|cw} {freq(Hz)}
|
||
// get enum ST_START, ST_STOP, ST_CENTER, ST_SPAN, ST_CW
|
||
static const char sweep_cmd[] = "start|stop|center|span|cw";
|
||
if (argc == 2 && value0 == 0) {
|
||
int type = getStringIndex(argv[0], sweep_cmd);
|
||
if (type == -1)
|
||
goto usage;
|
||
set_sweep_frequency(type, value1);
|
||
return;
|
||
}
|
||
// Parse sweep {start(Hz)} [stop(Hz)]
|
||
if (value0)
|
||
set_sweep_frequency(ST_START, value0);
|
||
if (value1)
|
||
set_sweep_frequency(ST_STOP, value1);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: sweep {start(Hz)} [stop(Hz)]\r\n"\
|
||
"\tsweep {%s} {freq(Hz)}\r\n", sweep_cmd);
|
||
}
|
||
|
||
|
||
static void
|
||
eterm_set(int term, float re, float im)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
cal_data[term][i][0] = re;
|
||
cal_data[term][i][1] = im;
|
||
}
|
||
}
|
||
|
||
static void
|
||
eterm_copy(int dst, int src)
|
||
{
|
||
memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]);
|
||
}
|
||
|
||
#if 0
|
||
const struct open_model {
|
||
float c0;
|
||
float c1;
|
||
float c2;
|
||
float c3;
|
||
} open_model = { 50, 0, -300, 27 };
|
||
#endif
|
||
|
||
#if 0
|
||
static void
|
||
adjust_ed(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
|
||
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
|
||
// prepare 1/s11ao to avoid dividing complex
|
||
float c = 1000e-15;
|
||
float z0 = 50;
|
||
//float z = 2 * M_PI * frequencies[i] * c * z0;
|
||
float z = 0.02;
|
||
cal_data[ETERM_ED][i][0] += z;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
eterm_calc_es(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
|
||
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
|
||
// prepare 1/s11ao for effeiciency
|
||
float c = 50e-15;
|
||
//float c = 1.707e-12;
|
||
float z0 = 50;
|
||
float z = 2 * M_PI * frequencies[i] * c * z0;
|
||
float sq = 1 + z*z;
|
||
float s11aor = (1 - z*z) / sq;
|
||
float s11aoi = 2*z / sq;
|
||
|
||
// S11mo’= S11mo - Ed
|
||
// S11ms’= S11ms - Ed
|
||
float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1];
|
||
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
|
||
// Es = (S11mo'/s11ao + S11ms’)/(S11mo' - S11ms’)
|
||
float numr = s11sr + s11or * s11aor - s11oi * s11aoi;
|
||
float numi = s11si + s11oi * s11aor + s11or * s11aoi;
|
||
float denomr = s11or - s11sr;
|
||
float denomi = s11oi - s11si;
|
||
sq = denomr*denomr+denomi*denomi;
|
||
cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq;
|
||
cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq;
|
||
}
|
||
cal_status &= ~CALSTAT_OPEN;
|
||
cal_status |= CALSTAT_ES;
|
||
}
|
||
|
||
static void
|
||
eterm_calc_er(int sign)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// Er = sign*(1-sign*Es)S11ms'
|
||
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
|
||
float esr = cal_data[ETERM_ES][i][0];
|
||
float esi = cal_data[ETERM_ES][i][1];
|
||
if (sign > 0) {
|
||
esr = -esr;
|
||
esi = -esi;
|
||
}
|
||
esr = 1 + esr;
|
||
float err = esr * s11sr - esi * s11si;
|
||
float eri = esr * s11si + esi * s11sr;
|
||
if (sign < 0) {
|
||
err = -err;
|
||
eri = -eri;
|
||
}
|
||
cal_data[ETERM_ER][i][0] = err;
|
||
cal_data[ETERM_ER][i][1] = eri;
|
||
}
|
||
cal_status &= ~CALSTAT_SHORT;
|
||
cal_status |= CALSTAT_ER;
|
||
}
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
static void
|
||
eterm_calc_et(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// Et = 1/(S21mt - Ex)
|
||
float etr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0];
|
||
float eti = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1];
|
||
float sq = etr*etr + eti*eti;
|
||
float invr = etr / sq;
|
||
float invi = -eti / sq;
|
||
cal_data[ETERM_ET][i][0] = invr;
|
||
cal_data[ETERM_ET][i][1] = invi;
|
||
}
|
||
cal_status &= ~CALSTAT_THRU;
|
||
cal_status |= CALSTAT_ET;
|
||
}
|
||
|
||
#if 0
|
||
void apply_error_term(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// S11m' = S11m - Ed
|
||
// S11a = S11m' / (Er + Es S11m')
|
||
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
|
||
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
|
||
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
|
||
float sq = err*err + eri*eri;
|
||
float s11ar = (s11mr * err + s11mi * eri) / sq;
|
||
float s11ai = (s11mi * err - s11mr * eri) / sq;
|
||
measured[0][i][0] = s11ar;
|
||
measured[0][i][1] = s11ai;
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
// S21m' = S21m - Ex
