mirror of
https://github.com/ttrftech/NanoVNA.git
synced 2025-12-06 03:31:59 +01:00
Define and move constants in nanovna.h, and use it Fix command 'marker' - display marker freq (not current freq)
91 lines
2.9 KiB
C
91 lines
2.9 KiB
C
/*
|
|
* fft.h is Based on
|
|
* Free FFT and convolution (C)
|
|
*
|
|
* Copyright (c) 2019 Project Nayuki. (MIT License)
|
|
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
* - The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
* - The Software is provided "as is", without warranty of any kind, express or
|
|
* implied, including but not limited to the warranties of merchantability,
|
|
* fitness for a particular purpose and noninfringement. In no event shall the
|
|
* authors or copyright holders be liable for any claim, damages or other
|
|
* liability, whether in an action of contract, tort or otherwise, arising from,
|
|
* out of or in connection with the Software or the use or other dealings in the
|
|
* Software.
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
static uint16_t reverse_bits(uint16_t x, int n) {
|
|
uint16_t result = 0;
|
|
int i;
|
|
for (i = 0; i < n; i++, x >>= 1)
|
|
result = (result << 1) | (x & 1U);
|
|
return result;
|
|
}
|
|
|
|
/***
|
|
* dir = forward: 0, inverse: 1
|
|
* https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c
|
|
*/
|
|
static void fft256(float array[][2], const uint8_t dir) {
|
|
const uint16_t n = 256;
|
|
const uint8_t levels = 8; // log2(n)
|
|
|
|
const uint8_t real = dir & 1;
|
|
const uint8_t imag = ~real & 1;
|
|
uint16_t i;
|
|
uint16_t size;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
uint16_t j = reverse_bits(i, levels);
|
|
if (j > i) {
|
|
float temp = array[i][real];
|
|
array[i][real] = array[j][real];
|
|
array[j][real] = temp;
|
|
temp = array[i][imag];
|
|
array[i][imag] = array[j][imag];
|
|
array[j][imag] = temp;
|
|
}
|
|
}
|
|
|
|
// Cooley-Tukey decimation-in-time radix-2 FFT
|
|
for (size = 2; size <= n; size *= 2) {
|
|
uint16_t halfsize = size / 2;
|
|
uint16_t tablestep = n / size;
|
|
uint16_t i;
|
|
for (i = 0; i < n; i += size) {
|
|
uint16_t j, k;
|
|
for (j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
|
|
uint16_t l = j + halfsize;
|
|
float tpre = array[l][real] * cos(2 * VNA_PI * k / 256) + array[l][imag] * sin(2 * VNA_PI * k / 256);
|
|
float tpim = -array[l][real] * sin(2 * VNA_PI * k / 256) + array[l][imag] * cos(2 * VNA_PI * k / 256);
|
|
array[l][real] = array[j][real] - tpre;
|
|
array[l][imag] = array[j][imag] - tpim;
|
|
array[j][real] += tpre;
|
|
array[j][imag] += tpim;
|
|
}
|
|
}
|
|
if (size == n) // Prevent overflow in 'size *= 2'
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void fft256_forward(float array[][2]) {
|
|
fft256(array, 0);
|
|
}
|
|
|
|
static inline void fft256_inverse(float array[][2]) {
|
|
fft256(array, 1);
|
|
}
|