|
||
// S21a = S21m' (1-EsS11a)Et
|
||
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
|
||
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
|
||
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
|
||
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
|
||
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
|
||
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
|
||
float s21ar = s21mr * etr - s21mi * eti;
|
||
float s21ai = s21mi * etr + s21mr * eti;
|
||
measured[1][i][0] = s21ar;
|
||
measured[1][i][1] = s21ai;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void apply_error_term_at(int i)
|
||
{
|
||
// S11m' = S11m - Ed
|
||
// S11a = S11m' / (Er + Es S11m')
|
||
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
|
||
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
|
||
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
|
||
float sq = err*err + eri*eri;
|
||
float s11ar = (s11mr * err + s11mi * eri) / sq;
|
||
float s11ai = (s11mi * err - s11mr * eri) / sq;
|
||
measured[0][i][0] = s11ar;
|
||
measured[0][i][1] = s11ai;
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
// S21m' = S21m - Ex
|
||
// S21a = S21m' (1-EsS11a)Et
|
||
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
|
||
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
|
||
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
|
||
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
|
||
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
|
||
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
|
||
float s21ar = s21mr * etr - s21mi * eti;
|
||
float s21ai = s21mi * etr + s21mr * eti;
|
||
measured[1][i][0] = s21ar;
|
||
measured[1][i][1] = s21ai;
|
||
}
|
||
|
||
static void apply_edelay_at(int i)
|
||
{
|
||
float w = 2 * M_PI * electrical_delay * frequencies[i] * 1E-12;
|
||
float s = sin(w);
|
||
float c = cos(w);
|
||
float real = measured[0][i][0];
|
||
float imag = measured[0][i][1];
|
||
measured[0][i][0] = real * c - imag * s;
|
||
measured[0][i][1] = imag * c + real * s;
|
||
real = measured[1][i][0];
|
||
imag = measured[1][i][1];
|
||
measured[1][i][0] = real * c - imag * s;
|
||
measured[1][i][1] = imag * c + real * s;
|
||
}
|
||
|
||
void
|
||
cal_collect(int type)
|
||
{
|
||
ensure_edit_config();
|
||
|
||
switch (type) {
|
||
case CAL_LOAD:
|
||
cal_status |= CALSTAT_LOAD;
|
||
memcpy(cal_data[CAL_LOAD], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_OPEN:
|
||
cal_status |= CALSTAT_OPEN;
|
||
cal_status &= ~(CALSTAT_ES|CALSTAT_APPLY);
|
||
memcpy(cal_data[CAL_OPEN], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_SHORT:
|
||
cal_status |= CALSTAT_SHORT;
|
||
cal_status &= ~(CALSTAT_ER|CALSTAT_APPLY);
|
||
memcpy(cal_data[CAL_SHORT], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_THRU:
|
||
cal_status |= CALSTAT_THRU;
|
||
memcpy(cal_data[CAL_THRU], measured[1], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_ISOLN:
|
||
cal_status |= CALSTAT_ISOLN;
|
||
memcpy(cal_data[CAL_ISOLN], measured[1], sizeof measured[0]);
|
||
break;
|
||
}
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
void
|
||
cal_done(void)
|
||
{
|
||
ensure_edit_config();
|
||
if (!(cal_status & CALSTAT_LOAD))
|
||
eterm_set(ETERM_ED, 0.0, 0.0);
|
||
//adjust_ed();
|
||
if ((cal_status & CALSTAT_SHORT) && (cal_status & CALSTAT_OPEN)) {
|
||
eterm_calc_es();
|
||
eterm_calc_er(-1);
|
||
} else if (cal_status & CALSTAT_OPEN) {
|
||
eterm_copy(CAL_SHORT, CAL_OPEN);
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
eterm_calc_er(1);
|
||
} else if (cal_status & CALSTAT_SHORT) {
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
cal_status &= ~CALSTAT_SHORT;
|
||
eterm_calc_er(-1);
|
||
} else {
|
||
eterm_set(ETERM_ER, 1.0, 0.0);
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
}
|
||
|
||
if (!(cal_status & CALSTAT_ISOLN))
|
||
eterm_set(ETERM_EX, 0.0, 0.0);
|
||
if (cal_status & CALSTAT_THRU) {
|
||
eterm_calc_et();
|
||
} else {
|
||
eterm_set(ETERM_ET, 1.0, 0.0);
|
||
}
|
||
|
||
cal_status |= CALSTAT_APPLY;
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
static void
|
||
cal_interpolate(int s)
|
||
{
|
||
const properties_t *src = caldata_ref(s);
|
||
int i, j;
|
||
int eterm;
|
||
if (src == NULL)
|
||
return;
|
||
|
||
ensure_edit_config();
|
||
|
||
// lower than start freq of src range
|
||
for (i = 0; i < sweep_points; i++) {
|
||
if (frequencies[i] >= src->_frequencies[0])
|
||
break;
|
||
|
||
// fill cal_data at head of src range
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][0][0];
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][0][1];
|
||
}
|
||
}
|
||
|
||
j = 0;
|
||
for (; i < sweep_points; i++) {
|
||
uint32_t f = frequencies[i];
|
||
|
||
for (; j < sweep_points-1; j++) {
|
||
if (src->_frequencies[j] <= f && f < src->_frequencies[j+1]) {
|
||
// found f between freqs at j and j+1
|
||
float k1 = (float)(f - src->_frequencies[j])
|
||
/ (src->_frequencies[j+1] - src->_frequencies[j]);
|
||
|
||
// avoid glitch between freqs in different harmonics mode
|
||
if (IS_HARMONIC_MODE(src->_frequencies[j]) != IS_HARMONIC_MODE(src->_frequencies[j+1])) {
|
||
// assume f[j] < f[j+1]
|
||
k1 = IS_HARMONIC_MODE(f) ? 1.0 : 0.0;
|
||
}
|
||
|
||
float k0 = 1.0 - k1;
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][j][0] * k0 + src->_cal_data[eterm][j+1][0] * k1;
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][j][1] * k0 + src->_cal_data[eterm][j+1][1] * k1;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
if (j == sweep_points-1)
|
||
break;
|
||
}
|
||
|
||
// upper than end freq of src range
|
||
for (; i < sweep_points; i++) {
|
||
// fill cal_data at tail of src
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][sweep_points-1][0];
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][sweep_points-1][1];
|
||
}
|
||
}
|
||
|
||
cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED;
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_cal)
|
||
{
|
||
static const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" };
|
||
|
||
if (argc == 0) {
|
||
int i;
|
||
for (i = 0; i < 9; i++) {
|
||
if (cal_status & (1<<i))
|
||
shell_printf("%s ", items[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
return;
|
||
}
|
||
// 0 1 2 3 4 5 6 7 8 9 10
|
||
static const char cmd_cal_list[] = "load|open|short|thru|isoln|done|on|off|reset|data|in";
|
||
switch (getStringIndex(argv[0], cmd_cal_list)){
|
||
case 0:cal_collect(CAL_LOAD ); return;
|
||
case 1:cal_collect(CAL_OPEN ); return;
|
||
case 2:cal_collect(CAL_SHORT); return;
|
||
case 3:cal_collect(CAL_THRU ); return;
|
||
case 4:cal_collect(CAL_ISOLN); return;
|
||
case 5:cal_done(); return;
|
||
case 6:cal_status|= CALSTAT_APPLY;redraw_request|=REDRAW_CAL_STATUS; return;
|
||
case 7:cal_status&=~CALSTAT_APPLY;redraw_request|=REDRAW_CAL_STATUS; return;
|
||
case 8:cal_status = 0; redraw_request|=REDRAW_CAL_STATUS; return;
|
||
case 9:
|
||
shell_printf("%f %f\r\n", cal_data[CAL_LOAD ][0][0], cal_data[CAL_LOAD ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_OPEN ][0][0], cal_data[CAL_OPEN ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_SHORT][0][0], cal_data[CAL_SHORT][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_THRU ][0][0], cal_data[CAL_THRU ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_ISOLN][0][0], cal_data[CAL_ISOLN][0][1]);
|
||
return;
|
||
case 10:
|
||
cal_interpolate((argc > 1) ? my_atoi(argv[1]) : 0);
|
||
redraw_request|=REDRAW_CAL_STATUS;
|
||
return;
|
||
default:break;
|
||
}
|
||
|
||
shell_printf("usage: cal [%s]\r\n", cmd_cal_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_save)
|
||
{
|
||
if (argc != 1)
|
||
goto usage;
|
||
|
||
int id = my_atoi(argv[0]);
|
||
if (id < 0 || id >= SAVEAREA_MAX)
|
||
goto usage;
|
||
caldata_save(id);
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
return;
|
||
|
||
usage:
|
||
shell_printf("save {id}\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_recall)
|
||
{
|
||
if (argc != 1)
|
||
goto usage;
|
||
|
||
int id = my_atoi(argv[0]);
|
||
if (id < 0 || id >= SAVEAREA_MAX)
|
||
goto usage;
|
||
|
||
pause_sweep();
|
||
if (caldata_recall(id) == 0) {
|
||
// success
|
||
update_frequencies();
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
resume_sweep();
|
||
return;
|
||
|
||
usage:
|
||
shell_printf("recall {id}\r\n");
|
||
}
|
||
|
||
static const struct {
|
||
const char *name;
|
||
uint16_t refpos;
|
||
float scale_unit;
|
||
} trace_info[] = {
|
||
{ "LOGMAG", NGRIDY-1, 10.0 },
|
||
{ "PHASE", NGRIDY/2, 90.0 },
|
||
{ "DELAY", NGRIDY/2, 1e-9 },
|
||
{ "SMITH", 0, 1.00 },
|
||
{ "POLAR", 0, 1.00 },
|
||
{ "LINEAR", 0, 0.125},
|
||
{ "SWR", 0, 0.25 },
|
||
{ "REAL", NGRIDY/2, 0.25 },
|
||
{ "IMAG", NGRIDY/2, 0.25 },
|
||
{ "R", NGRIDY/2, 100.0 },
|
||
{ "X", NGRIDY/2, 100.0 }
|
||
};
|
||
|
||
static const char * const trc_channel_name[] = {
|
||
"CH0", "CH1"
|
||
};
|
||
|
||
const char *get_trace_typename(int t)
|
||
{
|
||
return trace_info[trace[t].type].name;
|
||
}
|
||
|
||
void set_trace_type(int t, int type)
|
||
{
|
||
int enabled = type != TRC_OFF;
|
||
int force = FALSE;
|
||
|
||
if (trace[t].enabled != enabled) {
|
||
trace[t].enabled = enabled;
|
||
force = TRUE;
|
||
}
|
||
if (trace[t].type != type) {
|
||
trace[t].type = type;
|
||
// Set default trace refpos
|
||
trace[t].refpos = trace_info[type].refpos;
|
||
// Set default trace scale
|
||
trace[t].scale = trace_info[type].scale_unit;
|
||
force = TRUE;
|
||
}
|
||
if (force) {
|
||
plot_into_index(measured);
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
void set_trace_channel(int t, int channel)
|
||
{
|
||
if (trace[t].channel != channel) {
|
||
trace[t].channel = channel;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
void set_trace_scale(int t, float scale)
|
||
{
|
||
if (trace[t].scale != scale) {
|
||
trace[t].scale = scale;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
float get_trace_scale(int t)
|
||
{
|
||
return trace[t].scale;
|
||
}
|
||
|
||
void set_trace_refpos(int t, float refpos)
|
||
{
|
||
if (trace[t].refpos != refpos) {
|
||
trace[t].refpos = refpos;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
float get_trace_refpos(int t)
|
||
{
|
||
return trace[t].refpos;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_trace)
|
||
{
|
||
int t;
|
||
if (argc == 0) {
|
||
for (t = 0; t < TRACES_MAX; t++) {
|
||
if (trace[t].enabled) {
|
||
const char *type = get_trace_typename(t);
|
||
const char *channel = trc_channel_name[trace[t].channel];
|
||
float scale = get_trace_scale(t);
|
||
float refpos = get_trace_refpos(t);
|
||
shell_printf("%d %s %s %f %f\r\n", t, type, channel, scale, refpos);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (strcmp(argv[0], "all") == 0 &&
|
||
argc > 1 && strcmp(argv[1], "off") == 0) {
|
||
for (t = 0; t < TRACES_MAX; t++)
|
||
set_trace_type(t, TRC_OFF);
|
||
goto exit;
|
||
}
|
||
|
||
t = my_atoi(argv[0]);
|
||
if (t < 0 || t >= TRACES_MAX)
|
||
goto usage;
|
||
if (argc == 1) {
|
||
const char *type = get_trace_typename(t);
|
||
const char *channel = trc_channel_name[trace[t].channel];
|
||
shell_printf("%d %s %s\r\n", t, type, channel);
|
||
return;
|
||
}
|
||
#if MAX_TRACE_TYPE!=12
|
||
#error "Trace type enum possibly changed, check cmd_trace function"
|
||
#endif
|
||
// enum TRC_LOGMAG, TRC_PHASE, TRC_DELAY, TRC_SMITH, TRC_POLAR, TRC_LINEAR, TRC_SWR, TRC_REAL, TRC_IMAG, TRC_R, TRC_X, TRC_OFF
|
||
static const char cmd_type_list[] = "logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|off";
|
||
int type = getStringIndex(argv[1], cmd_type_list);
|
||
if (type >= 0){
|
||
set_trace_type(t, type);
|
||
goto check_ch_num;
|
||
}
|
||
// 0 1
|
||
static const char cmd_scale_ref_list[] = "scale|refpos";
|
||
if (argc >= 3){
|
||
switch (getStringIndex(argv[1], cmd_scale_ref_list)){
|
||
case 0:
|
||
//trace[t].scale = my_atof(argv[2]);
|
||
set_trace_scale(t, my_atof(argv[2]));
|
||
goto exit;
|
||
case 1:
|
||
//trace[t].refpos = my_atof(argv[2]);
|
||
set_trace_refpos(t, my_atof(argv[2]));
|
||
goto exit;
|
||
default:
|
||
goto usage;
|
||
}
|
||
}
|
||
check_ch_num:
|
||
if (argc > 2) {
|
||
int src = my_atoi(argv[2]);
|
||
if (src != 0 && src != 1)
|
||
goto usage;
|
||
trace[t].channel = src;
|
||
}
|
||
exit:
|
||
return;
|
||
usage:
|
||
shell_printf("trace {0|1|2|3|all} [%s] [src]\r\n"\
|
||
"trace {0|1|2|3} {%s} {value}\r\n", cmd_type_list, cmd_scale_ref_list);
|
||
}
|
||
|
||
|
||
void set_electrical_delay(float picoseconds)
|
||
{
|
||
if (electrical_delay != picoseconds) {
|
||
electrical_delay = picoseconds;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
float get_electrical_delay(void)
|
||
{
|
||
return electrical_delay;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_edelay)
|
||
{
|
||
if (argc == 0) {
|
||
shell_printf("%f\r\n", electrical_delay);
|
||
return;
|
||
}
|
||
if (argc > 0) {
|
||
set_electrical_delay(my_atof(argv[0]));
|
||
}
|
||
}
|
||
|
||
|
||
VNA_SHELL_FUNCTION(cmd_marker)
|
||
{
|
||
int t;
|
||
if (argc == 0) {
|
||
for (t = 0; t < MARKERS_MAX; t++) {
|
||
if (markers[t].enabled) {
|
||
shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
if (strcmp(argv[0], "off") == 0) {
|
||
active_marker = -1;
|
||
for (t = 0; t < MARKERS_MAX; t++)
|
||
markers[t].enabled = FALSE;
|
||
redraw_request |= REDRAW_MARKER;
|
||
return;
|
||
}
|
||
|
||
t = my_atoi(argv[0])-1;
|
||
if (t < 0 || t >= MARKERS_MAX)
|
||
goto usage;
|
||
if (argc == 1) {
|
||
shell_printf("%d %d %d\r\n", t+1, markers[t].index, frequency);
|
||
active_marker = t;
|
||
// select active marker
|
||
markers[t].enabled = TRUE;
|
||
redraw_request |= REDRAW_MARKER;
|
||
return;
|
||
}
|
||
static const char cmd_marker_list[] = "on|off";
|
||
switch (getStringIndex(argv[1], cmd_marker_list)){
|
||
case 0: markers[t].enabled = TRUE; active_marker = t; redraw_request |= REDRAW_MARKER; return;
|
||
case 1: markers[t].enabled =FALSE; if (active_marker == t) active_marker = -1; redraw_request|=REDRAW_MARKER; return;
|
||
default:
|
||
// select active marker and move to index
|
||
markers[t].enabled = TRUE;
|
||
int index = my_atoi(argv[1]);
|
||
markers[t].index = index;
|
||
markers[t].frequency = frequencies[index];
|
||
active_marker = t;
|
||
redraw_request |= REDRAW_MARKER;
|
||
return;
|
||
}
|
||
usage:
|
||
shell_printf("marker [n] [%s|{index}]\r\n", cmd_marker_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_touchcal)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
//extern int16_t touch_cal[4];
|
||
int i;
|
||
|
||
shell_printf("first touch upper left, then lower right...");
|
||
touch_cal_exec();
|
||
shell_printf("done\r\n");
|
||
|
||
shell_printf("touch cal params: ");
|
||
for (i = 0; i < 4; i++) {
|
||
shell_printf("%d ", config.touch_cal[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_touchtest)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
do {
|
||
touch_draw_test();
|
||
} while(argc);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_frequencies)
|
||
{
|
||
int i;
|
||
(void)argc;
|
||
(void)argv;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
if (frequencies[i] != 0)
|
||
shell_printf("%d\r\n", frequencies[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_domain_mode(int mode) // accept DOMAIN_FREQ or DOMAIN_TIME
|
||
{
|
||
if (mode != (domain_mode & DOMAIN_MODE)) {
|
||
domain_mode = (domain_mode & ~DOMAIN_MODE) | (mode & DOMAIN_MODE);
|
||
redraw_request |= REDRAW_FREQUENCY;
|
||
uistat.lever_mode = LM_MARKER;
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_timedomain_func(int func) // accept TD_FUNC_LOWPASS_IMPULSE, TD_FUNC_LOWPASS_STEP or TD_FUNC_BANDPASS
|
||
{
|
||
domain_mode = (domain_mode & ~TD_FUNC) | (func & TD_FUNC);
|
||
}
|
||
|
||
static void
|
||
set_timedomain_window(int func) // accept TD_WINDOW_MINIMUM/TD_WINDOW_NORMAL/TD_WINDOW_MAXIMUM
|
||
{
|
||
domain_mode = (domain_mode & ~TD_WINDOW) | (func & TD_WINDOW);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_transform)
|
||
{
|
||
int i;
|
||
if (argc == 0) {
|
||
goto usage;
|
||
}
|
||
// 0 1 2 3 4 5 6 7
|
||
static const char cmd_transform_list[] = "on|off|impulse|step|bandpass|minimum|normal|maximum";
|
||
for (i = 0; i < argc; i++) {
|
||
switch (getStringIndex(argv[i], cmd_transform_list)){
|
||
case 0:set_domain_mode(DOMAIN_TIME);return;
|
||
case 1:set_domain_mode(DOMAIN_FREQ);return;
|
||
case 2:set_timedomain_func(TD_FUNC_LOWPASS_IMPULSE);return;
|
||
case 3:set_timedomain_func(TD_FUNC_LOWPASS_STEP);return;
|
||
case 4:set_timedomain_func(TD_FUNC_BANDPASS);return;
|
||
case 5:set_timedomain_window(TD_WINDOW_MINIMUM);return;
|
||
case 6:set_timedomain_window(TD_WINDOW_NORMAL);return;
|
||
case 7:set_timedomain_window(TD_WINDOW_MAXIMUM);return;
|
||
default: goto usage;
|
||
}
|
||
}
|
||
return;
|
||
usage:
|
||
shell_printf("usage: transform {%s} [...]\r\n", cmd_transform_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_test)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
#if 0
|
||
int i;
|
||
for (i = 0; i < 100; i++) {
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
set_frequency(10000000);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
set_frequency(90000000);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
int i;
|
||
int mode = 0;
|
||
if (argc >= 1)
|
||
mode = my_atoi(argv[0]);
|
||
|
||
for (i = 0; i < 20; i++) {
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
ili9341_test(mode);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
//extern adcsample_t adc_samples[2];
|
||
//shell_printf("adc: %d %d\r\n", adc_samples[0], adc_samples[1]);
|
||
int i;
|
||
int x, y;
|
||
for (i = 0; i < 50; i++) {
|
||
test_touch(&x, &y);
|
||
shell_printf("adc: %d %d\r\n", x, y);
|
||
chThdSleepMilliseconds(200);
|
||
}
|
||
//extern int touch_x, touch_y;
|
||
//shell_printf("adc: %d %d\r\n", touch_x, touch_y);
|
||
#endif
|
||
|
||
while (argc > 1) {
|
||
int x, y;
|
||
touch_position(&x, &y);
|
||
shell_printf("touch: %d %d\r\n", x, y);
|
||
chThdSleepMilliseconds(200);
|
||
}
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_gain)
|
||
{
|
||
int rvalue;
|
||
int lvalue = 0;
|
||
if (argc != 1 && argc != 2) {
|
||
shell_printf("usage: gain {lgain(0-95)} [rgain(0-95)]\r\n");
|
||
return;
|
||
}
|
||
rvalue = my_atoi(argv[0]);
|
||
if (argc == 2)
|
||
lvalue = my_atoi(argv[1]);
|
||
tlv320aic3204_set_gain(lvalue, rvalue);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_port)
|
||
{
|
||
int port;
|
||
if (argc != 1) {
|
||
shell_printf("usage: port {0:TX 1:RX}\r\n");
|
||
return;
|
||
}
|
||
port = my_atoi(argv[0]);
|
||
tlv320aic3204_select(port);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_stat)
|
||
{
|
||
int16_t *p = &rx_buffer[0];
|
||
int32_t acc0, acc1;
|
||
int32_t ave0, ave1;
|
||
int32_t count = AUDIO_BUFFER_LEN;
|
||
int i;
|
||
(void)argc;
|
||
(void)argv;
|
||
acc0 = acc1 = 0;
|
||
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
|
||
acc0 += p[i];
|
||
acc1 += p[i+1];
|
||
}
|
||
ave0 = acc0 / count;
|
||
ave1 = acc1 / count;
|
||
acc0 = acc1 = 0;
|
||
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
|
||
acc0 += (p[i] - ave0)*(p[i] - ave0);
|
||
acc1 += (p[i+1] - ave1)*(p[i+1] - ave1);
|
||
}
|
||
stat.rms[0] = sqrtf(acc0 / count);
|
||
stat.rms[1] = sqrtf(acc1 / count);
|
||
stat.ave[0] = ave0;
|
||
stat.ave[1] = ave1;
|
||
|
||
shell_printf("average: %d %d\r\n", stat.ave[0], stat.ave[1]);
|
||
shell_printf("rms: %d %d\r\n", stat.rms[0], stat.rms[1]);
|
||
shell_printf("callback count: %d\r\n", stat.callback_count);
|
||
//shell_printf("interval cycle: %d\r\n", stat.interval_cycles);
|
||
//shell_printf("busy cycle: %d\r\n", stat.busy_cycles);
|
||
//shell_printf("load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles);
|
||
extern int awd_count;
|
||
shell_printf("awd: %d\r\n", awd_count);
|
||
}
|
||
|
||
|
||
#ifndef VERSION
|
||
#define VERSION "unknown"
|
||
#endif
|
||
|
||
const char NANOVNA_VERSION[] = VERSION;
|
||
|
||
VNA_SHELL_FUNCTION(cmd_version)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("%s\r\n", NANOVNA_VERSION);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_vbat)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("%d mV\r\n", vbat);
|
||
}
|
||
|
||
#ifdef ENABLE_THREADS_COMMAND
|
||
#if CH_CFG_USE_REGISTRY == FALSE
|
||
#error "Threads Requite enabled CH_CFG_USE_REGISTRY in chconf.h"
|
||
#endif
|
||
VNA_SHELL_FUNCTION(cmd_threads) {
|
||
static const char *states[] = {CH_STATE_NAMES};
|
||
thread_t *tp;
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("stklimit| stack|stk free| addr|refs|prio| state| name"VNA_SHELL_NEWLINE_STR);
|
||
tp = chRegFirstThread();
|
||
do {
|
||
uint32_t max_stack_use = 0U;
|
||
#if (CH_DBG_ENABLE_STACK_CHECK == TRUE) || (CH_CFG_USE_DYNAMIC == TRUE)
|
||
uint32_t stklimit = (uint32_t)tp->wabase;
|
||
#if CH_DBG_FILL_THREADS == TRUE
|
||
uint8_t *p = (uint8_t *)tp->wabase; while(p[max_stack_use]==CH_DBG_STACK_FILL_VALUE) max_stack_use++;
|
||
#endif
|
||
#else
|
||
uint32_t stklimit = 0U;
|
||
#endif
|
||
|
||
|
||
shell_printf("%08x|%08x|%08x|%08x|%4u|%4u|%9s|%12s"VNA_SHELL_NEWLINE_STR,
|
||
stklimit, (uint32_t)tp->ctx.sp, max_stack_use, (uint32_t)tp,
|
||
(uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state],
|
||
tp->name == NULL ? "" : tp->name);
|
||
tp = chRegNextThread(tp);
|
||
} while (tp != NULL);
|
||
}
|
||
#endif
|
||
|
||
//=============================================================================
|
||
VNA_SHELL_FUNCTION(cmd_help);
|
||
|
||
#pragma pack(push, 2)
|
||
typedef struct {
|
||
const char *sc_name;
|
||
vna_shellcmd_t sc_function;
|
||
uint16_t flags;
|
||
} VNAShellCommand;
|
||
#pragma pack(pop)
|
||
|
||
// Some commands can executed only if process thread not in main cycle
|
||
#define CMD_WAIT_MUTEX 1
|
||
static const VNAShellCommand commands[] =
|
||
{
|
||
{"version" , cmd_version , 0},
|
||
{"reset" , cmd_reset , 0},
|
||
{"freq" , cmd_freq , CMD_WAIT_MUTEX},
|
||
{"offset" , cmd_offset , 0},
|
||
{"time" , cmd_time , 0},
|
||
{"dac" , cmd_dac , 0},
|
||
{"saveconfig" , cmd_saveconfig , 0},
|
||
{"clearconfig" , cmd_clearconfig , 0},
|
||
{"data" , cmd_data , CMD_WAIT_MUTEX},
|
||
#ifdef ENABLED_DUMP
|
||
{"dump" , cmd_dump , 0},
|
||
#endif
|
||
{"frequencies" , cmd_frequencies , 0},
|
||
{"port" , cmd_port , 0},
|
||
{"stat" , cmd_stat , 0},
|
||
{"gain" , cmd_gain , 0},
|
||
{"power" , cmd_power , 0},
|
||
{"sample" , cmd_sample , 0},
|
||
// {"gamma" , cmd_gamma , 0},
|
||
{"scan" , cmd_scan , 0}, // Wait mutex hardcoded in cmd, need wait one sweep manually
|
||
{"sweep" , cmd_sweep , 0},
|
||
{"test" , cmd_test , 0},
|
||
{"touchcal" , cmd_touchcal , CMD_WAIT_MUTEX},
|
||
{"touchtest" , cmd_touchtest , CMD_WAIT_MUTEX},
|
||
{"pause" , cmd_pause , 0},
|
||
{"resume" , cmd_resume , 0},
|
||
{"cal" , cmd_cal , CMD_WAIT_MUTEX},
|
||
{"save" , cmd_save , 0},
|
||
{"recall" , cmd_recall , CMD_WAIT_MUTEX},
|
||
{"trace" , cmd_trace , 0},
|
||
{"marker" , cmd_marker , 0},
|
||
{"edelay" , cmd_edelay , 0},
|
||
{"capture" , cmd_capture , CMD_WAIT_MUTEX},
|
||
{"vbat" , cmd_vbat , 0},
|
||
{"transform" , cmd_transform , 0},
|
||
{"threshold" , cmd_threshold , 0},
|
||
{"help" , cmd_help , 0},
|
||
#ifdef ENABLE_THREADS_COMMAND
|
||
{"threads" , cmd_threads , 0},
|
||
#endif
|
||
{NULL , NULL , 0}
|
||
};
|
||
|
||
VNA_SHELL_FUNCTION(cmd_help)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
const VNAShellCommand *scp = commands;
|
||
shell_printf("Commands:");
|
||
while (scp->sc_name != NULL) {
|
||
shell_printf(" %s", scp->sc_name);
|
||
scp++;
|
||
}
|
||
shell_printf(VNA_SHELL_NEWLINE_STR);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* VNA shell functions
|
||
*/
|
||
|
||
//
|
||
// Read command line from shell_stream
|
||
//
|
||
static int VNAShell_readLine(char *line, int max_size){
|
||
// Read line from input stream
|
||
uint8_t c;
|
||
char *ptr = line;
|
||
while (1){
|
||
// Return 0 only if stream not active
|
||
if (streamRead(shell_stream, &c, 1) == 0)
|
||
return 0;
|
||
// Backspace or Delete
|
||
if (c == 8 || c == 0x7f) {
|
||
if (ptr != line) {
|
||
static const char backspace[] = {0x08,0x20,0x08,0x00};
|
||
shell_printf(backspace);
|
||
ptr--;
|
||
}
|
||
continue;
|
||
}
|
||
// New line (Enter)
|
||
if (c == '\r') {
|
||
shell_printf(VNA_SHELL_NEWLINE_STR);
|
||
*ptr = 0;
|
||
return 1;
|
||
}
|
||
// Others (skip)
|
||
if (c < 0x20)
|
||
continue;
|
||
// Store
|
||
if (ptr < line + max_size - 1) {
|
||
streamPut(shell_stream, c); // Echo
|
||
*ptr++ = (char)c;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// Macros for convert define value to string
|
||
#define STR1(x) #x
|
||
#define define_to_STR(x) STR1(x)
|
||
//
|
||
// Parse and run command line
|
||
//
|
||
static void VNAShell_executeLine(char *line){
|
||
// Parse and execute line
|
||
char *args[VNA_SHELL_MAX_ARGUMENTS + 1];
|
||
int n = 0;
|
||
char *lp = line, *ep;
|
||
while (*lp!=0){
|
||
// Skipping white space and tabs at string begin.
|
||
while (*lp==' ' || *lp=='\t') lp++;
|
||
// If an argument starts with a double quote then its delimiter is another quote, else delimiter is white space.
|
||
ep = (*lp == '"') ? strpbrk(++lp, "\"") : strpbrk( lp, " \t");
|
||
// Store in args string
|
||
args[n++]=lp;
|
||
// Stop, end of input string
|
||
if ((lp = ep) == NULL)
|
||
break;
|
||
// Argument limits check
|
||
if (n > VNA_SHELL_MAX_ARGUMENTS) {
|
||
shell_printf("too many arguments, max "define_to_STR(VNA_SHELL_MAX_ARGUMENTS)""VNA_SHELL_NEWLINE_STR);
|
||
return;
|
||
}
|
||
// Set zero at the end of string and continue check
|
||
*lp++ = 0;
|
||
}
|
||
if (n == 0)
|
||
return;
|
||
// Execute line
|
||
const VNAShellCommand *scp;
|
||
for (scp = commands; scp->sc_name!=NULL;scp++) {
|
||
if (strcmp(scp->sc_name, args[0]) == 0) {
|
||
if (scp->flags&CMD_WAIT_MUTEX) {
|
||
chMtxLock(&mutex);
|
||
scp->sc_function(n-1, &args[1]);
|
||
chMtxUnlock(&mutex);
|
||
}
|
||
else
|
||
scp->sc_function(n-1, &args[1]);
|
||
return;
|
||
}
|
||
}
|
||
shell_printf("%s?"VNA_SHELL_NEWLINE_STR, args[0]);
|
||
}
|
||
|
||
#ifdef VNA_SHELL_THREAD
|
||
static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442);
|
||
THD_FUNCTION(myshellThread, p) {
|
||
(void)p;
|
||
chRegSetThreadName("shell");
|
||
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
|
||
while (true) {
|
||
shell_printf(VNA_SHELL_PROMPT_STR);
|
||
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
|
||
VNAShell_executeLine(shell_line);
|
||
else // Putting a delay in order to avoid an endless loop trying to read an unavailable stream.
|
||
osalThreadSleepMilliseconds(100);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static const I2CConfig i2ccfg = {
|
||
0x00300506, //voodoo magic 400kHz @ HSI 8MHz
|
||
0,
|
||
0
|
||
};
|
||
|
||
static DACConfig dac1cfg1 = {
|
||
//init: 2047U,
|
||
init: 1922U,
|
||
datamode: DAC_DHRM_12BIT_RIGHT
|
||
};
|
||
|
||
|
||
// Main thread stack size defined in makefile USE_PROCESS_STACKSIZE = 0x200
|
||
// Profile stack usage (enable threads command by def ENABLE_THREADS_COMMAND) show:
|
||
// Stack maximum usage = 472 bytes (need test more and run all commands), free stack = 40 bytes
|
||
//
|
||
int main(void)
|
||
{
|
||
halInit();
|
||
chSysInit();
|
||
|
||
chMtxObjectInit(&mutex);
|
||
|
||
//palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
|
||
//palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
|
||
i2cStart(&I2CD1, &i2ccfg);
|
||
si5351_init();
|
||
|
||
// MCO on PA8
|
||
//palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0));
|
||
/*
|
||
* Initializes a serial-over-USB CDC driver.
|
||
*/
|
||
sduObjectInit(&SDU1);
|
||
sduStart(&SDU1, &serusbcfg);
|
||
/*
|
||
* Activates the USB driver and then the USB bus pull-up on D+.
|
||
* Note, a delay is inserted in order to not have to disconnect the cable
|
||
* after a reset.
|
||
*/
|
||
usbDisconnectBus(serusbcfg.usbp);
|
||
chThdSleepMilliseconds(100);
|
||
usbStart(serusbcfg.usbp, &usbcfg);
|
||
usbConnectBus(serusbcfg.usbp);
|
||
|
||
/*
|
||
* SPI LCD Initialize
|
||
*/
|
||
ili9341_init();
|
||
|
||
/* restore config */
|
||
config_recall();
|
||
|
||
dac1cfg1.init = config.dac_value;
|
||
/*
|
||
* Starting DAC1 driver, setting up the output pin as analog as suggested
|
||
* by the Reference Manual.
|
||
*/
|
||
dacStart(&DACD2, &dac1cfg1);
|
||
|
||
/* initial frequencies */
|
||
update_frequencies();
|
||
|
||
/* restore frequencies and calibration properties from flash memory */
|
||
if (config.default_loadcal >= 0)
|
||
caldata_recall(config.default_loadcal);
|
||
|
||
/*
|
||
* I2S Initialize
|
||
*/
|
||
tlv320aic3204_init();
|
||
i2sInit();
|
||
i2sObjectInit(&I2SD2);
|
||
i2sStart(&I2SD2, &i2sconfig);
|
||
i2sStartExchange(&I2SD2);
|
||
|
||
ui_init();
|
||
//Initialize graph plotting
|
||
plot_init();
|
||
redraw_frame();
|
||
chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO-1, Thread1, NULL);
|
||
|
||
while (1) {
|
||
if (SDU1.config->usbp->state == USB_ACTIVE) {
|
||
#ifdef VNA_SHELL_THREAD
|
||
#if CH_CFG_USE_WAITEXIT == FALSE
|
||
#error "VNA_SHELL_THREAD use chThdWait, need enable CH_CFG_USE_WAITEXIT in chconf.h"
|
||
#endif
|
||
thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2),
|
||
NORMALPRIO + 1,
|
||
myshellThread, NULL);
|
||
chThdWait(shelltp);
|
||
#else
|
||
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
|
||
do {
|
||
shell_printf(VNA_SHELL_PROMPT_STR);
|
||
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
|
||
VNAShell_executeLine(shell_line);
|
||
else
|
||
chThdSleepMilliseconds(200);
|
||
} while (SDU1.config->usbp->state == USB_ACTIVE);
|
||
#endif
|
||
}
|
||
chThdSleepMilliseconds(1000);
|
||
}
|
||
}
|
||
|
||
/* The prototype shows it is a naked function - in effect this is just an
|
||
assembly function. */
|
||
void HardFault_Handler( void );
|
||
|
||
void hard_fault_handler_c(uint32_t *sp) __attribute__( ( naked ) );;
|
||
|
||
void HardFault_Handler(void)
|
||
{
|
||
uint32_t* sp;
|
||
//__asm volatile ("mrs %0, msp \n\t": "=r" (sp) );
|
||
__asm volatile ("mrs %0, psp \n\t": "=r" (sp) );
|
||
hard_fault_handler_c(sp);
|
||
}
|
||
|
||
void hard_fault_handler_c(uint32_t* sp)
|
||
{
|
||
(void)sp;
|
||
while (true) {}
|
||
}
|